

Amateur: Augmented Reality Based Vehicle Navigation System

Chu Cao¹, Zhenjiang Li², Pengfei Zhou¹, Mo Li¹ Nanyang Technological University¹, Singapore City University of Hong Kong², Hong Kong, China

12 September 2019

UbiComp'19, London, UK

Transportation System

Vehicular navigation system

Mobile navigation service

Transportation System

Problem: display digital map Gap: real v.s. virtual

- Display front-view road condition
- Instructions on live world
- Comparable navigation
- ✦ Easy to deploy

Challenges

Determine the correct instruction at proper position on screen.

Host-lane identifying
 Lane-level localisation accuracy

Annotations placement
 Depth information in video

Related work

CarLoc: Precisely Tracking Automobile Position [SenSys'15]

- 20 built-in sensors
- Dead-reckoning

Real time Detection of Lane Markers in Urban Streets [IVS'08]

- Complicated image processing
- Too heavy to be affordable

Related work

Tesla autopilot 2.0

Google automobile

♦ Maintain on hostlane

✦ Rich sensor embedded

Related work

Towards Unified Depth and Semantic Prediction from a Single Image [CVPR'15]

- Three complicated neural networks
- Large volume of training data

System architecture — lane identification

Lane detection task.

Based on pure videos.

Avoid collisions for automobiles.

Lane identification task.

Based not only on videos... IMU sensors on mobile phone & Extra lane number information

Assistant for drivers.

System architecture — lane identification

One frame in video

Image slicing of 60 frames

System architecture — lane identification

System architecture — lane identification

A road segment with 4 lanes

Templates of a 4-lane road

System architecture — lane identification

- Deckage of frontal vehicles
- 1. Blockage of frontal vehicles
- 2. Reflection of lights
- 3. Bad condition of lane markers

System architecture — lane identification

✦ Particle filter design

initialisation

System architecture — lane identification

✦ Particle filter design

Dynamic time wrapping under Euclidean distance

$$w_b^p = e^{-d_b}$$

System architecture — lane identification

✦ Particle filter design

Resampling based on importance

Movement: lane switching

System architecture — lane identification

✦ Particle filter design

Resampling based on importance

System architecture — lane identification

✦ Particle filter design

Resampling based on importance

Lane marker of host-lane has a traversing phenomenon during lane switching.

System architecture — lane identification

Particle filter design

Resampling based on importance

$$\mathcal{P}(\mathcal{L}_s|\mathcal{O}) = \frac{\mathcal{P}(\mathcal{O}|\mathcal{L}_s) \cdot \mathcal{P}(\mathcal{L}_s)}{\mathcal{P}(\mathcal{O})}$$

 $\mathcal{P}(\mathcal{L}_s|\mathcal{O}) = \mathcal{P}(\mathcal{O}|\mathcal{L}_s) \cdot \beta$

 $\mathcal{P}(\mathcal{O}|\mathcal{L}_s) = e^{-d'_s}$

System architecture — lane identification

Particle filter design

Resampling based on importance

$$\hat{w}_{l} = \sum_{s+i=l} \mathcal{P}(\mathcal{L}_{s}|\mathcal{O}) \cdot w_{i} = \sum_{s+i=l} \beta \cdot \mathcal{P}(\mathcal{O}|\mathcal{L}_{s}) \cdot w_{i}$$

System architecture

Please refer to our paper for more details.

Examples

Cloudy

Daytime

Nightfall

Demo

Evaluation

- Running on rental taxis
 Around 300 km travel distance
- ✦ Levenshtein distance

Vgen = {LC2, L, RC1, R}, Vgt = {LC1, L, RC1, R}

Ground truth: manually checking the video

Implemented on Nexus 5X

- Around 27m error (52m)
- 105 pixels offset on screen (127 pixels)

Q & **A**

Thank you very much.

Backup slides.

System architecture — intersection inference

- 1. Flickering feature of LED bulbs
- 2. Rolling shutter effect on CMOS

System architecture — intersection inference

The position of traffic light on the screen is known.

- Until converging
- ✦ Accurately identifying in 5s

- ✤ Force output in 2s
- More observations -> better performance

Evaluation

No.	Rating Question Statement		
Q1	It was easy to navigate using this navigation service.		
Q2	I need to pay extra attention on this navigation service when driving.		
Q3	This navigation service provided user-friendly guidance .		
Q4	This navigation service was useful in helping me navigate properly.		
Q5	It was easy for me to learn how to use this navigation service.		
Q6	I paid most of my attention on driving using this navigation service.		
Q 7	The guidance was user-friendly to interact with.		
Q 8	This navigation service provided me with effective guidance.		

Likert scale rating questions

- ✦ Ease of use (Q1 & Q5)
- Perceived distraction (Q2 & Q6)
- Navigational experience (Q4 & Q8)
- ♦ User-friendliness (Q3 & Q7)

- With-in subject user study
- Wilcoxon Signed Rank Tests

- Easier to use
- Less distracted
- More user-friendly

Section — details of routes

Route	A	В	C	D	Е
Length (km)	12.7	17.4	36.8	12.5	16.8
Length of Expressway (km)	8.73	15.35	36	4.46	14.28
Length of Highway (km)	3.97	2.05	0.8	8.04	2.52
Number of Traffic Lights	15	19	5	18	17
Average Velocity (km/h)	49.7	51.2	56.1	45.4	53.7

Evaluation — details of drivers

Property	Description of Group A	Description of Group B	
Age (year)	32 - 61 (mean: 40.3)	31 - 57 (mean: 42.8)	
Driving Experience (year)	2 - 27 (mean: 15.8)	1 - 30 (mean: 17.6)	
Gender	21 Male (84%), 4 Female (16%)	19 Male (76%), 6 Female (24%)	