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Predicting the Impact of Disruptions to Urban Rail

Transit Systems

XIAOYUN MO, CHU CAO, MO LI, and DAVID Z. W. WANG, Nanyang Technological University

Service disruptions of rail transit systems have become more frequent in the past decade in urban cities,

due to various reasons, such as power failures, signal errors, and so on. Smart transit cards provide detailed

tapping records of commuters, which enable us to infer their trajectories under both normal and disruptive

circumstances. In this article, we study and predict the impact of disruptions on commuters and further

evaluate the vulnerability of the rail system. Specifically, we define two metrics, stay ratio and travel delay, to

quantify the impact, and we derive the predictor of each metric based on the inferred alternative route choices

of commuters under disruptive circumstances. We demonstrate that the alternative route choices contribute to

more similar feature distribution among different disruptions, which is crucial to tackling the main challenge

of abnormal data scarcity and is beneficial for obtaining more reliable predictors for future disruptions. We

evaluate our approach with a real-world transit card dataset. The result demonstrates the effectiveness of our

method. Based on the predictors, we further analyse the vulnerability of the rail system. An evaluation with

cross validation from taxi GPS trajectory data indicates its efficacy in discovering vulnerable rail stations as

well as Origin-Destination pairs.
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1 INTRODUCTION

The rail system is the backbone of the public transit systems (PTS) in urban cities. Malfunction
of the rail system even in a small region may have ripple effects and significantly impair the PTS.
According to our study on Singapore Mass Rapid Transit (MRT) rail system, major disruptions
take place due to many reasons, including technical faults, extreme weathers, human injuries, and
so on. The journey of thousands or even tens of thousands of commuters may be impaired. Many
of them have to abandon the PTS and resort to other transportation modes (e.g., taxis).
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This article aims at predicting the impact of rail system disruptions at the time of occurrence.
Such knowledge not only benefits the PTS provider in understanding the degradation of service
and making better contingency plans with other transportation resources [22, 39] but also ben-
efits commuters in preparing for the hazards brought by disruptions. To quantify the impact of
railway disruptions on passengers, many prior studies adopt analogous measures of travel delay
[13, 15, 30]. In this article, we define the following two metrics to assess the impact of disrup-
tions on commuters. (1) Stay ratio indicates the percentage of rail riders during the disrupted
period who choose to stay within the PTS and take alternative rail lines and/or buses to com-
plete their trip. (2) Travel delay indicates the extra time spent on alternative routes for those
who stay within the PTS. Higher stay ratio and lower travel delay indicate smaller impact by a
disruption. With quantitative impact analysis, we further derive systematic assessment of the vul-
nerability of arbitrary Origin-Destination (OD) pairs as well as the vulnerability of rail stations.
Although there have been efforts made to analysing the influence of abnormal conditions of rail-
way on commuters [13, 30, 31], most of them apply empirical knowledge or simplified human
behaviour models to reason human choices, and based on that analyze the impact on commuters.
Some exploit real transportation data to understand human behaviours, but they are often limited
to normal PTS conditions. In this article, adopting a unique approach, we explore the transporta-
tion data during rail system disruptions and learn from the true human choices. We train a human
behaviour model from those abnormal data and apply the model to predict the impact of future
disruptions.

Being simple in rationale, our approach is especially challenged by the scarcity of abnormal
data, i.e., those from only six to eight major disruptions per year. A direct challenge comes from
the lack of training data for us to build an accurate model using supervised learning. The limited
observation of disruptions makes the trained model difficult to be reliable for future disruptions
unseen in the training stage. The problem becomes more challenging if we consider that only
the trips of regular commuters (which is a small portion of the total affected commuters) can be
utilized to analyze human behaviours, extract features, and label impact metrics, because it is very
difficult, if possible at all, to infer irregular commuters’ original travel intention and thus acquire
high confidence in predicting their choices under disruptions.

To address the above challenges, we intend to specially find a representative feature space where
the training and test disruptions share near distributions of extracted features. Different to the
situation of canonical transfer learning or feature engineering, the data in both the training and
test sets in our case is scarce and hence no big picture of the distribution can be profiled. We
propose a novel idea of leveraging the alternative route choices of commuters to tackle the data
distribution mismatch between the training and test sets. The original training problem on the
feature space relevant to disruption itself is converted to one on a different feature space relevant
to alternative route choices of commuters, which unifies our view of disruptions by their effect
onto commuter route choices. We demonstrate that the latter feature space refers to a much higher
coverage of the full distribution by the data, and the trained model can thus be more reliable to
arbitrary disruptions as long as the commuter route choices can be inferred from the disruptions.
Our contributions are summarized as follows:

• To the best of our knowledge, this is the first study of impact prediction as well as vulnera-
bility analysis under rail system disruptions that learns models from true human behaviours
in disruptions.
• We propose to leverage alternative route choices of commuters to address the challenges

arising from data scarcity, which enables us to build an accurate and more reliable model for
arbitrary disruptions. We implement and evaluate our approach with the Singapore MRT
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ride records in year 2015 that involve six major disruptions. The results demonstrate that
our method outperforms all the baseline methods.
• With predicted impact factors, we assess the vulnerability of Singapore MRT rail system.

A cross evaluation with the Singapore taxi data indicates the efficacy of our approach in
discovering vulnerable rail stations and OD pairs.

The rest of the article is organized as follows. Section 2 introduces notations and definitions
of the problem and an overview of methodology. Sections 3 to 5 detail our method for impact
prediction and vulnerability analysis. We present the experimental settings and evaluation results
in Section 6. Section 7 reviews the related work, after which, we conclude this article in Section 8.

2 OVERVIEW

2.1 Notations and Definitions

In this section, we introduce some notations and definitions. We first give the definitions of “dis-
ruption” and “affected OD” and then derive the two impact metrics.

We treat a rail network as a directed graphG = (V ,E), whereV represents the set of stations and
E the directed rail links between stations. A disruption can be regarded as removing some links
from the graph, for an unforeseen period of time. Commuters who have travel intention across
these links during the period will thus be affected. We only consider major disruptions of duration
longer than 30 min for analysis, because disruptions of shorter duration are difficult for us to target
affected commuters. A formal definition of disruption is given as follows.

Definition 1 (Disruption). A disruption, denoted as e = (T ,G ′), refers to a period of no train
service on a set of adjacent links of G, where T is the starting time of disruption and G ′ = (V ,E ′)
is the disrupted rail network (E ′ ⊆ E) with E \ E ′ the removed links.

During the disrupted period, affected commuters either stay in the PTS (e.g., wait for service
resumption, or take alternative routes from bus network and the remaining rail network) or aban-
don the PTS and look for other private transportation modes (e.g., taxis). To specify the influence
of a disruption, first of all, we use Voronoi Diagram [34] to partition the city into Voronoi cells
centering at rail stations. Each cell is a region containing the rail station and nearby bus stations
inside the region. We can describe each of the commuter trips as an OD sample between any two
of those regions. Then, we define an affected OD formally as below.

Definition 2 (Affected OD). During a disruption e , an affected OD is a pair of stations (u,v ) that
is unreachable in G ′, or is too tortuous, i.e., d ′(u,v ) − d (u,v ) > λ, where d (u,v ) and d ′(u,v ) are
the number of passing stations from u to v in G and G ′, respectively.

We empirically set λ as 10. Affected commuters of a disruption are those with their OD being
one of the affected ODs of that disruption. In this article, we aim at training two impact predictors
separately for two impact metrics, namely, stay ratio and travel delay. Formally, given an affected
OD (u,v ) of a disruption e , the stay ratio I e

s (u,v ) and travel delay I e
t (u,v ) are defined as

I e
s (u,v ) = r e

uv/ruv , (1)

I e
t (u,v ) = te

uv − tuv , (2)

where ruv , tuv are the normal ridership and travel time on the original (rail) route, and r e
uv , te

uv are
the disruption-affected ridership and (averaged) travel time on alternative routes in PTS, between
(u,v ) during the disrupted period of the day.

ACM Transactions on Sensor Networks, Vol. 19, No. 1, Article 2. Publication date: December 2022.



2:4 X. Mo et al.

Fig. 1. Illustration of the learning and prediction phases.

2.2 Methodology Overview

We herein present an overview of our method. First, for the learning data, we were granted access
to over one-year transit card records of bus and rail rides in Singapore from June 2015 to June
2016. Each record contains user ID, boarding and alighting stations and timestamps, as well as the
bus/rail service name. We also obtained the information of historical disruptions from Singapore
MRT operators from their official Twitter announcements that contains disruption date, starting
time, ending time, and location (i.e., rail line and the stretch of disrupted stations). We specifically
study the data on working days when people’s travel behaviours can be stabler.

We propose the idea of utilising representative features from alternative route choices of com-
muters to construct impact predictors. We claim that the route choices are not only relevant to
the impact of disruptions but also share similar feature distributions across disruptions, which is
crucial to train reliable models in the situation of data scarcity. Figure 1 depicts the main steps of
our learning and prediction phases. In the learning phase, based on historical trips, we first iden-
tify regular commuters whose travel patterns under normal condition are stable and their choices
under disruption are utilized to label impact metrics and to construct impact predictors. We then
generate interested alternative routes (IAR), i.e., alternative routes in PTS may be chosen by
commuters during a disruption, and build impact predictors based on selected features from IARs
using machine learning techniques. In the prediction phase, for a given affected OD in a given
disruption, the predictors can give anticipated stay ratio and travel delay as a result of impact. The
two parameters are further used to analyze the vulnerability of rail stations and OD pairs.

3 REPRESENTATIVE FEATURE DOMAIN FOR SCARCE DATA

In this section, we introduce the idea of utilising alternative route choices to tackle the challenges
of data scarcity. We first describe the feature domain of disruption and affected OD, compared with
which, we further illustrate the proposed feature domain of alternative route choices.

Impact metrics of stay ratio and travel delay are related to features of disruption and affected
OD. For example, a disruption with more broken links may lead to a lower stay ratio due to the
greater mismatch in a sudden between transit demand and capacity, and a larger travel delay due
to longer travelling time on alternative routes in PTS. A straightforward solution is to train a model
via supervised learning based on disruption and OD features such as starting time, number of bro-
ken links, number of rail stations between an OD, and so on. Such a method, however, may result
in under-fitting, since the model being trained on scarce training disruptions may not capture the
functional relation, between features and impact metrics, that can extend to future disruptions.
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Fig. 2. Visualizing affected ODs of six observed disruptions in (a) domainD1 (features of disruption and OD)

and (b) domain D2 (features of IAR).

To illustrate such a view, we name the domain of disruption and OD features as D1 = (X1, P1),
where X1 is a d1-dimensional feature space, and an affected OD (u,v ) can be represented by a list
of features X = [x1, . . . ,xd1

] ∈ X1, with a probability denoted by P1 (X ). We visualize all affected
ODs of observed disruptions in feature space X1 (features are selected via the backward elimina-
tion method [17] and are listed in Table 2), after using Principal Component Analysis (PCA)

algorithm to project them into planar points. From the result plotted in Figure 2(a), we see that dis-
tributions of points of different disruptions (colors) hardly coincide, indicating the inconsistency
of the distributions in the feature space X1 among different disruptions. This creates a problem
that a model being trained on a couple of disruptions may hardly be reliable to other disruptions.
Essentially, such a problem results from the limited number of disruptions that we can observe—
the data distribution of what we can observe and the data distribution of what we want to predict
mismatch.

We propose to translate the prediction problem in domain D1 to a new domain D2, where the
features have the following property: all observed disruptions should contain points of similar
distribution. This guarantees the model applicability to future disruptions potentially with similar
distribution. In our case, we aim at describing an disruption around the features of IAR, which
is the alternative routes in PTS likely to be chosen by affected commuters. For an affected OD,
the features of available IARs influence the choices of affected commuters, because they concern
whether the IARs satisfy their requirements, e.g., a short waiting time, no transfer, and so on. The
travel time of an IAR is also closely correlated to the travel delay. Therefore, we denote the new
domain as D2 = (X2, P2), where X2 is a d2-dimensional feature space of IAR features (listed in
Table 3, which are also selected via the backward elimination method). An affected OD (u,v ) can
be represented by a list of features X = [x1, . . . ,xd2

] ∈ X2 with a probability denoted by P2 (X ).
For comparison, we visualize affected ODs of observed disruptions in the feature space X2 in the
same way as what we do in X1. We can see from the result shown in Figure 2(b), that the clusters
of points are mixed across disruptions, suggesting highly overlapped distributions in the feature
space X2.

Sample coverage. We further demonstrate that, given a fixed number of observations, the cov-
erage of values in domain D2 by the observations is much higher than that in domain D1. The
definition of the term coveraдe is given by Chao et al. [5]. To be specific, each feature space is
divided into m equal-size blocks, and points in the same block are considered identical. Then the
coverage C is defined as

C =
m∑

i=1

pi I[Bi > 0], (3)
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Fig. 3. (a) Illustration of the calculation of coverage C given n = 8, n1 = 1; (b) comparison of coverages in

domain D1 and domain D2 (when gradually adding new disruptions).

where Bi is the number of observations in block i , pi is the sum of probabilities in block i (subject
to the probability distribution P of the domain, e.g., P1 (X ) of domain D1), and I[·] is the indicator
function. A tractable approximation of C is given as

C ≈ 1 − n1

n
, (4)

where n is the total number of observations, and n1 is the number of blocks, which has exactly
one observation [16]. Intuitively, 1−n1/n approximates the chance that the next observation falls
in a block with at least one observation before. A toy example of a 2D feature space and m = 4 is
provided in Figure 3(a). We calculate the coverage by our data in domainD1 andD2. Feature values
are normalized and each feature dimension is divided into 20 intervals. Figure 3(b) presents the
relationship between coverageC and the data involving different disruptions. With six disruptions
in total, we gradually add the data from each disruption. The coverage in domainD2 is much higher
and increases much faster than that in D1, when involving new disruptions, which indicates that
predictive models trained on D2 can be more reliable when applied to future new disruptions.

4 IMPACT PREDICTION

In this section, we first show the identification of regular commuters whose normal travel patterns
are stable, and analyse their choices under disruptions. We then describe how we generate IAR,
based on which, we build impact predictors in domain D2.

4.1 Obtaining Regular Commuters

Affected commuters have three kinds of choices: take alternative routes in PTS, take other trans-
portation modes (e.g., taxis), or the mix of both. From the transit card records, we are able to find
their traces in PTS during disruption. However, as travel plans of the commuters might change
day by day, rendering the difficulty of deciding their original OD, it is non-trivial to infer affected
commuters’ choices. We propose to identify regular commuters whose travel behaviors (i.e., depar-
ture time and OD) are relatively stable and thus their original OD can be determined. After that,
we focus our study on those regular commuters on behalf of all PTS users.

To identify regular commuters for a specific disruption, we obtain the list of occurrences of
ODs for each commuter during the disrupted hours of the day during a sufficiently long past
period (e.g., pass two months) before the date of disruption. Then the frequencies (i.e., the number
of occurrences) of distinct ODs in the list are denoted by m1, m2, . . . , and the highest frequency
is denoted by mh . We call the OD with frequency mh as the dominant OD. Then, we start to
filter out commuters that are irregular. We remove those whose mh < max ( 1

2

∑
i mi , ϵ ), to filter
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out occasional riders to the rail system and ϵ is empirically set to 5. We then cluster commuters
with the same mh value together. In each cluster, we remove top-25% commuters with the
largest entropy, i.e., −∑i qiloдqi , where qi = mi/

∑
i mi . Note that combining both frequency (for

clustering) and entropy (for intra-cluster selection) metrics, we are able to dynamically identify
more regular commuters than simple thresholding approaches [23]. We assume dominant OD as
the regular commuter’s original travel plan, and consider only affected regular commuters whose
dominant OD is one of the affected ODs.

4.2 Analysing Under-disruption Choices

Given the set of affected regular commuters, we further analyse their choices under disruptions.
We find that over 90% of affected ODs have a low stay ratio, which is less than 0.5, indicating that
affected commuters are prone to abandon the PTS during the disrupted period. For those who stay
in PTS until arrival, over 90% of them have less than 50 min travel delay.

In addition, we analyse the alternative routes chosen by commuters who stay in PTS until arrival.
An alternative route is represented by a list of bus and/or rail services, each of which is indicated
by the bus service name (e.g., “Bus No.179”) or a pair of rail stations. The corresponding list of
transit modals for an alternative route is referred to as its route pattern. We find that the top-4
route patterns chosen by affected commuters, namely, (bus,), (bus, bus), (bus, rail), and (rail, bus),
account for a percentage of 86%. Besides, the walking distance between two successive services is
usually within 500 meters, and the detouring rate (i.e., the ratio of the distance of alternative route
to that of the original route) is less than 1.5. These will serve as constraints when we generate
IARs in Section 4.3.

4.3 Interested Alternative Routes Generation

For each affected OD, we first generate candidates by routing on the network of bus and disrupted
rail systems using depth-first searching [27]. Candidates should satisfy constraints about walking
distance (less than 500 meters between successive services), detouring rate (less than 1.5) and
route pattern (being in top 7 patterns) mentioned in Section 4.2. We also gather real IARs from
our transit records. We label real IARs by 1, and negative candidates that do not belong to real
IARs by 0. The number of real IARs is limited (i.e., about 2.6 per affected OD) while the number of
candidates is huge, leading to a significant imbalance (about 1 to 15,000) between the two classes.
To alleviate the imbalance, we conduct down-sampling on the set of candidates. That is, to sample
instances of candidates according to their similarity to real IARs, i.e., the more similar an instance
is to any of the real IARs, the higher probability it is being sampled. To be specific, we consider
several dimensions for similarity, namely, the numbers of service transfers, the number of rail
stations, the number of bus stations, the length of waiting time and the distance of walking. Each
dimension is normalized into the range of [0, 1]. Then each candidate is represented by a five-
dimensional vector, and the similarity between any pair of IARs, one from real IARs and the other
from candidates, is calculated by cosine similarity.

We use the features in Table 3 as well as the labels from real IARs and sampled negative candi-
dates to train a binary classifier for IAR identification, so that for any future disruption, we can use
it to distinguish real IARs from others. We train the classifier using ensemble learning, a supervised
learning method that trains a couple of models (i.e., Decision Tree in our case for its simplicity)
using different subsets of training data, and aggregates the results by majority voting. We choose
ensemble learning for the purpose that it can further restrain the problem of class imbalance, as
we let each subset of training data be composed of all real IARs and a different part of sampled
negative candidates. For any affected OD of future disruptions, we can first generate candidate
IARs and then identify real IARs using the classifier.
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4.4 Predictors Building

We train the stay ratio and travel delay predictors separately. Given an affected OD, we leverage
Equations (1) and (2) to calculate stay ratio and travel delay (i.e., labels). And for the input, the fea-
tures of each IAR are concatenated to form a vector (inapplicable features are filled by zeros). Each
IAR belongs to one group according to the length of route pattern. In each group, element-wise
statistical aggregations, namely, mean, max, and min, over all group members are calculated, and
we append the result together to form the aggregated vector. We then concatenate the aggregated
vectors of all groups (in ascending order of the length of route pattern), to the form a new feature
vector, where backward elimination [17] is conducted to select final vital features separately for
stay ratio and travel delay. With the training samples of processed IAR features and labels, we ap-
ply Support Vector Regression (SVR) [12] to model the relationship between the IAR features
and two impact metrics, and train the two predictors. When applying the predictors to future dis-
ruptions, we follow the same procedure of feature processing to generate testing data and predict
the impact metrics for different affected ODs.

5 VULNERABILITY ANALYSIS

In this section, we provide quantitative assessment of the vulnerability of a rail station or an OD
pair when it confronts a disruption, based on predicted impacts (i.e., stay ratios and travel delays).

First, we introduce some notations. We use E to denote the set of disruptions, and Euv to denote
the set of disruptions that affecting the OD pair (u,v ). The set of ODs is represented by A, and
the set of those affected by a disruption e ∈ E is represented by Ae . Further, we denote the set of
affected ODs of disruption e originating from stationu asAe

u∗ (Ae
u∗ ⊆ Ae ). Besides, as introduced

in Section 2, the stay ratio and travel delay of affected OD (u,v ) by disruption e are denoted as
I e
s (u,v ) and I e

t (u,v ), respectively, and the normal ridership between (u,v ) is denoted as ruv . Then,
we define the quantitative vulnerability of an OD and of a station as follows. Note that as the
probabilities of occurrence of disruptions are difficult to obtain, for simplicity, we assume each
disruption has equal probability of occurrence.

Vulnerability of an OD. The vulnerability of an OD pair (u,v ) is defined as the averaged stay
ratio (travel delay) over disruptions in Euv . Take stay ratio as an example. The vulnerability of OD
of stay ratio is defined as

Vs (u,v ) =
1

|Euv |
∑

e ∈Euv

I e
s (u,v ). (5)

The vulnerability of OD of travel delay Vt (u,v ) is defined in a similar way, replacing the I e
s (u,v )

in Equation (5) by I e
t (u,v ).

Vulnerability of a station. This is the one of the most concerned parameter of rail system op-
erator.1 Any disruption affecting a rail station influences its vulnerability. Hence, the vulnerability
of a station u is defined as the averaged weighted stay ratio (travel delay) over disruptions in E,
in which the weights are set as normal riderships. For example, for stay ratio, the vulnerability of
station is defined as

Vs (u) =
1

|E |
∑

e ∈E

(
ϕe

s (u)I[Ae
u∗ � ∅] + σs I[Ae

u∗ = ∅]
)
, (6)

whereϕe
s (u) is the aggregated stay ratio over affected ODs of disruption e that are originating from

station u, I[·] is the indicator function, and σs is the default value if no affected OD is originating
from u, which is set as 1 for stay ratio (σs = 1) and 0 for travel delay (σt = 0). Specifically, ϕe

s (u) is

1This is a core concern of SMRT and LTA, which are the MRT operator and transportation authority in Singapore.
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Table 1. Summary of the Six Disruptions

date start time
duration

(min)
affected
line(s)

#links
removed

#affected
commuters

#regular
commuters

1 2015-07-07 19:30 110 EW,NS 108 330,000 130,000

2 2015-10-13 08:00 30 NE 12 38,000 33,000

3 2015-10-26 05:25 90 NE 30 52,000 24,000

4 2015-11-25 05:50 140 NS 8 79,000 33,000

5 2015-12-17 19:50 135 EW 4 17,000 6,000

6 2016-03-22 11:10 160 EW 6 38,000 4,000

Table 2. Features of Disruption and Affected OD

Type No. Feature Description

1 starting time, i.e., T (each time slot of 0.5 h)
On 2 number of removed rail links

disrup- 3 number of affected ODs of the disruption
tion 4–7 binary values indicating normal/disruptive state of each of the four rail lines

8–11 latitude (longitude) of the origin “O” (destination “D”) station
On 12,13 the rail line where the origin (destination) station located

affected 14 number of involved stations on the original rail route between this OD
OD 15 number of rail stations from origin station to the nearest involved station

16 number of rail stations from destination station to the nearest involved station

defined as

ϕe
s (u) =

∑
(u,v )∈Ae

u∗ I
e
s (u,v ) · ruv∑

(u,v )∈Ae
u∗ ruv

. (7)

For travel delay, the vulnerability of station Vt (u) is derived in a similar way, with ϕe
t (u) derived

from replacing the I e
s (u,v ) in Equation (7) by I e

t (u,v ).

6 EVALUATION

In this section, we introduce the evaluation details of impact prediction and vulnerability analysis
separately in Sections 6.1 and 6.2.

6.1 Impact Prediction

Experimental setup. We obtain the information of disruptions (e.g., time and locations) from
instant tweets posted by MRT operators (i.e., SMRT and SBS).2 We finally get six major disruptions
between June 2015 to June 2016, detailed information of which are summarized in Table 1. These
disruptions occurred at different locations of different rail lines (“EW” for East-West Line and
“NS” for North-South Line). Considering the starting time and duration, two of them took place
during peak hours,3 and four took place during off-peak hours, and their duration vary from 30
to 160 min. In addition, to identify regular commuters and generate alternative routes, PTS static
metadata (i.e., bus/rail service routes, station ids, and locations) are obtained from the LTA Online
Datamall [7], and walking/riding distance between two geographical locations are acquired via
Google’s Direction APIs [26].

2Twitter accounts SMRT_Singapore and SBSTransit_Ltd.
3Morning peak: 07:30–09:30; Evening peak: 17:30–19:30.
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Table 3. Features of Interested Alternative Route

Type No. Feature Description

1 number of bus/rail services of the route
route 2 normal ridership of the first service
-wise 3 number of rail stations travelled in the original rail route

4,5 the shortest (longest) waiting time for the service
6 walking (access) distance

service 4 a binary value indicating bus/rail transit modal of the service
-wise 7 number of bus (or rail) stations traveled

8,9 normal boarding (alighting) ridership of the service around starting time T
near the origin station

10 number of other bus services that can board from nearby (<500 m) bus stations

For comparison, we conduct experiments for the following methods:

• D1-SVR: which is built on domain D1 of features in Table 2 of disruption and affected OD.
SVR is applied for modeling and backward elimination is used before training the model.
• PIRD: Predicting Impact of Rail Disruptions, the method proposed in this article. IAR fea-

tures are listed in Table 3.
• D2-Oracle: which is built on domainD2 and is implemented the same way as PIRD, but with

feature input from real IARs (i.e., those alternative routes truly selected by commuters during
disruptions, which are not available during prediction and can only be obtained after the
commuters complete their trips). This approach utilizes practically not available information
and its performance represents the upper-bound for comparison.
• PIRD-LR: which is implemented the same way as PIRD, except that the final regression

model applied to IAR features is linear regression instead of SVR.
• D2-SVDD: which implements the same approach as PIRD except that it selects candidate

IARs using a binary classifier named SVDD [33], an One-class Classification (OCC) algo-
rithm, instead of the ensemble learning used in PIRD. As OCC uses only one class of positive
samples, it avoids the imbalance issue but loses information from negative samples.

We adopt a leave-one-out scheme to evaluate the proposed impact predictors. Each time, we
take affected OD samples from five disruptions as training set and samples from the remained
disruption as test set, representing the same setting when we apply our solution in reality, i.e.,
we have historical disruptions to train predictors for a future disruption. The hyper-parameters
are tuned using fivefold cross validation on the training set. We run the experiment for each of
the evaluated methods 200 rounds. We use Mean Absolute Error (MAE) to evaluate the perfor-
mance averaged over all six events. For each method, we calculate an average MAE and a worst

MAE over all tested ODs from six disruptions. Specifically, we denote the absolute error of the

jth OD in the kth round when using the ith disruption as test data as AE (i )
jk

, for k = 1, . . . , 200,

i = 1, . . . , 6 and j = 1, . . . , Ji , where Ji is the number of affected ODs tested in the ith disruption.

Then the average MAE is derived as
∑

i

∑
k

∑Ji

j=1 AE
(i )
jk
/(200

∑
i Ji ) and the worst MAE is derived as

Maxi (
∑

k

∑Ji

j=1 AE
(i )
jk
/(200Ji )).

Prediction accuracy. Both the average and worst MAE of evaluated methods on stay ratio and
travel delay prediction are provided in Table 4. As we can see, PIRD outperforms D1-SVR. For
stay ratio, PIRD provides 0.11 average and 0.12 worst MAE, while D1-SVR gives 0.16 average and
0.22 worst MAE. In travel delay prediction, PIRD gives 11.9 min average and 14.5 min worst MAE,
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Table 4. MAE Comparison of Evaluated Methods

Impact metric
D1-SVR D2-SVDD PIRD-LR PIRD D2-Oracle

avg. worst avg. worst avg. worst avg. worst avg. worst

Stay ratio 0.16 0.22 0.13 0.14 0.11 0.14 0.11 0.12 0.11 0.14

Travel delay (min) 13.8 15.5 11.8 14.9 11.4 15.1 11.9 14.5 10.2 11.2

Fig. 4. (a, b) Statistics of prediction errors for different disruptions’ ODs; (c, d) stability comparison between

evaluated methods for stay ratio (c) and travel delay (d); (e, f) vulnerability values vs. taxi pick-up changes

of all rail stations.

while D1-SVR gives 13.8 min average and 15.5 min worst MAE. The results suggest the training
performance over domain D2 outperforms that conducted on D1. PIRD achieves MAEs close to
that of D2-Oracle in stay ratio prediction, which indicates our IAR generation and identification
methods work well in producing real choices of commuters. The results also suggest PIRD has
close average MAEs to PIRD-LR’s in both stay ratio and travel delay prediction, but outperforms
PIRD-LR in the worst MAE, which suggests the performance gain of applying SVR over linear
regression.

Figures 4(a) and (b) present statistics of prediction errors for different ODs across different dis-
ruptions. X-axes indicate test disruptions, y-axes indicate the absolute errors for (a) stay ratio and
(b) travel delay. We have two observations from these two figures. First, PIRD performs close to
D2-Oracle for most disruptions and may even outperforms it (e.g., for the Disruption 6 due to
the fact that there are insufficient regular commuters and very few real IARs that can be used by
D2-Oracle). Second, PIRD performs well in generalization. In the data records, Disruption 1 has
354 affected ODs, which account for 60% of the total number of ODs in the study. When we use
Disruption 2–6 as training data, and build the model to predict the impact to ODs in Disruption 1,
however, we see that the error (i.e., an average of 0.1 for stay ratio and 9 min for travel delay) is
not apparently higher than what we can obtain for other disruptions. It suggests that PIRD is able
to capture critical features and has strong ability in generalization with small training data.

We also compare the performance of PIRD and that of D2-SVDD. Specifically, for stay ratio,
PIRD provides smaller average and worst MAEs (0.11 and 0.12) than D2-SVDD (0.13 and 0.14). For
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Fig. 5. Coefficient of variations of stay ratio and travel delay for affected ODs.

travel delay, PIRD achieves very close performance to D2-SVDD but our method leverages much
less data for training, accounting for only 4.4% of all IAR candidates while D2-SVDD’s training
data usage nearly doubles our data, i.e., 8.6%. The results indicate the ensemble learning design
in PIRD can effectively select meaningful IARs that are possibly chosen by commuters during a
disruption.

Stability. Stability provides tolerance to perturbations from training data, which is significant
to our problem as perturbations may come from data noises, variation from new disruptions, emer-
gent actions taken during the disruptions, and so on. We evaluate the stability of PIRD in compari-
son with other methods. Stability can be reflected from the results of predictors. Figures 4(c) and (d)
present the distributions of MAE (averaged across six disruptions) from each round of prediction
after zero-mean normalization, where each line represents 200 MAE points. The sharper the as-
cending curve is, the more consistent the MAEs are, indicating a stabler output. Figure 4(c) shows
that PIRD is stabler than D1-SVR and D2-SVDD, and is close to the performance of D2-Oracle.
With regard to the travel delay in Figure 4(d), PIRD is stabler than other methods, and even out-
performs D2-Oracle mainly due to the fact that D2-Oracle has insufficient real IARs for training
stable models. The results suggest the high stability of PIRD as compared with other methods.

Limitation in obtained ground truth. We inevitably involve noises when fetching ground
truths of stay ratio and travel delay, which can be introduced by the very difference of commuters’
choices under one affected OD, or the fluctuation of ridership in historical days. We use coefficient
of variation (CoV) to measure the dispersion of each OD. CoV is defined as the ratio of the stan-
dard deviation to the mean value, and is a standard measurement for dispersion. When labelling
the stay ratio, the normal ridership (averaged over historical days) has an average CoV of 5.6%. For
travel delay, the delays of IARs chosen by commuters for an OD usually cover a wide range, and
hence the standard deviation is much higher, leading to an average CoV of 90%. Figure 5 plots the
distribution of CoV for stay ratio and travel delay across all the disruptions. It clearly shows that
CoV of travel delay is much higher than stay ratio for all disruptions. As a result, the averaged
travel delay is less representative for all commuters in the ground truth itself, while stay ratio is a
stabler and more truthful impact metric that has higher consistency across individual commuters.
This is probably one of the reasons why the performance of PIRD in travel delay prediction is not
as good as that of stay ratio based on the imperfect “ground truth.”

6.2 Vulnerability Analysis

Experimental setup. We refer to an independent dataset that provides us knowledge of taxi
pick-ups with time and locations, and use it to cross validate the vulnerability analysis results of
PIRD. We were granted access to a taxi trajectory dataset from July to August, 2015. The biggest
of our observed disruption, Disruption 1, took place during this time. We use the change of taxi
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Table 5. The Pearson Correlation Between Taxi Pick-up Changes

and Derived Vulnerability Values

Number Stay ratio Travel delay
of objects coefficient p-value coefficient p-value

Vulnerability of Station 82 −0.495 <0.001 0.563 <0.001

Vulnerability of OD 1,807 −0.256 <0.001 0.12 <0.001

pick-ups in the Voronoi region of a rail station to validate the vulnerability metrics that we obtain.
The dataset were collected from more than 12,000 taxis, covering the entire Singapore. Every taxi
reported its GPS location and status (vacant or busy) every 30 s to traffic authority. There are
about 10 million records per day. We find that the overall number of taxi pick-ups has no significant
difference between the disruptive and normal days, which is 16,200 during Disruption 1 and 16,600
(average over one month) during the same period on normal days. In small regions, however, the
number of taxi pick-ups has obvious variations. The rationale is a more vulnerable station may
yield higher taxi pick-ups during the disruption as more commuters choose to abandon the PTS.
A less vulnerable station may yield less taxi pick-ups than usual as taxis are absorbed by those
more vulnerable regions where drivers are easier to get a business. The same rationale applies to
validating the vulnerability of a given OD. Within the region of rail stationu, we denote the average
taxi pick-ups on normal day asvol (u), and the taxi pick-ups during Disruption 1 asvol ′(u). We use
the change of taxi pick-ups Δvol (u) = vol ′(u)−vol (u) to compare with the vulnerability values of
stations, i.e.,Vs (u) andVt (u), that PIRD derives. Similarly, we use Δvol (u,v ) = vol ′(u,v )−vol (u,v )
to represent the change of the number of taxi trips from the region of station u to that of station
v , to compare with the vulnerability values of of ODs, i.e.,Vs (u,v ) andVt (u,v ), that PIRD derives.

Cross validation results. Table 5 quantifies the relation between the derived vulnerability
values, and the change of taxi pick-ups (i.e., Δvol (u)) or the change of the number of taxi trips
(i.e., Δvol (u,v )), using Pearson correlation coefficient. There are 82 stations and 1,807 OD pairs
considered for calculation. For the vulnerability of station, stay ratio and the change of taxi pick-up
are negative related with Pearson coefficient being−0.495, while travel delay and the change of taxi
pick-up are positive related with Pearson coefficient being 0.563, both suggesting high correlations.
For the vulnerability of OD, there are similar correlations with the change of the number of taxi
trips but not as strong as those for the vulnerability of station, which is because the number of taxi
trips matched with a specific OD is much smaller than that matched with a station, thus subject to
higher deviations. In Figures 4(e) and (f), we visualize the values of vulnerability of station v.s. the
changes of taxi pick-ups for each rail station. We see the Pearson fitting with them and the high
consistency across the data. p-value in Table 5 indicates the significance of such correlations.

Top-20 vulnerable rail stations. We show the top-20 rail stations as suggested by the lowest
vulnerabilities of stay ratioTop20

stay , as well as those of travel delayTop20
delay

. Figure 6 depicts those

top-20 stations (black circle for Top20
stay , and black dot for Top20

delay
). We find high consistency

between the two sets. Nineteen of the 20 stations are commonly agreed by the two sets. Many
of those vulnerable stations are distributed outside the core downtown areas, probably due to
the insufficient alternatives PTS can supply. Interestingly, some suburban stations on “NE” line
in the northeast are not recognized as vulnerable stations, probably because there are two local
Light Rapid Transit lines that enrich the transit supply in that area. Based on this founding of
vulnerability assessment, we suggest that, in short term, the operators should put more emphasize
on suburban stations when delivering emergent measures during a disruption. And in long term,
the authority may invest more to improve the PTS, e.g., adding direct bus lines, in suburban area.
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Fig. 6. Visualization of the most vulnerable rail stations.

7 RELATED WORK

In this section, we introduce priors works on impact prediction of transportation incidents, vul-
nerability analysis, as well as technologies relevant to our approach.

Impact Prediction. Except for studies regarding to the detection of abnormal circumstances
of transportation incidents, e.g., railway failures, traffic congestion [10, 14, 28, 32], there have also
been efforts made to predict their impact. Some works predict the impact by reasoning human reac-
tions or the damage to network structure, most of which lack measurement study of real incidents.
For examples, Sun et al. [31] estimates the real-time spatio-temporal distribution of commuters
in rail system under normal conditions, and try to infer the number of affected commuters when
there is a disruption. Sun et al. [30] try to reason commuters’ travel delay based on their choices
(e.g., stay or leave PTS). Yin et al. [36] define the impact as the damage to rail network efficiency,
and utilize graph theory to quantify the impact of disruption. A few works make impact predic-
tion based on actual mobility data measured from real world. Examples include Pan et al. [24] who
take the average impact of similar historical incidents to predict that of future incidents, Fang et al.
[13] who leverage contextual features and post-incident travel delays to predict future travel de-
lays, and Garib et al. [15] who use statistical models based on contextual features to predict travel
delay. Sometimes they require the set of contextual features to be informative, which limits the
model utility, e.g., authors in References [2, 20] tried to predict how long a traffic incident would
last. Most existing studies are not validated with real world incidents at the scale of this article.
Other studies focus on forecasting the traffic flow under anomalous conditions [4, 11, 37] taking
a period of post-incident traffic flow as input. The traffic flows, however, cannot be translated to
fine-grained impact to commuters. To sum up, so far there is no existing study that measures im-
pact from real incidents, and meanwhile explores the reliability of models being trained on scarce
data to predict the impact of a variety of future incidents.

Vulnerability Analysis. Existing studies on vulnerability (or resilience) analysis intend to mea-
sure the performance of a system when suffering abnormal incidents. Some early studies such as
Bruneau et al. [3] and Adams et al. [1] define resilience by introducing the resilience triangle, which
measures resilience using severity of disruption and duration to recovery. As a rail network can
be regarded as a complex network, graph theories and algorithms can also be applied to define
resilience. For example, Sun et al. [29] define the vulnerability of a rail station as the connectivity
reduction when it was removed from the network. Yang et al. [35] propose station importance
and robustness using topological features (e.g., node degree). These studies measure vulnerabil-
ity in an abstract way, which is not validated in practical conditions. Some other studies define
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vulnerability in a more realistic way, by associating it with the influence to commuters, e.g., al-
ternative routes [6] and travel delay [9]. There are also some studies exploring how to improve
the vulnerability of a rail system. Jin et al. [18] propose to slightly modify existing bus services to
satisfy sudden demand due to accidental events. Laporte et al. [21] propose to maximize the pro-
portion of commuters that have alternative routes inside the rail system, when designing a new
rail network. None of existing studies consider actual impact prediction that is based on real-world
measurement study and validated by data from true incidents.

Feature manipulation. The idea of finding a feature domain of alternative route choices to
tackle challenges of data scarcity in this study shares similarity with some other feature manipu-
lation techniques, e.g., feature engineering [19]. The data distribution mismatch between training
and test sets however is not the focus of feature engineering. The most relevant study is that of
transductive transfer learning [25], which transfers knowledge from the training set to the test set
when the data distribution of their feature spaces are different. Existing studies such as Zadrozny
et al. [38] and Daume III et al. [8] use re-sampling or statistical adaptation of the distribution of
training set to that of the test set. All existing studies assume ample labeled test data, and that the
global distribution of population can be profiled, which is distinct from our case.

8 CONCLUSION

We propose a comprehensive solution to predict the impact of rail system disruptions, based on
the real behaviors of affected commuters during disruptions. Two metrics, stay ratio and travel
delay, are defined to quantify the impact. To tackle the challenge of training data scarcity, we
propose to project a disruption and its affected OD into a different domain of features abstracted
from commuters’ alternative route choices. The training accuracy and generalizing ability can
be greatly improved. Experimental results using real-world data demonstrate the effectiveness of
the proposed solution. Our further vulnerability analysis based on impact metrics identifies most
vulnerable stations within the Singapore MRT rail network, which is cross-validated with taxi
pick-up changes between normal and disruptive circumstances.
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