

Generating Mobility Trajectories with Retained Data Utility

<u>Chu Cao</u>, Mo Li Nanyang Technological University Singapore

ACM SIGKDD 2021, Virtual Event

A **smart city** is an urban development vision to integrate multiple information and communication technology (ICT) and Internet of Things (IoT) solutions in a secure fashion to manage a city's assets.

— Wikipedia

GPS Satellites

Traffic Surveillance System

Cell Towers

Mobility Trajectory Data

Transportation system is a key component in smart cities.

Mobility Trajectory. A mobility trajectory consists of a sequence of locations. The ith trajectory can be denoted as $\tau_i = \{loc_1^i, ..., loc_n^i\}$, where loc_j^i is the jth location sampled at time t_j.

Location. A location is determined by three elements: latitude, longitude, and timestamp, denoted as loc = (lat, lon, t).

Mobility trajectories could help improve the transportation systems.

GPS readings from vehicles moving in cities could be used to estimate traffic condition [1] and predict nonrecurrent traffic events [2].

[1] Z. Liu, et al. Think Like A Graph: Real-Time Traffic Estimation at City-Scale. IEEE TMC 2019.
[2] M. Li, et al. Traffic Flow Prediction via Vehicle Trajectories. AAAI 2021.
https://www.stickpng.com/img/miscellaneous/gps/gps-satellite

Dr

Pedestrian mobilities can be used to derive the uncharted walkways [1].

Vehicles' movements captured by the traffic surveillance system help reconstruct the exact trajectories of vehicles in the city [1].

[1] Z. Fang, et al. MoCha: Large-Scale Driving Pattern Characterisation for Usage-based Insurance. In ACM **SIGKDD** 2021.

[2] G. Wang, et al. Joint Real-Time Repositioning and Charging for Electric Carsharing with Dynamic Deadlines. In ACM **SIGKDD** 2021.

[3] H. Ren, et al. MTrajRec: Map-Constrained Trajectory Recovery via Seq2Seq Multi-task Learning. In ACM **SIGKDD** 2021.

[4] Z. Qin, et al. MIMU: Mobile WiFi Usage Inference by Mining Diverse User Behaviours. In ACM **UbiComp** 2021.

[5] D. Zhao, et al. D2Park: Diversified Demand-aware On-street Parking Guidance. In ACM **UbiComp** 2021.

[6] G. Wang, et al. Data-Driven Fairness-Aware Vehicle Displacement for Large-Scale Electric Taxi Fleets. In IEEE **ICDE** 2021.

[7] Y. Yang, et al. VeMo: Enabling Vehicular Mobility Modeling at Individual Levels with Full Penetration. In ACM *MobiCom* 2019.

[8] D. Zhang, et al. Exploring Human Mobility with Multi-Source Data at Extremely Large Metropolitan Scales. In ACM *MobiCom* 2014.

Agencies: Land Transportation Authority EZ-link company Alibaba Group A-start Research

Non-disclosure Agreement documents disable data sharing.

Comparison on the same datasetValidation on the original dataset

Given a set of trajectories $\{\tau_1, \tau_2, ..., \tau_m\}$, and mobility map information, we want to generate a new dataset of mobility trajectories $\{\tau_1, \tau_2, ..., \tau_m\}$, where τ_i and $\hat{\tau}_i$ are the original trajectory and the newly generated trajectory, respectively.

2. Related Work

- Noise + Raw Data
 - Hard to balance utility and privacy
 - Undermine the data utility
- Mixing Raw Data
 - Have potential chance to recover raw data

ML-based Synthesization

- Essentially are Noise + Raw Data
- Only consider spatial information

To generate mobility trajectories with retained data utility.

System architecture of TrajGen

GANs are proved to perform well in image related tasks.

Image is a spatial distribution of pixels.

Spatial information learning

Spatial information learning | Location-image translation

Ensure the distribution on image is the same as that in reality.

Sequence information learning

Temporal information can be regarded as a combination of sequence information and timestamps.

Sequence information learning | Mobility map embedding

(b) Matched Edges in Mobility Map Mapping Results in Map Matching							
Trajectory		Mok	Mobility Map		Sequences		
No.	Location	Type way	ID 5769058		Mobility Map Embedding	Ground Truth	
1	lat1, lon1	way	3724193		1943224	3322101	
2	lat2, lon2	/ i` way / , way	3322101 4870439		3322101	5769058	
3	lat3, lon3	way	1943224		3724193	3724193	
4	lat4, lon4	i i : i node	: 0000001		4870439	4870439	
5	lat5, lon5	node	0000002		5769058	1943224	

Intrinsic Sequence + Ground Truth Sequence - -> Seq2Seq Model

4. Experiment

Dataset: Singapore Taxi Dataset # of taxis: 17,610 in total One sample per 30 second Last four months Cover the whole Singapore Hundreds of locations in each trajectory

Benchmarks:

TrajGen-v

Random Perturbation

Random shift Random direction

Gaussian Perturbation

Shift based on Gaussian Direction based on Gaussian

Generated by TrajGen

4. Experiment

Data preparation:

Raw: randomly select 500 trajectories from original data RP: randomly select 500 trajectories from RP data GP: randomly select 500 trajectories from GP data TrajGen: randomly select 500 trajectories from TrajGen data TrajGen:-v randomly select 500 trajectories from TrajGen-v data

Considerations: Spatial distribution Temporal distribution Statistical features

4. Experiment

Spatial distribution across Singapore.

Repeat similarity computing 500 times.

4. Experiment

Spatial distribution across Singapore.

Repeat similarity computing 500 times.

TrajGen could generate mobility trajectories that own similar spatial distribution with the original data.

Spatial distribution in different time slots.

Spatial distribution in different time slots.

TrajGen could generate mobility trajectories that own similar spatial and temporal distribution with the original data.

Distance from location to road

90.19%

89.34%

Raw Data

Travel distance of trajectories

87.95%

Travel covered area

Ordinary way v.s. express way

Data source

TrajGen Data TrajGen-v Data

TrajGen could generate mobility trajectories that have similar characteristics with the original data.

2000

99.23%

GP Data

98.41%

Locations mapped to ordinary ways Locations mapped to express ways

RP Data

Road Discovery [1, 2, 3, 4]

[1] H. Wu, et al. GLUE: a Parameter-Tuning-Free Map Updating System. In ACM CIKM 2015.
[2] C. Cao, et al. Walkway Discovery from Large Scale Crwodsensing. In IEEE/ACM IPSN 2018.
[3] Z. Shan, et al. COBWEB: A Robust Map Updating System Using GPS Trajectories. In ACM UbiComp 2015.
[4] Y. Wang, et al. CrowdAtlas: Self-Updating Maps for Cloud and Personal Use. In ACM MobiSys 2013.

Raw Data

RP Data

GP Data

TrajGen could generate mobility trajectories that have similar performance with the original data in Road Map Updating application.

Origin-Destination Estimation [1, 2, 3, 4].

[1] L. Liu, et al. Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction. In IEEE TITS 2019.
[2] K. Zhang, et al. A Framework for Passengers Demand Prediction and Recommendation. In IEEE CSC 2016.
[3] J. Xu, et al. Real-Time Prediction for Taxi Demand Using Recurrent Neural Networks. In IEEE TITS 2018.
[4] A. Anwer, et al. ChangiNow: A Mobile Application for Efficient Taxi Allocation at Airports. In IEEE ITSC 2013.

Origin-Destination Estimation.

Origin-Destination Estimation.

TrajGen is able to generate artificial mobility trajectories owing similar OD demand with the original data across different hours.

Q&A

Thank you very much.