
Generating Mobility Trajectories with Retained Data Utility

Chu Cao, Mo Li
Nanyang Technological University, Singapore

{caochu,limo}@ntu.edu.sg

ABSTRACT

This paper presents TrajGen, an approach to generate arti!cial

datasets of mobility trajectories based on an original trajectory

dataset while retaining the utility of the original data in support-

ing various mobility applications. The generated mobility data is

disentangled with the original data and can be shared without

compromising the data privacy. TrajGen leverages Generative Ad-

versarial Nets combined with a Seq2Seq model to generate the

spatial-temporal trajectory data. TrajGen is implemented and eval-

uated with real-world taxi trajectory data in Singapore. The ex-

tensive experimental results demonstrate that TrajGen is able to

generate arti!cial trajectory data that retain key statistical char-

acteristics of the original data. Two case studies, i.e., road map

updating and Origin-Destination demand estimation are performed

with the generated arti!cial data, and the results show that the arti-

!cial trajectories generated by TrajGen retain the utility of original

data in supporting the two applications.

CCS CONCEPTS

• Security and privacy → Privacy protections; • Computing

methodologies → Machine learning; Arti!cial intelligence;

• Applied computing→ Publishing.

KEYWORDS

Mobility Trajectories Generating; Data Utility; Generative Adver-

sarial Nets; Sequence-to-Sequence Learning

ACM Reference Format:

Chu Cao, Mo Li. 2021. Generating Mobility Trajectories with Retained Data

Utility. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (KDD ’21), August 14–18, 2021, Virtual Event,

Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3447548.3467158

1 INTRODUCTION

Data mining studies in mobility often face shortage of the supply

of data, due mainly to the limits in data production or restrictions

on data sharing, e.g., NDA (Non-Disclosure Agreement) documents

required by data owners often disable data sharing to unauthorized

third parties. The incompleteness and unavailability of datasets

hinder most existing data-driven studies. For instance, without

having access to the original dataset it is di"cult to reproduce or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467158

compare results of published research articles even when imple-

mentation details or source codes are provided, which signi!cantly

undermines the value of research based on the mobility data. One

possible solution is to establish standard mobility datasets, such

as MNIST [18] and ImageNet [8] datasets in computer vision do-

mains. The e#orts in standardizing mobility datasets however faces

di"culties in generalization, where di#erent data modes (trajec-

tory, check in/out, location samples, etc.), types (vehicle, pedestrian,

GPS, cellular, etc.), and locations (cities, etc.) make it hard to suit

one or few standard datasets to various applications or algorithms.

In this paper, we study how we can generate arti!cial datasets of

spatial-temporal trajectories based on an existing true trajectory

dataset. We want the newly generated arti!cial datasets to retain

the utility of the original true dataset so the arti!cial datasets can

be shared and utilized to perform similar data mining studies that

can be performed on the original true dataset.

The main concern of sharing mobility data is potential leakage

of private mobility traces of individuals. Many research e#orts in

recent studies have been made to avoid privacy leakage. [2, 39]

adds perturbation to locations in mobility data so as to reduce the

probability of the original data being recovered. As an early ef-

fort, [2, 39] face dilemma in the trade-o# between data utility and

the protection to privacy when setting appropriate level of noises

added to the data. Recent e#orts explore the idea of synthesizing

the data by mixing di#erent trajectories and uniformly sampling

from them to form new trajectories [24]. Data synthesization relies

on real data mixture procedure to form anonymized data, which

potentially gives chance to recovering the original data [36]. Lat-

est studies leverage generative adversarial learning to generate

mobility data - check-in/out data [30], sequence of vehicle loca-

tions [7], and mobility data density distribution [38]. To the best of

our knowledge, no existing works are able to achieve our goal of

generating spatial-temporal mobility trajectories.

This paper presents TrajGen, an approach to generate new ar-

ti!cial datasets of spatial-temporal mobility trajectories based on

an original dataset of true mobility trajectories. TrajGen separates

the spatial information and temporal information in forming the

new mobility trajectories. The spatial information learning is for-

mulated into an image generation problem by mapping trajectories

to image pixels. A Generative Adversarial Net (GAN) [13] is trained

to generate images that follow the spatial distributions of the origi-

nal dataset. The temporal information learning is formulated into

sequence-to-sequence mapping problem where locations are ex-

tracted from the GAN generated images and fed into Seq2Seq model

to infer proper sequences in connecting those locations to trajecto-

ries. A fully-connected ANN assigns timestamps to the sequential

locations in each trajectory. In such a way new arti!cial trajectory

data are generated based on the underlying distribution of origi-

nal data, and retain their utility for supporting various mobility

applications. Moreover, the generated new arti!cial datasets are

disentangled from the original data, and thus can be shared without

leaking privacy of data owners.

In summary, this paper makes the following contributions. (i)

We are the !rst to leverage GAN and Seq2Seq to generate mobility

data. Both spatial information and temporal information can be

generated in our design. (ii) We implement TrajGen, a novel ap-

proach that leverages GAN and Seq2Seq to generate the arti!cial

trajectory dataset. (iii) We conduct extensive experiments and eval-

uate TrajGen using a real-world dataset. The experimental results

suggest that the data generated by TrajGen retain similar utility

and statistical features of the original dataset.

The rest of this paper is organized as follows. We review re-

lated works in Section 2 and present the preliminaries in Section 3.

Section 4 elaborates the design details of TrajGen, and Section 5

presents the evaluations. We conclude this paper in Section 6.

2 RELATEDWORK

Mobility data synthesizing. There are two ways of synthesizing

mobility data: mixing of existing data or generation of new data. For

data mixing, researchers have studied either mixing perturbations

with the original data or mixing di#erent true trajectories from the

original data. Adding random perturbations [2, 39] synthesizes mo-

bility data by shifting original data samples or adding noises which

help improve data privacy. Such methods may disrupt the structure

or statistical features of the original data, leading to impaired data

utility. In practice, it is di"cult to reach the balance between data

utility and privacy preserving [19]. [24] proposes to synthesize new

mobility trajectories by mixing multiple di#erent trajectories and

uniformly selecting from them. This type of work relies on mixing

procedures, which potentially gives chances to reconstructing the

original data from the mixed data [36]. Generative approaches, from

a di#erent perspective, learn the underlying distributions of the

original data and generate new mobility data by sampling from the

learnt distributions. [19] for the !rst time envisions the possibility

of leveraging GAN to generate mobility data, but gives no detailed

solutions. [30] implements a concrete solution based on [19] to

generate mobility check-in and check-out data, which essentially

mixes random noise to vectors formulated by the original data, and

based on the concatenate vectors, generates new arti!cial data. [38]

utilizes GAN to learn the underlying distribution of mobility den-

sity on a gridded map, and generates new mobility density in each

grid. Neither [30] nor [38] is able to generate complete mobility

trajectories of individuals. Authors in [7] propose to generate a

sequence of locations via GAIL (a combination of reinforcement

learning and GAN) framework, where each location is modeled as

an action result (i.e., drivers’ choice during driving) such that each

trajectory is modeled by Partially Observable Markov Decision Pro-

cess (POMDP). POMDP, however, derives the next location based

solely on the current location, which is not true in practice. On

the other hand, [7] focuses only on locations and cannot generate

temporal information of trajectories. To the best of our knowledge,

the ability of TrajGen in generating spatial-temporal trajectories

has not been achieved in previous works.

Other applications of GAN and Seq2Seq techniques. GAN

enables to generate discriminator-accepted data samples [13]. Fol-

lowing this, many GAN variants were derived, such as cGAN [23],

cycleGAN [21], etc. They perform well in image generation tasks,

e.g., TGAN [9] in super resolution, dualGAN [37] in image transfer

learning. IGAN [41] was derived to manipulate the synthetic im-

ages. MuseGAN [10] was proposed to generate music in a di#erent

domain. [1, 14] show more GAN applications, which are proved to

perform well in image-related tasks. The Seq2Seq model was widely

used in neural machine translation tasks [3, 22, 31]. [12] leverages

Seq2Seq model to predict bus bunching phenomenon based on

smart card data. Authors in [34] use Seq2Seq model to recommend

relevant content and involve users in speci!c conversations. [32]

uses Seq2Seq model to predict intrinsically disordered regions in

proteins. Combined with RNN processing natural language, GAN

is able to generate images based on texts [27]. TrajGen leverages

Seq2Seq to infer the temporal aspect knowledge based on default

sequences of new locations generated by DCGAN.

3 PRELIMINARY

3.1 Problem De!nition

We aim to generate new mobility trajectories based on the under-

lying distribution of the original mobility data. We believe that

in order to retain the data utility, the distributions of generated

mobility trajectories and the original data should be approximately

and statistically similar with each other.

Definition 1. Location. A location is determined by a three-

element tuple (latitude, longitude, timestamp). One location can be ex-

pressed as ;>2 = (;0C, ;>=, C), where ;0C and ;>= are latitude-longitude

coordinations, and C is the sampled timestamp.

Definition 2. Mobility Trajectory. A mobility trajectory con-

sists of a sequence of locations. The 8Cℎ trajectory can be denoted as

g8 = {;>28
1
, ..., ;>28=}, where ;>2

8
9 is the 9Cℎ location in g8 sampled at

time C 9 , 1 ≤ 9 ≤ =, and = is the total number of locations in g8 .

Mobility trajectories might be of di#erent forms in reality accord-

ing to the application background and how locations are sampled.

For instance, trajectories can be generated by the timestamped GPS

readings from vehicles moving in a city [4, 20] or timestamped

cell tower signals [40]. A tra"c surveillance system may observe

vehicles’ movement in a city, generating a trajectory of each vehi-

cle across di#erent junctions [33]. Pedestrian trajectories may give

mobility paths of pedestrians [5]. TrajGen can be generally applied

to all types of such mobility trajectories.

Definition 3. Mobility Map. The mobility map constrains the

movement of subjects (e.g., vehicles, pedestrians). It can be denoted

as a graph G(E,V), where E refers to the set of edges that provide

connectivity (e.g., road segments for vehicles or pedestrians), and V

refers to intersections that provide transitions (e.g., road junctions).

Mobility map includes road network. To better understand our

design, we introduce travel patterns of the trajectories.

Definition 4. Travel Pa!ern. A travel pattern is a sequence of

geographically adjacent edges, and can be denoted as {41 → 42 →

... → 4=}, where 48 ∈ � is the 8Cℎ edge, 1 ≤ 8 ≤ =, and = is the total

number of edges in the travel pattern. Each edge in a travel pattern

is associated with one or multiple locations in a trajectory g . Travel

patterns are derived from the results of map matching algorithm on

trajectories. Travel patterns re!ect the travel preferences of users.

We formulate the mobility trajectories generation problem as

follows. Given a set of trajectories {g1, g2, ..., g= }, and mobility map

DCGANMobility

Trajectories

Mobility

Map

Generated

Trajectories

...

Location-

image Location

Extraction

Mobility Map Embedding Seq.

Ground Truth Sequence

Mobility Map

Embedding Sequence

Inferred Sequence

...
Matching

lo
c
a

tio
n

s

G
e

n
e

ra
te

d
 lo

c
a

tio
n

s

ANN
Timestamps + Road segment

Seq2Seq

Timestamps

Translation

Map

Figure 1: System design of TrajGen. Black arrows are data

"ow for model training, dashed arrows are data "ow of data

generation, and blue arrows show data "ow of inference.

information, we want to generate a new dataset of mobility trajec-

tories {ĝ1, ĝ2, ..., ˆg< }, where g8 and ĝ8 are the 8
Cℎ original trajectory

and the 8Cℎ newly generated trajectory, respectively.

3.2 Background

In this section, we brie%y describe GAN and Seq2Seq models.

Generative Adversarial Nets. GAN consists of two neural net-

works: one is Generator � and the other is Discriminator � . �

and � are trained via competing with each other in a two-player

minimax game. In the game, � tries to distinguish the real training

data samples (e.g., images) from synthetic data samples generated

by � . � tries to generate synthetic data samples from ?I , which is

usually a uniform distribution or Gaussian distribution, that can

fool � . Ian Goodfellow et al. in [13] prove that there exists a global

optimal solution for this minimax problem when ?6 = ?30C0 , where

?6 is generative distribution (�) and ?30C0 is the underlying data

distribution. At the optimum point, ?6 converges to ?30C0 . Mean-

while, generator� is able to imitate ?30C0 , generating samples that

� cannot distinguish from real training data samples.

Seq2Seq model. Sequence to sequence learning (Seq2Seq) is

widely used in neural machine translation, e.g., from English to Ger-

man. In Seq2Seq, sentences are represented as a sequence of words

that are denoted as vectors. Seq2Seq models a conditional proba-

bility ? (~ |G) of mapping the input sequence (i.e., G1, G2, ..., G=) into

the output sequence (i.e., ~1, ~2, ..., ~<). [31] proposes the encoder-

decoder framework to learn the conditional probability. Encoder is

used to encode each source sequence (i.e., G = G1, G2, ..., G=) into an

intermediate representation, and based on that, decoder is trained

to generate an output sequence (i.e., ~ = ~1, ~2, ..., ~<) one unit by

one unit. In practice, encoder and decoder are usually modeled as

LSTM (Long-short Term Memory [16]) or GRU (Gated Recurrent

Unit [6]). Bahdanau et al. propose the attention mechanism [3], a

way to control Seq2Seq models to focus on di#erent positions of in-

put sequence. Later studies [22] !nd attention mechanism powerful

when involved in Seq2Seq models.

4 SYSTEM DESIGN

4.1 System Overview

The system design of TrajGen is illustrated in Figure 1. It takes real

mobility trajectories and the corresponding mobility map as inputs.

TrajGen decouples locations from their temporal sequences in the

trajectory, and processes them separately. For trajectory locations,

Mobility Data

(x0, y0)
x

y (a) (b)

(x, y)

lat1, lon1

lat2, lon2

lat3, lon3

lat4, lon4

lat5, lon5

LocationNo.

1

2

3

4

5

...

...

H

W

µ

Figure 2: Illustration of location-image translation.

TrajGen translates them into images containing location dots and

feeds the images into a DCGAN model to learn the spatial distribu-

tion of trajectory locations in original data (upper loop in Figure 1).

DCGAN is a deep convolutional GAN optimized for images. The

“Generator” in DCGAN can thus generate new images, and TrajGen

extracts new trajectory locations from the newly generated images.

To capture the sequence and time information of mobility trajec-

tories, TrajGen applies map matching [25] to derive their travel

patterns. Based on a default sequence information (i.e., way ID) in

mobility map, TrajGen obtains a mobility map embedding sequence,

i.e., a sequence of road segments, which projects the sequence infor-

mation into a space spanned by edges in mobility map. Meanwhile,

the original trajectory data gives the travel pattern denoted as tar-

get sequence. The mobility map embedding sequences are fed into

a Seq2Seq model [31], where travel patterns provide the correct

order (i.e., labels). Given the input sequence (i.e., mobility map em-

bedding) and target sequence (i.e., travel pattern), a Seq2Seq model

can be trained to capture the travel patterns of the original data

and based on that generates a new sequence to connect trajectory

locations generated by DCGAN. A pre-trained ANN model is used

to generate timestamps for all sequenced trajectory locations.

4.2 Location Distribution Learning

Considering the diverse characteristics between spatial informa-

tion and temporal information, our design of TrajGen decouples

locations from sequences and organically merges them at a later

stage. We denote all locations without temporal information in a

trajectory as g . Therefore, each trajectory g consists of its g and C .

TrajGen leverages GAN to generate new location data. Since GAN

is proved to perform well on image-like datasets [13, 29], TrajGen

translates the location information in g into images.

Location-image translation.Mobility trajectories are collected

during the movement of subjects (e.g., vehicles with GPS). The map

corresponding to the region where the data was collected is easy to

obtain from OpenStreetMap [26]. In the location-image translation,

locations are annotated in the image based on their latitudes and

longitudes. Such a translation keeps the spatial structure and spatial

distribution of the trajectory data. The procedure of location-image

translation is illustrated in Figure 2 and elaborated below.

We initialize a 2D space with width of W (along longitude di-

rection) and height of H (along latitude direction), and rasterize

the space using ` ∗ ` square as the minimal unit, where W and

H can be calculated from the map !le. Thus, the resolution of the

space is ⌈(W/`)⌉ ∗ ⌈(H/`)⌉. The space here can be regarded as

an image and the minimal unit is the pixel in the image. We set

up a coordination system in the space with x-axis along the longi-

tude direction and y-axis along the latitude direction, originated at

(G0, ~0). The position of each square is denoted as the coordinate

of its upper right corner. The location ;>28 with (;0C8 , ;>=8) in g8 can

be mapped to a square located at (G,~), where G = ⌈(;>=8 − G0)/`⌉,

~ = ⌈(;0C8 − ~0)/`⌉. The color of the mapped squares as well as

its 8-neighbor surrounding squares in the image are set to black,

representing a location. The other squares without mapped loca-

tions remain as white. By doing so, each non-temporal trajectory

g8 can be translated into an image 8<68 . In Figure 2(a), we can see

the translated image and the black dots indicate all the locations in

g8 . When zooming in, the minimal square is shown in Figure 2(b).

When two locations are close enough, they may be mapped

into the same square. This may result from two cases: a) the two

locations are sequentially and geographically close; b) the two

locations are not consecutive but geographically close. For the !rst

case, we regard them as one pixel on image. For the second case, we

are able to di#erentiate one location from another when considering

the sequence and time information.

Training the DCGAN with location images. TrajGen lever-

ages DCGAN to generate new images from which we can extract

new locations. For all the non-temporal trajectories {g1, g2, ...} in

one city, we regard them as a set of trajectories sampled from an

unknown distribution PT (g), where T means the set of all g in

one city, and g is a sample from PT (g). Due to the characteristics

of this unknown distribution PT (g), each sampled g can be well

matched with the mobility map of the city. This unknown distri-

bution, however, is not easy to derive mathematically. TrajGen

uses the generator in DCGAN to approximate PT (g). The location-

translated images are fed into DCGAN for training. The set of all

the location images re%ects the distribution of ?30C0 in DCGAN and

is used to train DCGANmodel to harness its generative distribution

?6 . Upon convergence, the generator � in DCGAN has the ability

to generate images which can be regarded as samples from PT (g).

We use generative distribution ?6 in DCGAN to approximate the

unknown distribution PT (g). When given initial conditions, gen-

erator � can generate new images. This action of � imitates the

process of sampling new trajectories from PT (g). TrajGen extracts

locations from the generated images.

Location extraction. On each generated images, TrajGen uses

Harris corner detector [15] to identify the locations of corners. Each

position of identi!ed corners can be converted into a location with

latitude and longitude based on the mapping relationship between

image and locations in trajectories. These new locations are fed

into the Temporal Information Learning module.

4.3 Temporal Information Learning

The newly generated locations have no sequence information avail-

able to form a trajectory. We need to recover its travel pattern.

TrajGen uses the intrinsic sequence to infer the travel pattern.

To obtain the intrinsic sequence of locations, TrajGen runs the

distance-based map matching algorithm to extract the closest road

segment of each newly generated location. Therefore, the locations

can be represented with their matched road segments. Based on

the way ID information in mobility map, each of the extracted road

segments have their identities. The way ID information is stable

and can be used as the intrinsic sequence.

Mobility map embedding. Mobility map embedding helps

project the trajectories from the latitude-longitude space of earth

i

ii

iii

iv

v

(a) (b)

Matched Roads

Location
Matched Loc

Direction

Road Network

5769058

3724193

3322101

4870439

1943224

Mobility Map

Embedding
Ground Truth

5769058

3724193

3322101

4870439

1943224

lat1, lon1

lat2, lon2

lat3, lon3

lat4, lon4

lat5, lon5

LocationNo.

Trajectory Mobility Map

Matched Edges in Mobility Map Mapping Results in Map Matching

Sequences

Type

5769058

3724193

3322101

4870439

1943224

ID

way

way

way

way

way

node

...
...

...
...

node

0000001

0000002

Figure 3: Illustration of Mobility Map Embedding.

into edge space of mobility map. Meanwhile, the sequence informa-

tion in trajectories is encoded into a sequence of edges (i.e., Travel

Pattern), which is illustrated in Figure 3. Figure 3(a) shows a trajec-

tory with !ve locations denoted as red dots (i.e., from 1 to 5),

and matched locations are denoted as dashed circled dots (i.e., from

i to v). Based on matched locations, the matched road segments can

be identi!ed, denoted as blue line. The black arrows in Figure 3(a)

indicate the moving directions. The method proposed in [25] is

used to perform map matching, projecting the trajectory locations

into mobility map space. Figure 3(b) shows the conversion from

trajectory representation into matched edges (i.e., ways). The se-

quence of way ID inherits the sequence information in trajectories.

As illustrated in Figure 3(b), locations from 1 to 5 are matched

with the !ve ways highlighted with gray in mobility map table. Tra-

jGen extracts their IDs to form two sequences. One is the mobility

map embedding sequence and the other one is the travel pattern

whose order follows the order of locations (i.e., from i to v). Given

the travel pattern and matching relation between road segments

and locations, the original sequence information of locations in

trajectories can be recovered.

Training the Seq2Seq model. We !rst train a Seq2Seq model

with sequence information in real trajectories. When given a de-

fault sequence of new locations, the well trained Seq2Seq model

infers the travel pattern. In training phase, the source sequence is

a series of way IDs in a default order and the target sequence is a

series of way IDs in the travel pattern. TrajGen infers the target

sequence (i.e., travel pattern) based on a mobility map embedding.

To get the default sequence, we sort the way IDs in target sequence

based on the value of each way ID. As shown in Figure 3(b), the

ground truth (i.e., {3322101, 5769058, 3724193, 4870439, 1943224})

inherits the sequence information of trajectory and the default se-

quence column (i.e., {1943224, 3322101, 3724193, 4870439, 5769058})

is the ascending sort of way ID. Each trajectory provides a train-

ing sample, i.e., a pair of source sequence and target sequence, for

Seq2Seq model. Seq2Seq model encodes the source sequence into a

vector and decodes the vector into a target sequence. Through such

an encoder-decoder structure, Seq2Seq constructs the conditional

probability of mapping source sequence to target sequence. It learns

the travel pattern of subjects (e.g., vehicles). To infer the travel pat-

tern of generated locations, Seq2Seq selects the most likely order to

traverse the locations based on the learned knowledge. The ratio-

nale behind is that there are limited travel patterns in one speci!c

city, which provides us an opportunity to learn the travel patterns

of subjects in a city from historical data.

Timestamp inference. Now the generated data consist of lo-

cations with sequence information. TrajGen generates timestamps

(a)

(c) (d)

(b)

Figure 4: Visualized examples of original trajectories (a, b)

and TrajGen generated trajectories (c, d).

for the locations by inferring the initial timestamp C0 as the sam-

pling rate (i.e., 1/ΔC) is !xed in the same dataset. If C0 is known,

the following 8Cℎ timestamp can be calculated as C8 = C0 + 8 × ΔC .

To infer C0, we build a non-linear ANN model. The input of ANN

consists of the length of a trajectory and the matched road segment

of its !rst location. The desired output of ANN model is the time

slot when the !rst location is sampled with the highest probability.

Each time slot in output is 15 seconds, and we have 5,760 time slots

during one day. The model captures how the initial locations of

trajectories distribute in the original mobility trajectories.

Figure 4 shows the visualized trajectories from the original

dataset and the new dataset generated by TrajGen. The blue points

in Figure 4 represent the locations (downsampled by 5 times for

visualization purpose) which corresponds to the inputs/output of

DCGAN and black lines are the direct line connection between

consecutive locations, which includes the input/output of Seq2Seq.

Trajectories in Figure 4(a, b) are sampled from the original data, and

trajectories in Figure 4(c, d) are generated by TrajGen. We deliber-

ately select the trajectories covering similar areas for comparison

purpose. The training phase does not involve the mobility map

information. The mobility map information, however, is implicitly

included in mobility trajectories as they are recorded by vehicles

moving on road network. As a result, the generated trajectories in

Figure 4(c, d) follow the road structure of Singapore, when com-

pared with the road network of Singapore (main road network of

Singapore can be found in Appendix Figure 16).

5 EVALUATION

5.1 Experimental Setup

Performance criteria. We evaluate TrajGen at both a macro-level

and a micro-level. At the macro-level, we mainly consider the over-

all distribution of the mobility dataset. We leverage heat map to

visualize the location distribution of trajectories. Speci!cally, we

divide the base map into 800 (determined by city size) regions with

each region covering a 1:<×1:< area. Inside each region, we count

the number of locations during one day. The heat map indicates

the overall distribution of locations across the whole city from a

qualitative perspective. Then, we quantitatively calculate the cosine

similarity between heat maps. The heat map can be regarded as an

800-dimensional vector (G1, G2, ..., G800), where G8 is the number of

observed locations in the 8Cℎ region.

At a micro-level, we assess the statistical features via multiple

metrics, i.e., distance from a location to its mapped road segment,

travel distance, the proportion of ordinary ways and express ways,

and trajectory covered area. We calculate the travel distance 3g8 of

a trajectory g8 = {;>28
1
, ..., ;>28<} by 3g8 =

∑<−1
:=1

�<< (;>28
:
, ;>28

:+1
),

where �<< (0, 1) is the length of traveled routes on mobility map

from points 0 to 1. The distance between a location to its matched

road segment can be computed as �62 (;>2, ;̂>2), where �62 (0, 1) is

the great circle distance from point 0 to point 1 on the earth, ;>2 is

the location, and ;̂>2 is the closest point on the matched road seg-

ment to ;>2 . The travel covered area of g8 is de!ned as the area of the

smallest rectangle covering g8 and is calculated as: Bg8 = Fg8 × ℎg8 ,

where ℎg8 = �62 (;>21; , ;>2C;), Fg8 = �62 (;>21; , ;>21A) and ;>21; ,

;>21A are computed below. Given g8 , its :Cℎ location is ;>28
:

=

(;0C8
:
, ;>=8

:
, C8
:
), and we de!ne ;0C− as the minimal latitude, ;>=−

as the minimal longitude, ;>=+ as the maximal longitude among

all the locations in g8 . Therefore, we have ;>21; = (;0C−, ;>=−),

;>2C; = (;0C+, ;>=−), and ;>21A = (;0C−, ;>=+). These features ex-

plicitly re%ect whether the generated mobility trajectories maintain

the statistical characteristics of the original data.

Benchmarks. We compare TrajGen with three baselines: two

traditional geomasking methods and one variant of TrajGen.

Random Perturbation (RP). RP is a geomasking approach [2],

where each location is displaced in latitude-longitude space by a

randomly determined distance and direction. A distance thresh-

old is typically set to allow the maximal displacement distance.

2:< is e#ective for protecting geo-privacy [11] and a ±10B shift is

randomly added on timestamp.

Gaussian Perturbation (GP). GP displaces the original loca-

tion with a distance sampled from a Gaussian distribution in a

random direction [39]. The mean of Gaussian distribution is the

original location itself and standard deviation is 0.05 because such

a standard deviation setting protects the geo-privacy well [11]. We

add time shift on timestamps. The shift is sampled from a Gaussian

distribution (standard deviation is 10 and mean is 0).

TrajGen-v is a variant of TrajGen. In TrajGen, the location in-

formation used for DCGAN training and sequence information used

for Seq2Seq training are extracted from the same dataset, while

in TrajGen-v, they are from di#erent datasets. Its performance

validates our design where spatial information and temporal infor-

mation can be separated in mobility trajectory generation tasks.

5.2 Evaluation Results

Given the original dataset, we randomly select 500 trajectories with-

out replacement and denote them as base data, while the remaining

trajectories are denoted as raw data. Based on TrajGen and bench-

mark schemes, we have four generated datasets: TrajGen dataset,

TrajGen-v dataset, RP dataset and GP dataset.

Spatial Distribution. We calculate the location distribution

similarity between the original data and generated data in one day.

The distribution of base data is denoted asX0 = (G
(0)
1

, G
(0)
2

, ..., G
(0)
800

).

(a) Base data: location distribution of ran-
domly sampled 500 taxis’ trajectories dur-
ing one day.

(b) Location distribution of randomly
sampled trajectories from raw data. It
has a cosine similarity of 0.976 with Fig-
ure 5(a).

(c) Location distribution of randomly
sampled trajectories from TrajGen. It has
a cosine similarity of 0.956 with Fig-
ure 5(a).

(d) Location distribution of randomly
sampled trajectories from TrajGen-v. It
has a cosine similarity of 0.898 with Fig-
ure 5(a).

(e) Location distribution of randomly
sampled trajectories from RP data. It has a
cosine similarity of 0.814 with Figure 5(a).

(f) Location distribution of randomly
sampled trajectories fromGP data. It has a
cosine similarity of 0.775 with Figure 5(a).

Figure 5: Visualized location distribution of di#erent data

sources. Each grid in the !gure represents an approximate

1:< × 1:< square area in the real world.

We then randomly select 500 trajectories from the raw dataset and

each of the four generated datasets. The location distribution of

one dataset can be denoted as XB = (G
(B)
1

, G
(B)
2

, ..., G
(B)
800

), where B

indicates data source. We compute the cosine similarity between

X0 and each of XA0F , XTrajGen, XTrajGen−E , X'% , and X�% .

We repeat the sampling and similarity computation procedures

500 times and record the results. Figure 6 shows the CDF of cosine

similarities. The similarity between X0 and XA0F is in the range of

0.946 and 0.976, while the counterparts of XTrajGen and XTrajGen−E

are in (0.91, 0.966) and (0.893, 0.958), respectively. For RP data and

GP data, their similarities are in the range of (0.797, 0.866) and (0.755,

0.822), which are far away from the position of raw data. TrajGen

dataset have closer location distribution to raw data, indicating that

the trajectories generated by TrajGen have similar overall location

distribution with the original data.

To better illustrate the detailed di#erence, we visualize some

of the location distributions in Figure 5. Figure 5(a) is the visual-

ized base data. Figure 5(b) shows the distribution of 500 sampled

trajectories from raw data, which is the largest cosine similarity

value 0.976. Figure 5(c) has a 0.956 cosine similarity with Figure 5(a),

formed by trajectory locations from TrajGen data. Figure 5(d) is the

result from TrajGen-v dataset, with the similarity of 0.898. The heat

maps of locations sampled from RP data and GP data are provided

in Figure 5(e) (with 0.814 similarity) and Figure 5(f) (with 0.775 simi-

larity), respectively. Figure 5 suggests TrajGenmaintains the overall

trend of data distribution. For example, south central area (i.e., city

centre) and east most area (i.e., airport) are the densest regions. This

suggests TrajGen is able to generate mobility trajectories that have

similar location distribution with the original data.

Temporal Distribution. To evaluate the generated temporal

information, we compare the location distribution in di#erent time

slots. If the temporal information is properly generated, the location

distribution during speci!c time slots should be close to that of

the original data. We use the same setting with spatial distribution,

and calculate the cosine similarity between X0 and each of XA0F ,

XTrajGen,XTrajGen−E ,X'% , andX�% . The only di#erence is the time

span. In spatial distribution setting, each of the distribution vector

X includes locations in one day while we use the location distri-

bution in each hour here. Figure 7 illustrates the results. Overall,

the performances of TrajGen and TrajGen-v are closer to raw data

than that of RP data and GP data. This indicates that TrajGen is

able to generate arti!cial trajectories that have similar distributions

of temporal information with the original data.

Statistical Features. TrajGen generates mobility trajectories,

which carry the characteristics. It is infeasible to enumerate all of

the characteristics. We take the following four as examples.

Distance from location to matched road segment. We randomly

selected 50 trajectories from raw data and generated datasets. The

average length of sampled trajectories is 1,750. After map matching,

we have (;>20C8>=, A>03) pairs. Great circle distance �62 (;>2, ;̂>2)

is used to measure the distance from location to matched segment.

We show the statistical result of calculated distances in Figure 8.

Theoretically, the closer the CDF line is to the top left corner, the

better, which indicates that the locations are close to road segments.

Figure 8 depicts that the locations of TrajGen data are similar to

that of raw data. Among all the distances in raw dataset, 50% of

them are less than 4.2<. The counterparts of TrajGen data and

TrajGen-v data are 5.0< and 4.4<, respectively. For RP data and GP

data, however, their median distances are 8.5< and 15.6<, which are

farther than that of TrajGen datasets. This suggests that TrajGen is

able to generate trajectories that have similar location distribution

(i.e., closeness to roads) with the original data.

Travel distance. 500 trajectories are randomly selected from raw

data and each of the generated datasets. The travel distance of each

trajectory can be computed by travel distance equation in § 5.1.

We run map matching and extract travel routes of trajectories.

Figure 9 shows the CDF of travel distance in di#erent datasets. The

distributions of TrajGen datasets are closer to that of raw dataset.

Among the sampled trajectories in raw data, TrajGen data, and

TrajGen-v data, 50% of them traveled less than 307.6:<, 414.9:<

and 419.3:<, respectively. In RP data and GP data, the median travel

distances are 683.5:< and 967.7:<, which are much longer than

TrajGen datasets. In terms of the longest traveled distance, it is

around 800:< in TrajGen data, which is close to 790:< of raw data.

In RP and GP datasets, their longest travel distance is 1336:< and

1880:<, which are much longer than raw data. The perturbations

from RP and GP might destroy the spatial structure of trajectories.

After map matching, the trajectory is matched with complicated

detours on roads, leading to a longer travel distance. The results in

0.7 0.75 0.8 0.85 0.9 0.95

Similarity of location distributions

0
0
.2

0
.4

0
.6

0
.8

1
.0

C
D

F

Raw Data

TrajGen Data

TrajGen-v Data

RP Data

GP Data

Figure 6: CDF of similarities across dif-

ferent data sources.

4 8 12 16 20 24

Hour index

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

S
im

il
a
ri

ty

Raw Data TrajGen Data TrajGen-v Data RP Data GP Data

Figure 7: Averaged similarity of location

distributions in each hour.

0 10 20 30 40 50 60 70

Distance to road network (m)

0
0
.2

0
.4

0
.6

0
.8

1
.0

C
D

F

Raw Data

TrajGen Data

TrajGen-v Data

RP Data

GP Data

Figure 8: CDF of distance from location

to map matched road segment.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Traveled distance (km)

0
0
.2

0
.4

0
.6

0
.8

1
.0

C
D

F

Raw Data

TrajGen Data

TrajGen-v Data

RP Data

GP Data

Figure 9: CDF of travel distances of ran-

domly sampled trajectories from di#er-

ent data sources.

4 8 12 16 20 24

Hour index

0
1
0
0

2
0
0

3
0
0

4
0
0

T
ra

v
e
l

a
re

a
 (

k
m

2
)

Raw Data

TrajGen Data

TrajGen-v Data

RP Data

GP Data

Figure 10: Averaged travel covered area

of randomly sampled trajectories from

di#erent datasets during each hour.

89.34% 90.19%
87.95%

98.41% 99.23%

Raw Data TrajGen Data TrajGen-v Data RP Data GP Data

Data source

0
2
0

4
0

6
0

8
0

1
0
0

P
ro

p
o

rt
io

n
 (

%
)

Locations mapped to ordinary ways

Locations mapped to express ways

Figure 11: The proportion of ordinary

way and express way in di#erent data

sources.

Figure 9 demonstrate that TrajGen is able to generate arti!cial data

that have similar travel distance with the original data.

Travel covered area in each hour. The one day trajectory usually

covers the whole city which has a !xed area size. Therefore, the

travel covered area during one day is close to the city size (i.e., 1,250

:<2). We divide the sampled trajectories into 24 parts based on time

and calculate the averaged travel covered area during each hour.

Figure 10 depicts the result, showing that TrajGen and TrajGen-v

data are close to the raw data. For RP data and GP data, some of

the trajectories are largely distorted, resulting in a bigger traveled

area comparing to raw data. The results in Figure 10 show that the

generated mobility trajectories by TrajGen have similar distribution

of travel covered area with the original data.

Proportion of ordinary way and express way. After map matching,

the matched routes of the selected trajectories are known. Based

on the #C06 information in OpenStreetMap [26], we count the road

segments as expressways when their #C06 information includes

"expressway". Otherwise, we regard the road segments as ordinary

ways. Figure 11 gives the proportion of ordinary way and express

way based on trajectories in raw dataset and each of generated

datasets. Majority (> 85%) of the matched road segments are ordi-

nary ways in all the datasets. Express ways account for around 10%

in raw data (10.66%), TrajGen data (9.81%), and TrajGen-v dataset

(12.05%). The proportion dramatically decrease to 1% for RP and GP

datasets, mainly because RP and GP destroy the trajectory structure

and lead to failures in map matching. The results of Figure 11 sug-

gests the generated arti!cial trajectories by TrajGen have similar

proportion of ordinary way and express way with the original data.

5.3 Case Study

Other than the analysis of statistical features, we conduct two case

studies: road map updating and origin-destination travel demand

estimation, which are classical and well-performed applications on

mobility data, to assess the utility of generated mobility trajectories.

We use Singapore Taxi data in this section.

Case Study 1: Road Map Updating. It aims to discover un-

charted road segments in digital maps. The !rst phase is mapmatch-

ing, where trajectories are processed to extract the locations that

cannot be matched to existing road networks. Those unmatched

locations are likely to be recorded by vehicles moving on uncharted

routes in existing digital maps. When more and more unmatched

locations are extracted, they are clustered based on Hausdor# dis-

tance [35] between trajectories. In each cluster, the threshold is set

to 2, which is the minimal number of trajectories to derive road

segments. Road map updating algorithm can derive a route based

on those unmatched locations in the same cluster.

We leverage the algorithm in [35] to do road map updating.

To evaluate the utility of generated dataset, we select a central

region R, which is the road densest region in existing maps, and

deliberately remove some of the road segments inside R. In total,

there are 3,759 road segments in R and 2,025 road segments are

randomly removed. Such removed road segments can be ground

truth. From the raw dataset and each of the generated datasets,

we randomly selected 500 trajectories that have passed through

R such that each trajectory could contribute map updating. We

feed each trajectory into map updating algorithm so as to compare

their results. As we have ground truth, precision and recall are used

to evaluate the performance. Precision is the proportion of truly

discovered road segments among all the derived road segments.

Recall is the proportion of truly discovered road segments among

all the removed road segments. In practice, a derived road segment

has its own direction and length. We compare the direction and

length of derived segments with road segments in ground truth. For

one derived segment and one ground truth segment, if they have

intersected, the direction deviation between them is less than 45
◦

and their length di#erence is less than 100<, we qualify the derived

(a) Results of Raw data. (b) Results of TrajGen data. (c) Results of TrajGen-v data. (d) Results of RP data. (e) Results of GP data.

Figure 12: Results of road map updating. Gray lines are road networks (3,759 in total), black lines are removed road segments

(2,025 in total), and red lines are newly found road segments from raw data and generated mobility datasets.

22.13%

10.40% 10.24%

0.82% 0.93%

87.76%
84.27% 81.57%

44.93%
48.61%

Raw Data TrajGen Data TrajGen-v Data RP Data GP Data

Data source

0
2
0

4
0

6
0

8
0

1
0
0

P
ro

p
o

rt
io

n
 (

%
) Precision

Recall

Figure 13: Precision and recall in road

map updating.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Similarity between OD matrix

0
0
.2

0
.4

0
.6

0
.8

1
.0

C
D

F

Raw Data

TrajGen Data

TrajGen-v Data

RP Data

GP Data

Figure 14: CDF of similarities between

OD matrices.

4 8 12 16 20 24

Hour index

0
0
.2

0
.4

0
.6

0
.8

1

O
D

 s
im

il
a
ri

ty

Raw Data TrajGen Data TrajGen-v Data RP Data GP Data

Figure 15: Averaged OD matrix similar-

ity in each hour.

segment as truly discovered road segments. The map updating

results are shown in Figure 12, where gray lines are the original

road network, black lines are removed road segments, and red lines

are the derived road segments using di#erent datasets.

Figure 13 gives the precision and recall. 948 road segments are

discovered in raw data, and 832 (87.76%) are truly discovered road

segments. The precision for TrajGen and TrajGen-v dataset are

84.27% and 81.57%, respectively. The number of total discovered

road segments in TrajGen (464) and TrajGen-v (472) are less than

raw data, leading to a lower recall. RP data found 69 segments and

only one is truly discovered. For GP data, there is one segment qual-

i!ed as truly discovered road segment. Low recall value results from

limited number of trajectories used for map updating. The compara-

ble precision of TrajGen data validates that the generated mobility

trajectories by TrajGen is able to achieve similar performance with

the original data in road map updating application.

Case Study 2: Origin-Destination Demand Estimation.We

conduct Origin-Destination demand estimation (OD estimation for

short). OD estimation is a classical application used to describe the

travel demand of citizens. It aims to calculate the OD matrix. Each

value of the matrix indicates the travel demand from one location

(i.e., origin) to another (i.e., destination). The taxi OD demand is

de!ned as the total number of taxi requests from the original region

to the destination region in each time interval [28].

We partition the map into # small regions based on latitude and

longitude, where # = � ×, , � and, are the height and width

of the city grid map respectively. We denote the OD matrix as a 2D

matrix - ∈ '#×# . Speci!cally, - (A8 , A 9) is the taxi demand from

origin region A8 to destination region A 9 , where A8 and A 9 are index of

regions in partitioned city map, and 0 ≤ A8 ≤ # − 1, 0 ≤ A 9 ≤ # − 1.

As one trajectory may include more than one journey (i.e., multiple

OD paris included), we need to derive the origin and destination of

each journey. From the gasoline cost perspective, we assume that

drivers prefer to moving in a small region or staying at pick-up

stops when the taxi is empty. Therefore, such locations generated

by moving in a small region or staying at taxi pick-up stops could

be used to separate journeys in a trajectory. For each trajectory g8 ,

we run a DBSCAN [17] algorithm to determine the core locations.

The radius is 1,000< and the point number threshold is 20. Core

locations in the results of DBSCAN are separators to cut g8 into

multiple journeys. The !rst and the last locations of each journey

form one OD pair. Therefore, we can extract the corresponding

origin region (e.g., A>) and destination region (e.g., A3) for a journey,

adding one to - (A> , A3) in the OD matrix.

We evaluate whether TrajGen retains the utility in OD demand

estimation by comparing the OD matrix. We randomly pick out 500

trajectories from raw dataset and each of the generated datasets.

We calculate the OD matrix of di#erent datasets, denoted as -10B4 ,

-A0F , -TrajGen, -TrajGen−E , -'% and -�% . Each OD matrix can be

reshaped into a vector consisting of # × # elements. We compute

the cosine similarity between the vector of base data and other

corresponding vectors. Such procedures are repeated 500 times

and Figure 14 gives the statistical results. The OD matrix similarity

between base data and raw dataset is in the range of 0.83 and 0.97,

while the counterparts of TrajGen and TrajGen-v datasets are in

(0.75, 0.94) and (0.7, 0.9), respectively. For RP data and GP data, their

similarity performances are in the range of (0.37, 0.66) and (0.24,

0.55), which are far away from the distribution of raw data. The

results of Figure 14 suggest that the newly generated trajectories

by TrajGen is able to achieve similar performance with the original

data in OD travel demand estimation.

We evaluate OD demand during each hour, which indicates the

spatial-temporal characteristics of generated mobility trajectories.

We extract the corresponding trajectories in each hour and calculate

the OD matrix. For the OD matrix in same hour, we compute the

similarity between -10B4
8 and each of {-A0F

8 , -
TrajGen
8 , -

TrajGen−E
8 ,

-'%
8 , -�%

8 } 500 times, and record the averaged similarities in each

hour, where 8 ∈ Z is hour index, 1 ≤ 8 ≤ 24. Figure 15 gives the

results of OD matrix similarities in di#erent hours. For most of the

hours, the performances of trajectories generated by TrajGen and

TrajGen-v are closer to the original data. This indicates that TrajGen

is able to generate arti!cial mobility trajectories owing similar

OD demand with the original data across di#erent hours. This

also validates our design where spatial information and temporal

information can be decoupled.

6 CONCLUSION

We present TrajGen, an approach to generate arti!cial dataset of

mobility trajectories with retained data utility. The generated mo-

bility trajectories are disentangled with the original data and can

be shared without privacy issue. TrajGen decouples spatial infor-

mation from temporal information in mobility data. Experimental

results on a real-world taxi dataset show that the generated arti-

!cial mobility trajectories by TrajGen follow similar distribution

with the original data. The results of road map updating and OD

travel demand estimation suggest that TrajGen is able to retain the

utility of the original data in mobility data studies.

ACKNOWLEDGMENTS

This research is supported by NRF SDSC grant SDSC-2019-001, Sin-

gaporeMOE Tier 1 RG18/20, and NTUCoE Grant 04INS000269C130.

We thank Singapore Land Transport Authority (LTA) for sharing

with us the taxi data. Any opinions, !ndings and conclusions or rec-

ommendations expressed in this material are those of the author(s)

and do not re%ect the views of funding agencies.

REFERENCES
[1] Hamed Alqahtani, Manolya Kavakli-Thorne, and Gulshan Kumar. 2019. Applica-

tions of generative adversarial networks (gans): An updated review. Archives of
Computational Methods in Engineering (2019), 1–28.

[2] Marc P Armstrong, Gerard Rushton, and Dale L Zimmerman. 1999. Geographi-
cally masking health data to preserve con!dentiality. Statistics in medicine 18, 5
(1999), 497–525.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine
translation by jointly learning to align and translate. arXiv:1409.0473 (2014).

[4] Chu Cao, Zhenjiang Li, Pengfei Zhou, and Mo Li. 2018. Amateur: Augmented
reality based vehicle navigation system. ACM IMWUT 2, 4 (2018), 1–24.

[5] Chu Cao, Zhidan Liu, Mo Li, Wenqiang Wang, and Zheng Qin. 2018. Walkway
discovery from large scale crowdsensing. In IPSN. IEEE, 13–24.

[6] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv:1406.1078 (2014).

[7] Seongjin Choi, Jiwon Kim, and Hwasoo Yeo. 2020. TrajGAIL: Generating
Urban Vehicle Trajectories using Generative Adversarial Imitation Learning.
arXiv:2007.14189 (2020).

[8] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In CVPR. IEEE, 248–255.

[9] Zihan Ding, Xiao-Yang Liu, Miao Yin, and Linghe Kong. 2019. Tgan: Deep tensor
generative adversarial nets for large image generation. arXiv:1901.09953 (2019).

[10] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. 2018. Musegan:
Multi-track sequential generative adversarial networks for symbolic music gen-
eration and accompaniment. In AAAI, Vol. 32.

[11] Song Gao, Jinmeng Rao, Xinyi Liu, Yuhao Kang, Qunying Huang, and Joseph
App. 2019. Exploring the e#ectiveness of geomasking techniques for protecting
the geoprivacy of Twitter users. Journal of Spatial Information Science (2019).

[12] Zengyang Gong, Bo Du, Zhidan Liu, Wei Zeng, Pascal Perez, and Kaishun Wu.
2020. SD-seq2seq: A Deep Learning Model for Bus Bunching Prediction Based
on Smart Card Data. In ICCCN. IEEE, 1–9.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems.

[14] Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, and Jieping Ye. 2020. A
review on generative adversarial networks: Algorithms, theory, and applications.
arXiv:2001.06937 (2020).

[15] Christopher G Harris, Mike Stephens, et al. 1988. A combined corner and edge
detector.. In Alvey vision conference, Vol. 15. Citeseer, 10–5244.

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[17] Hans-Peter Kriegel, Peer Kröger, Jörg Sander, and Arthur Zimek. 2011. Density-
based clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 1, 3 (2011), 231–240.

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Ha#ner, et al. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998).

[19] X. Liu, Hanzhou Chen, and Clio Andris. 2018. trajGANs : Using generative
adversarial networks for geo-privacy protection of trajectory data (Vision paper).

[20] Zhidan Liu, Pengfei Zhou, Zhenjiang Li, and Mo Li. 2018. Think Like A Graph:
Real-Time Tra"c Estimation at City-Scale. TMC (2018).

[21] Yongyi Lu, Yu-Wing Tai, and Chi-Keung Tang. 2018. Attribute-guided face
generation using conditional cyclegan. In ECCV.

[22] Minh-Thang Luong and Christopher D Manning. 2015. Stanford neural ma-
chine translation systems for spoken language domains. In Proceedings of the
International Workshop on Spoken Language Translation. 76–79.

[23] Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets.
arXiv:1411.1784 (2014).

[24] Mehmet Ercan Nergiz, Maurizio Atzori, and Yucel Saygin. 2008. Towards trajec-
tory anonymization: a generalization-based approach. In ACM SIGSPATIAL.

[25] Paul Newson and John Krumm. 2009. Hidden Markov map matching through
noise and sparseness. In ACM SIGSPATIAL. ACM, 336–343.

[26] OpenStreetMap. 2017. Open Street Map. Retrieved June 12, 2017 from https:
//www.openstreetmap.org

[27] Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao. 2019. Mirrorgan:
Learning text-to-image generation by redescription. In CVPR. 1505–1514.

[28] Zhilin Qiu, Lingbo Liu, Guanbin Li, Qing Wang, Nong Xiao, and Liang Lin. 2019.
Taxi origin-destination demand prediction with contextualized spatial-temporal
network. In ICME. IEEE, 760–765.

[29] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised repre-
sentation learning with deep convolutional generative adversarial networks.
arXiv:1511.06434 (2015).

[30] Jinmeng Rao, Song Gao, Yuhao Kang, and Qunying Huang. 2020. LSTM-TrajGAN:
A Deep Learning Approach to Trajectory Privacy Protection. (2020).

[31] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems.

[32] Yi-Jun Tang, Yi-He Pang, and Bin Liu. 2020. IDP-Seq2Seq: identi!cation of
intrinsically disordered regions based on sequence to sequence learning. (2020).

[33] Panrong Tong, Mingqian Li, Mo Li, Jianqiang Huang, and Xiansheng Hua. 2021.
Large-Scale Vehicle Trajectory Reconstrubtion with Camera Sensing Network.
In ACM MobiCom.

[34] Johnny Torres, Carmen Vaca, Luis Terán, and Cristina L Abad. 2020. Seq2Seqmod-
els for recommending short text conversations. Expert Systems with Applications
150 (2020), 113270.

[35] Yin Wang, Xuemei Liu, Hong Wei, George Forman, Chao Chen, and Yanmin Zhu.
2013. Crowdatlas: Self-updating maps for cloud and personal use. In MobiSys.

[36] Fengli Xu, Zhen Tu, Yong Li, Pengyu Zhang, Xiaoming Fu, and Depeng Jin.
2017. Trajectory recovery from ash: User privacy is not preserved in aggregated
mobility data. In WWW. 1241–1250.

[37] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. 2017. Dualgan: Unsupervised
dual learning for image-to-image translation. In ICCV. 2849–2857.

[38] Dan Yin and Qing Yang. 2018. GANs based density distribution privacy-
preservation onmobility data. Security and Communication Networks 2018 (2018).

[39] Paul A Zandbergen. 2014. Ensuring con!dentiality of geocoded health data:
assessing geographic masking strategies for individual-level data. Advances in
medicine 2014 (2014).

[40] Pengfei Zhou, Yuanqing Zheng, and Mo Li. 2012. How long to wait? Predicting
bus arrival time with mobile phone based participatory sensing. In ACM MobiSys.
379–392.

[41] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. 2016. Gen-
erative visual manipulation on the natural image manifold. In ECCV. Springer.

A REPRODUCIBILITY

A.1 Data Preparation

Mobility trajectory dataset. We use the mobility trajectory data

of taxis in Singapore (data sample provided in aGitHub repository 1).

The mobility dataset are collected from 17,610 taxis during four

months (i.e., 1 July to 31August in year 2015, and 12March to 12May

in year 2016) in Singapore. The vehicles are equipped with sensors

to record the status (e.g., license ID, latitude, longitude, occupied or

not, etc.) every 30 seconds. The dataset contains millions of records

in total. Each record in the dataset has a location (i.e., latitude,

longitude) as well as a sampling timestamp.

Figure 16: Main structure of Singapore road network used in

this paper. (We ignore some detailed road segments and only

show partial of the whole map for a better visualization.)

The city base map. The base map used in this paper is fetched

from an online open-sourced map provider OpenStreetMap, which

is the largest crowd-sourced map project with more than 2 million

users registered to contribute. Figure 16 shows the main road net-

work of Singapore. We use the OSM map extracted on the day of

2016-08-20 as the city base map (provided in our GitHub repository)

for map matching and evaluations just because our mobility dataset

were mainly collected during the year of 2016. The digital map in

total consists of 81,471 intersections and 56,914 ways. Its covered

area is a rectangular region of 45km × 25km, approximately.

A.2 Implementation

We implement majority of the algorithms mentioned in TrajGen in

Python and partially in Matlab. The proposed approach is tested

on a workstation that has a 3.3GHz i9-9820X CPU (equipped with

10 cores and 20 threads) from Intel, 128G memory and four 2080ti

GPU cards from Nvidia. The training data are stored on a 2TB SSD

disk. We leverage some of the open-sourced Python libraries (e.g.,

NetworkX, NumPy, TensorFlow, PyTorch, etc.) to compute, train

model, and visualize the results on a basic road map.

Given the original dataset of mobility trajectories, we conduct a

location-image translation module to convert each of the trajectory

1FFF.68CℎD1.2></64=4A0C8=6_<>18;8C~_CA0 942C>A84B_F8Cℎ_A4C08=43_
30C0_DC8;8C~
This repository contains the source code, OSM map, and data samples of TrajGen.

ALGORITHM 1: Location-image translation.

1 Input: mobility trajectories {g1, g2, ...}, side length of

minimal unit square `, city digital map" ;

2 Output: images containing spatial information;

3 G0 =<8={;>=68CD34" };

4 ~0 =<8={;0C8CD34" };

5 W =<0G{;>=68CD34" } − G0;

6 H =<0G{;0C8CD34" } − ~0 ; // {;>=68CD34" } and

{;0C8CD34" } are the sets of all longitudes and

latitudes in city map, respectively

7 for each trajectory g8 in mobility dataset do

8 Initialize an image 8<68 with width of W, height ofH

and white background ; // The size of 8<68 is

(W, H, 3)

9 for each location ;>28 do

10 G = ⌈(;>=8 − G0)/`⌉ − 1;

11 ~ = H − ⌈(;0C8 − ~0)/`⌉;

12 Set 8-neighborhood pixels of (x, y) as (0, 0, 0);

13 8<68 (G,~) = (0, 0, 0) ; // set the pixel located

at (G,~) as black

14 end

15 end

in one day into images. Algorithm 1 show the pseudo code of

how we conduct the translation. It is noted that the digital map

information is used to determine the size of the image and the points

or edges information in maps are not involved. In algorithm 1, from

line 3 to line 6, the size of converted image is determined, which

is roughly the same size as the covered area of the digital map.

Therefore we have a mapping relationship between locations and

the converted image. We annotate the pixels where there is an

observed location as black, and so do its 8-neighborhood pixels,

which is from line 10 to line 12 in the algorithm 1.

To train the DCGAN model, we transform the trajectories into

images. Those images are fed into DCGAN model so as to capture

the spatial characteristics of raw dataset. Particularly, there are

9,956 trajectories that are translated into 9,956 images and used for

training. All of them are from one day in our dataset. Involving

more training data might have few accuracy gain while result in

longer training time. Meanwhile, we !nd that one day of mobility

data cover almost all road segments and enough travel patterns of

the city. In our DCGAN, ?I is set as a uniform distribution. Both the

discriminator and generator are fully connected neural networks.

The dimension of each fully connected hidden layer is set to 1,024.

All the parameters are randomly initialized based on a zero-centered

normal distribution with standard deviation 0.02. Batch size is set

as 64. We use Adam optimizer to update the parameters in DCGAN

with a learning rate of 0.0001.

For the images generated by DCGAN, we !rst leverage Harris

corner detector (line 5 in algorithm 2) to extract the positions of

corners that are potentially the locations. If the gray scale value

of the extracted position is large enough (line 7 in algorithm 2),

we convert it back to a pair of latitude and longitude based on the

mapping relationship between image space and latitude-longitude

ALGORITHM 2: Image-location translation.

1 Input: images {8<61, 8<62, ...}, side length of minimal unit

square `, threshold n , coordination of the origin point

(G0, ~0);

2 Output: location pairs formatted by (latitude, longitude);

3 for each image 8<68 generated by DCGAN do

4 Create a new !le 58 ;

5 pointLists = Harris(8<68);

6 for each point (G8 , ~8) in pointLists do

7 if 8<6(G8 , ~8) > n then

8 ;0C8 = (H − ~8) × ` + ~0;

9 ;>=8 = G8 × ` + G0;

10 Write (;0C8 , ;>=8) into !le 58 ;

11 end

12 end

13 end

space. In algorithm 2, line 8 and line 9 are the reverse procedures of

translation from locations to images. The parameter n is determined

empirically based on the maximal length of trajectories, original

data, and generated images. In our setting, we set n = 0.43.

We implement the map matching algorithm to project trajecto-

ries into road segment space. For a given observed location, we

leverage quad-tree based indexing to accelerate the query of its

nearby road segment candidates. The underlying digital map is ex-

tracted from OpenStreetMap. According to the experimental results,

we set the error range of the distance from a location to potential

road segments as 200< and the noise standard deviation as 50<,

which is the robustest setting for di#erent situations. Given one tra-

jectory, map matching is able to !nd the best matched road segment

for each location in the trajectory. The road segment embedding

can be known when sorting all the segments based on their unique

identi!ers. The unique identi!er is the ID attribute of each way in

the OpenStreetMap !le.

A Seq2Seq model is trained to learn the sequence information.

The inputs are road segment embedding sequences and outputs

are ground truth sequence generated directly from the original

mobility dataset. All the parameters of Seq2Seq model are randomly

initialized and updated using Adam optimizer. We leverage GRU as

RNN units in Seq2Seq model because of its higher computational

e"ciency than LSTM. The dimension of hidden state is 1000 and

the learning rate is set as 0.0001. We regularized the GRUs with

a dropout rate of 0.1. The attention mechanism is leveraged to

make the Seq2Seq model emphasize on important road segments.

During training of Seq2Seq model, we adopt the padding technique

to ensure all the inputs are at the same length.

Time inference model is trained to infer the timestamp of initial

location in each trajectory. The fully connected ANN model has 3-

hidden layers (!rst two layers have 1,000 neurons and the last layer

has 5,760 neurons). Each units in ANN use a standard hyperbolic

tangent (i.e., tanh) activation function.

