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ABSTRACT

Most digital maps are designed for vehicles and miss a great number

of walkways that can facilitate people’s daily mobility as pedestri-

ans. Despite of such a fact, most existing map updating approaches

only focus on the motorways. To fill the gap, this paper presents

VitalAlley, a walkway discovery and verification approach with

mobility data from large scale crowdsensing. VitalAlley aims to

identify the uncharted walkways from the big but noisy personal

mobility data and incorporate these findings into existing incom-

plete road maps. The implementation of VitalAlley faces the major

challenges due to the unstructured nature of the walkways them-

selves and the noise from crowdsensing data. VitalAlley leverages

different aspects of individual mobility to model and estimate the

walkable areas, based on which representative walkways that con-

nect known road segments or points of interest are extracted. To

verify the new-found walkways, we further propose image based

auto-verification with the help of publicly accessible street image

database from Google Street View. VitalAlley is implemented and

evaluated with real world crowdsensing data from the Singapore

National Science Experiment. As a result, 736 walkways (totaling

161 km in distance) are identified from the mobility dataset col-

lected from 108,337 students in Singapore. We manually verify 224

walkways totaling 32.4km over a 9 km2 district through on-site

inspection. The results suggest over 96% accuracy of VitalAlley in

discovering the walkways.
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1 INTRODUCTION

Digital road maps are of significant importance for route planning

and navigation in our daily life. Existing road maps, however, are

mostly vehicle oriented and do not contain the information of many

walkways that local pedestrians usually travel with. Many areas or

walkways (e.g., basement of buildings, interior of shopping malls,

open fields, etc.) are used as shortcuts by people who are familiar

with the local area but are not included in the digital road maps.

These walkable areas or paths, although very useful, are uncharted

on the maps and thus cannot be made of use by the public.

In this work, we practice the idea of crowdsensing [15, 34] and

make use of the mobility data from a large number of local students

to discover the uncharted walkways. Our study rides on an ongoing

crowdsensing project - Singapore National Science Experiment

(NSE) [18] - a city wide initiative that enrolls more than 250,000

local students carrying smart devices that sense their surrounding

environment and track their mobility [29] on daily basis. The smart

devices periodically log and upload the locations, IMU readings,

and other environmental parameters from participating students.

Massive mobility data are collected from the students across the

entire city, which provides us the opportunity to study and discover

the walkways. The rationale of this study is that the local students

are active users of the walkable areas or paths in their neighborhood,

and by following their footprints we will be able to discover and

summarize those walkways.

There have been existing efforts [11, 22, 27, 33] made to com-

pleting the digital road maps. Most of such works, however, only

mainly focus on discovering vehicle-oriented motorways rather

than the walkways for pedestrians. The motorways are structured

where vehicles strictly follow the lanes and directions with almost

1-dimensional uncertainty in mobility. On the other hand, the walk-

able areas or paths are mostly unstructured where people travel

with high freedom of 2-dimensional uncertainty (e.g., lawns, shop-

ping malls, open fields, etc.). Most previous works for motorway

discovery leverage the structured property of motorways to infer

missing road segments with the assumption that vehicle trajecto-

ries are constrained on the 1-dimensional roads. Techniques like

trace clustering [27, 33] and location point clustering [11, 22] are

directly applied with the GPS trajectories of vehicles. Due to the

unstructured and pedestrian-oriented nature of walkways, neither

previous map updating methods nor vehicle trajectory data can be

applied to discover the walkways.

In this paper, we present VitalAlley that uses the crowdsensing

mobility data from NSE for walkway discovery. Unlike previous

works for map completion, VitalAlley faces special challenges aris-

ing from the unstructured nature of walkways as well as the im-

perfect quality of the crowdsensing data. The location reports from

13

2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks

0-7695-6377-5/18/$31.00 ©2018 IEEE
DOI 10.1109/IPSN.2018.00009



participating students may scatter over a wide area of freedom,

making it difficult to estimate walkways through the area. The

imperfect quality of the crowdsensing data makes the situation

more complicated - the smart device takes the locations every 15

seconds (or even longer in certain circumstances) with errors that

range from tens to hundreds of meters (with WiFi hotspot based

localization).

VitalAlley statistically looks at the big mobility data from many

aspects, being able to tolerate errors and noise contained in the mo-

bility data. With both the location reports and step counts derived

from IMU readings, VitalAlley builds an ellipse model to estimate

the probability of how the individual walks between consecutive

reported locations. Putting together such micro estimations from all

students allows VitalAlley to statistically understand how likely dif-

ferent areas are walkable. With such knowledges, VitalAlley applies

a two-phase clustering method to discover how the potential walka-

ble areas are connected with nearby known road segments or points

of interest and then identify walkways that are representative for

people who walk through such areas.

VitalAlley further employs an auto-verification method to verify

the correctness of the new-found walkways. By invoking the online

Google Street View (GSV) APIs [7], VitalAlley is able to access

an extensive image library containing street images from most

road segments. VitalAlley retrieves the GSV images from where

the discovered walkways join existing roads or points of interest

and analyzes the key image descriptors with reference to a library

of templates to verify whether the identified walkways are true or

not.

To the best of our knowledge, this is the first study for digital

map completion with a focus on walkways, which includes the el-

lipse based walkable area estimation and weighting, representative

walkway identification, and GSV image based auto-verification. The

systematic study with city scale mobility data from crowdsensing

is of the largest scale. We extensively evaluate the performance of

VitalAlley with the mobility data collected from 108,337 students in

Singapore, which lasts 11 weeks. Based on the analysis of more than

400 million mobility data records, we discover 736 walkways (total-

ing 161 km in distance) and verify 224 walkways totaling 32.4km
through on-site inspection. Those verified walkways can be inte-

grated into the digital map of Singapore from OpenStreetMaps [20].

The results show that VitalAlley has a 96% accuracy in discovering

the walkways.

The rest of this paper is organized as follows. We present the

preliminary and motivation in Section 2. Section 3 elaborates the

design details of VitalAlley system, and Section 4 presents the eval-

uations. We review the related works in Section 5. Finally, Section 6

concludes this paper.

2 PRELIMINARY AND MOTIVATION

2.1 Objective

A road map can be represented as a directional graph G(V, E), where
E refers to the set of edges that correspond to roads for vehicles
and/or pedestrians and V refers to the set of vertices that correspond
to intersection points or terminal points of road segments.We define

a road segment as follows.

A

B

C

D

Buildings

Lawns

Roads

Moving�direction

Walkway

Origin

Destination

Figure 1: The comparisons of motorway and walkway.

Definition 1. Road segment. A road segment is a directed edge

in graph G, that is associated with a deterministic traveling direction
and two terminal points.

Existing digital maps do not contain all the road segments and

are thus incomplete. There have been some recent efforts, e.g., Crow-

dAtlas [27], COBWEB [22], and GLUE [33], made to complete such

maps. By comparing the GPS trajectories of vehicles with an ex-

isting road map, those works mainly focus on discovering those

vehicle-oriented road segments. They mainly perform clustering

on the vehicle GPS data not matched to existing road segments

based on trajectory distance [27], moving direction [11, 33] or dis-

tance between location samples [22]. New-found road segments

are constructed either by extracting the centric line of clustered

trajectories [27] or connecting the centric points of clustered lo-

cation samples [11, 22, 33]. Those methods perform well with the

motorways which are well structured and with vehicles that strictly

follow the directions of the road segments. Different from vehicle-

oriented road segments, the walkways for pedestrians are often

unstructured and different people may travel with very different tra-

jectories even across the same walkable area. We define awalkable

area as follows.

Definition 2. Walkable area.Awalkable area is an area bounded

by nearby road segments or points of interest (POIs, e.g., residential

buildings, schools, etc.). Unconstrained movements of people are al-

lowed within the area.

Figure 1 presents an illustrative example to compare the mo-

torways and walkways. Given the origin of a trip (shown as the

symbol �) and the destination (shown as the symbol �), a user can
either take the route on road segments (shown as the black solid

line, i.e., route D) or choose the walkways (shown as the black dash

line, e.g., route A) for this travel. For route D on road segments,

she needs to strictly follow the directions of road segments. By

contrast, she owns high freedoms on the walkways. For example,

she can take route A, B or C for this travel, and even go with any

walking path between the two buildings. Putting all these walking

paths together gradually forms a walkable area, where people can

freely walk at any direction. Such walkable areas widely exist, e.g.,

lawns, basement of buildings, floors of shopping malls, open fields,

etc., and they may provide significant convenience and save the

walking time when compared to using existing road segments on

the map. Due to the high travel freedom within such walkable ar-

eas, however, pedestrians’ movements could be irregular with high
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uncertainty. As a result, all existing map completion approaches

based on direct clustering of locations or trajectories will fail in

obtaining the sketch of a walkable area.

For practical utility, discovering and identifying the entire walk-

able area is not necessary and thus is not the final goal of this paper.

We observe that although different pedestrians may choose differ-

ent paths when walking through the same walkable area, there are

typical walkways that connect certain existing road segments or

POIs and are frequently used. We thus define the representative

walkway as follows.

Definition 3. Representative walkway. A representative walk-

way represents the connectivity a walkable area serves between two

known road segments/POIs. If we specify the intersection points be-

tween the road segments/POIs and the walkable area, the representa-

tive walkway can be denoted as a polyline connecting the two inter-

section points and integrated into the road graph G as an edge. There
may be multiple representative walkways connecting different road

segments/POIs adjacent to the same walkable area.

Therefore, instead of precisely discovering the entire walkable

area which we may not have sufficient mobility data to support,

in this paper we aim at extracting representative walkways that

sketch the accessibility of walkable areas in facilitating pedestrians’

travel needs. The representative walkways, once identified, are

compatible with the current digital road map and can be easily

integrated into the map.

2.2 NSE Mobility Data

We make use of a crowdsensing mobility data from the National

Science Experiment (NSE) [18] of Singapore to support our goal of

walkway discovery. NSE is a nationwide project initiated by the

National Research Foundation and supported by the Ministry of

Education of Singapore. This project involves more than 250,000

students from primary, secondary, high school and junior colleges.

Each student carries a smart device called SENSg [29] with various

sensors embedded to record their mobility and sense their surround-

ing environment everyday. The SENSg device collects sensing data

every 15 seconds when it is in active mode. The sensor readings

are uploaded to the server through nearby wireless hotspots when-

ever there are (Wireless@SG [30] provides WiFi coverage with

over 4,000 hotspots in Singapore and offers free data bundle to the

SENSg devices in NSE. WiFi deployed at schools also can be used

to upload sensor readings and are the most frequently used). All

data used in the project are anonymized to protect the students’

privacy.

Each uploaded record contains 16 attributes, including raw sen-

sor readings and some derived results. Specifically, each record

contains the ID of the SENSg device, and two timestamps, i.e., ts
referring the time the readings are taken at device side and rts
referring the time data are received at the server side. Each record

has following mobility attributes:

∗ Location. The location is represented as a pair of latitude and
longitude, indicating the current position when the sensing

data is taken. The location is derived from theMAC addresses

and RSSIs of nearby WiFi hotspots and through a third-party

localization service called SKYHOOK [23]. In addition to the
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Figure 2: CDF of localization error in NSE mobility data.

location itself a localization error estimation is also provided.

As shown in Figure 2, the localization service based on WiFi

hotspots has varied localization error ranging from tens

to hundreds of meters. The 50-percentile and 90-percentile

localization errors are 80m and 143m, respectively.

∗ Step count. The step count is inferred from the IMU sen-

sor readings in SENSg. The server side keeps tracking the

accumulated steps the SENSg user takes.

∗ Travel mode. It indicates the mode of transportation (i.e.,

walking, bus, MRT train, or private car) the SENSg user takes

when the sensing data is taken, which is also inferred from

the IMU sensors through an online classification algorithm.

Besides the mobility attributes, each record includes other environ-

mental attributes, e.g., temperature, atmospheric pressure, relative

humidity, sound pressure level, light intensity, etc.. In our study, we

rely on mobility attributes from the records of each student which

give the student’s daily footprint in the city. This study utilizes the

mobility data from a total number of 108,337 students for 11 weeks

in 2016, which correspond to a distance of trajectories totaling

billions of kilometers.

As the natives, students are most familiar with the neighbor-

hood around their home and school. They often make use of the

uncharted walkable areas or paths to save their commuting time

and their walkway choices contain novel knowledge to existing

digital road maps (e.g., open-sourced OpenStreetMaps [20] and

commercial maps like Google Maps [6]). In this paper, we primarily

exploit the walking trajectories of students to discover the missing

walkways.

3 THE SYSTEM

In this section, we present the system overview and then elaborate

each component in the following subsections.

3.1 System Overview

The system architecture of VitalAlley is illustrated in Figure 3. At a

high level, VitalAlley consumes the location and step count data

from NSE mobility dataset and offers representative walkways

to complete existing road maps. Due to localization errors and

characteristics of students’ mobility (e.g., mainly being active in

school and home), not all location data are useful for the walkway

discovery. At the very beginning, VitalAlley filters out the location

data which are not in walking status according to the travel mode
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Figure 3: The system architecture of VitalAlley.

(a) (b)
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Unmatched�data

Noise�data

Home

School

Figure 4: Illustration of location data classification on the

mobility data of one student in a typical school day.

in the records. Then it invokes the Location Data Classifier module

to label the location data as “Noise”, “Sojourn”, “Matched” and

“Unmatched”. This module firstly labels the locations with large

localization error estimations (e.g., ≥ 143m) as noise data, which are

far away form the student’s trajectory. The common sojourn places

for students are schools, homes, shopping malls, etc., which leads to

a much higher data density than usual at a specific place. Thus the

module labels such data taken at some sojourn places as sojourn

data by exploiting the HDBSCAN algorithm [5]. After filtering

out noise and sojourn data, this module classifies the remained

data into “Matched” and “Unmatched” through a map matching

algorithm [17]. Matched data are those that can well match with

existing roads, while the unmatched data cannot well match with

any road. Only “Matched” and “Unmatched” locations are helpful

for VitalAlley as they may contain knowledges about the missing

walkways.

Figure 4 illustrates the four types of location data. Figure 4(a)

plots the raw mobility data of one student in a typical school day,

and Figure 4(b) shows the classification results. The two clusters

correspond to home (top left corner) and school (right bottom

corner), respectively. The noises are far away from the student’s

actual trajectory, and the matched locations are distributed near

some existing road segments while the unmatched ones locate away

from the roads.

Based on the results of Location Data Classifier, VitalAlley will

identify and verify the representative walkways through several

modules. Specifically, the Walkable Area Estimation module (in

Section 3.2) approximates possible walkable areas, within which

the Walkable Path Identification module (in Section 3.3) extracts

(a)
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Figure 5: (a) The ellipse model based walkable area estima-

tion v.s. individual sample based estimation; (b) Linear rela-

tionship between steps taken and sample distance.

some representativewalkways. Finally, theAuto-Verificationmodule

(in Section 3.4) verifies the new-found walkways by analyzing their

images retrieved through GSV APIs. All discovered walkaways are

integrated into current road map for the public uses.

3.2 Walkable Area Estimation

A straightforward approach to deriving walkable area from coarse

locations is to calculate the possible coverage of each mobility sam-

ple given a typical WiFi hotspots based localization error (e.g., 80m)

in urban city and take the whole covered area as the walkable area

estimation. Such an approach simply treats mobility data and fails

to exploit the multi-modality sensor data and trajectory informa-

tion between consecutive locations. Instead, VitalAlley proposes

an ellipse model to estimate the walkable area between any two

consecutive mobility data, jointly leveraging the location and step

count data.

Benefits of step counts.When considering the total steps taken

from one location to the next, we can estimate the length of walking

path between the two locations as the product of total steps and

stride length. Such an estimation of walking distance along with

the locations themselves together bound the possible walkable area,

which form an elliptical region. Based on this observation, We thus

propose an ellipse model to estimate the walkable area. In theory,

an ellipse is determined by two parameters: 1) positions of two focal

points; and 2) sum of distances d from every point on boundary of

ellipse to the two focal points. The locations of two consecutive

mobility data indicate the focal points and we determine d using the

step count data in records. VitalAlley calculates d as Δs × λ, where
Δs is the total steps taken between the two locations (i.e., difference
of step counts in the two records) and λ is stride length and set as

the average stride length of young as 0.78m according to a recent

report [2]. Though the stride length can be accurately estimated for

each individual, it requires extra efforts and hardware [9], which

is infeasible in the NSE project. With such settings, VitalAlley can

produce an oval area to capture the walkable area between two

locations. Figure 5(a) presents an example of the walkable area

estimation from a series of unmatched mobility data. Compared

with the disjoint walkable area estimation (i.e., yellow area) derived

from coverage of each individual location, the ellipse model can

provide more reasonable walkable area estimation (i.e., grey area).

16



� � ��� � 	�� � ���� � ���� �
������������	������
��

�
�

�
�

�
�

�

��
��
��
��
	�

�
��
��
�
�

��
�
��
��

��
��

��
��

��
��

��
��

 	
�!
��
�"

	

%&�����#�������
 ���������

(a) (b)

Figure 6: (a) The step counts and accumulated traveling dis-

tance of one student over a school day; (b) Fine-grained esti-

mation derived from step count estimator, where© denotes

locations whose step counts remain and� denotes locations
whose step counts increase.

Step estimator. Although step counts benefit the walkable area

estimation, they are not perfect in the NSE mobility data. To reduce

computation overhead of the SENSg device, step counts as the de-

rived results are updated with a longer period than the updating

period of locations. Figure 6(a) plots the step count data and accu-

mulated travel distance of a student over one typical school day,

where travel distance is calculated from the locations. From this

figure, we can see the travel distance keeps increasing while the

step count data are discontinuously updated, where flatten lines

indicate that the step counts remain the same as previous one. Due

to this fact, we can only use the records, whose step counts and

locations are simultaneously updated, for walkable area estimation.

As a result, the ellipse model can only provide coarser estimations

using a few valid records.

To improve the performance of the ellipse model, we propose a

step estimator which can estimate the total steps taken between two

consecutive locations. We find an interesting relationship between

the geographical distance of two consecutive locations and the total

steps Δs between them. We extensively study their relationship

and plot the statistics in Figure 5(b), which clearly shows that the

distance of two consecutive locations and Δs are linearly correlated.
Therefore, we can build a step estimator for each student by training

a linear regression model based on her records with both step count

data and location data available. Since the ellipse model is related

to d which is determined by total steps Δs , we thus are able to
determine an ellipse only based on the locations of two consecutive

records even when their step counts are not updated. The step

estimator enables us to derive more fine-grained walkable area

estimation, just as demonstrated by gray region in Figure 6(b). We

can only generate a large oval area with two records having both

updated locations and step counts, while a fine-grained walkable

area can be derived by exploiting the step estimator.

Weighting scheme.We further refine the walkable area esti-

mation through a weighting scheme. For an oval area derived from

two consecutive records, different parts inside the region may be

traveled by pedestrians with varying probabilities. For example,

when someone walks from one position to another, it is highly pos-

sible for her to walk along the straight line. Based on this intuition,

(b)

Person�A
Person�B
Person�C
Person�D

(a)

Figure 7: (a) Thewalkable area estimation frommultiple tra-

jectories. (b) The corresponding score map of (a).

we propose a weighting scheme to assess the probability of being

traveled for different parts inside the oval area. To achieve that, we

use a bivariate Gaussian model [32], which has been frequently

used for home range estimation of animal movements in the bio-

logical domain [8]. Researchers in biological domain have limited

periodical observations of where the animals are and they need to

estimate the moving region of animals. They adopt this model since

it can provide the probability of being a part of home range for a

specific region. Similarly, we also have limited observations from

pedestrians and need to estimate their possible movement area. In

our scenario, the bivariate Gaussian model measures the probability

density of an area being traveled by the pedestrians. We partition

the space of interest into small cells and assess the probability of

each cell inside an ellipse. We set the cell size as 2.0m × 2.0m for

a better resolution. The probability density of being traveled by

pedestrians for location X is measured by:

f (X ) = 1

2π
√|Σ|

exp(−1

2
XT Σ−1X ), (1)

whereX = [x1, x2]T and Σ ∈ S2++ is the covariance matrix ofX . Σ is

calculated as Σ = [a/3, 0; 0,b/3], where a and b are major semi-axes

andminor semi-axes of the ellipse edges. The probability of each cell

being passed by the pedestrians is the integral of Equation (1) on the

cell’s area. The probabilities of cells outside ellipse are negligible.

We can easily extend the scheme to all mobility data collected

from many students. For any two consecutive records, VitalAlley

generates an ellipse and assesses the probability of each cell inside

the ellipse. An area covered by more ellipses should be walkable

with a higher probability. In other words, these areas are “scored”

by the mobility data via ellipses. For any cell, its final score is

the sum of probabilities assessed by oval areas covering on it. A

cell with larger score implies that it is more likely to be walkable.

Finally we can derive a score map of the space of interest. Figure 7(a)

presents the ellipses derived from the mobility data of four persons,

and Figure 7(b) shows the corresponding score map based on the

weighting scheme. We can see that the cells covered by more oval

areas have larger scores, i.e., in darker color.

3.3 Representative Walkway Identification

We propose a two-phase clustering to identify some representative

walkways from each estimated walkable area. The representative

walkways sketch the accessibility of a walkable area and usually
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Person�A
Person�C
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Figure 8: An illustrative example for representative walk-

way identification. (a-d) plot themobility data of personA, B,

C, and D, respectively. (e) demonstrates the two-phase clus-

tering. (f) shows the covered area by ellipses of trajectory

cluster <SC-1, SC-2>, and (g) presents the searching space

and derived representative walkaway of trajectory cluster

<SC-1, SC-2>.

connect certain road segments or POIs at some intersections for

convenient mobility. Such intersections act as the entries/exits

of a walkable area. Therefore, we conduct location clustering on

some matched location data to identify the intersections, and then

run trajectory clustering on unmatched location data to extract

representative walkways that link the derived intersections. In the

following, we present the details of each clustering phase.

Phase 1: location clustering to identify the intersections.

To derive the entries/exits of a walkable area, wemake use of the last

matched locations collected near the walkable area. A last matched

location data is the data that can be well matched with known

road segments, after/before which other mobility data cannot be

matched. We put the last matched data matching with the same

road segment (or POI) together, which may correspond to one

or several potential entries/exits. A walkable area may intersect

with the same road segment/POI at several points, resulting in

multiple entries/exits. Thus location clustering firstly groups the

last matched data matching with the same road segment/POIs and

then runs the HDBSCAN algorithm [5] on each location group to

further classify those locations into one or several clusters, each of

which indicates an intersection connecting one road segment/POI

and the walkable area. We calculate the position of an intersection

through all locations in the same cluster. It is the location on a

road segment that has the minimum distance to all last matched

locations of the cluster; or just as the average location when the

location cluster falls in a POI, e.g., residential building.

Figure 8(a-e) illustrates the location clustering. Figure 8(a-d) plot

the mobility data collected from four persons A, B, C, and D, in the

same area. Their unmatched locations are denoted by , �, � and

♦, respectively. Meanwhile, their last matched locations are denoted

by , �, � and �, and the corresponding matched locations are
denoted by�. Figure 8(e) shows that location clustering groups the

last matched data into three location clusters, i.e., “SC-1”, “SC-2”,

and “SC-3”, which correspond to three entries/exits of the walkable

area. “SC-1” and “SC-3” locate on different road segments while

“SC-2” locates on one residential building. Through the location

clusters, we can calculate the positions of intersections.

Phase 2: trajectory clustering to extract representativewalk-

ways. The trajectory clustering takes advantage of the results from

the first phase to group trajectories. In practice, each trajectory is

associated with two last matched data, and we thus can use their

corresponding location clusters to annotate the trajectory. For ex-

ample in Figure 8(b), location B1 and B2 are paired last matched data

of trajectory B, and we annotate this trajectory as <SC-1, SC-3>.

We annotate all trajectories following the same rule, and thus can

simply group trajectories with the same annotation. Even for the

same pair of intersections (i.e., entries/exits), different trajectories

exist and may correspond to different representative walkways.

Thus we still need to run a typical clustering algorithm [27] to

further classify the trajectories in the same group into different

clusters according to the metric of Hausdorff distance. Each trajec-

tory cluster corresponds to a representative walkway, and we use

its size (named as support ) to assess whether the potential walkway
is frequently used or not. In Figure 8(e), there are two trajectory

clusters and their supports are 3 and 1, respectively.

In principle, the potential representative walkway of a trajectory

cluster should be a polyline on the score map of a walkable area,

traversing the cells with high scores. To find the walkway most

likely to be traveled in reality, we transform the score map into a

weighted graph and model our representative walkaway identifica-

tion problem on this graph. For the score map of a walkable area,

we generate a graph, where cells are represented as the vertices and

edges are formed between any two immediately neighboring cells.

In the graph, we set the weight of each vertex as the reciprocal of

the score of corresponding cell. For cells with zero score, we set

their weights as an maximum value, which implies that those cells

are barely traveled by the pedestrians. Each vertex also inherits

the position of the corresponding cell. In such a graph, we define

a real-valued weight function f : V → R that returns the score

of a given vertex vi , and we will find a representative walkaway
P = (vs ,v1,v2, · · ·vn ,vd ) between the two intersections vs and vd
over all possiblen vertices such that the total score of its constituent

vertices
∑
n

i=1 f (vi ) is minimized. We can run the A∗ algorithm to

find the optimal solution. Finally, mapping vertices back to the cells

on original map obtains the representative walkway.

Optimizations.VitalAlley also incorporates some optimizations

to speedup the identification of representative walkways. For each

trajectory cluster, we extract a subgraph from the original weighted

graph by only keeping the vertices (and the associated edges) cov-

ered by oval areas of records belonging to this cluster. We thus

reduce the searching space for a specific representative walkway. In

addition, VitalAlley simply discards the trajectory clusters owning

small supports, e.g., < α , just because they are barely traveled by
people. For the example in Figure 8, we plot the covered area by

ellipses of trajectory cluster <SC-1, SC-2> in Figure 8(f), which

is derived from the unmatched trajectories of person A, C, and

D. To identify the representative walkway, VitalAlley shrinks the

searching space by filtering out irrelevant cells. The final searching

space is shown as the dashed region in Figure 8(g). The black line

in Figure 8(g) is the representative walkway, connecting a road

segment and a residential building.
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(a) An example of one newfound rep-
resentative walkway.

(b) The GSV image captured from the po-
sition of intersection.

(c) One of the clustered images and its key
points for the image in (b).

(d) One typical key point descriptor illustration.

Figure 9: The illustrations of image processing on the GSV images of one discovered walkway.

3.4 Auto-Verification

We propose an auto-verification method to verify the discovered

walkways by invoking the GSV APIs [7]. GSV offers panoramic

street views from different positions along the streets in a city, and

we are able to retrieve images for a walkway at its entry/exit, which

usually locates at some main road. As an independent data source,

GSV provides a complementary angle to investigate new-found

walkways.

We find that the entries/exits of walkways in a city are relatively

regular and pertain a limited number of types. Thus it is possible

for us to collect images of typical entries/exits from GSV in advance

and treat them as the templates stored in a local library for the

auto-verification of walkways.

Retrieving images of walkways from GSV. For each candi-

date walkway, we project its entry/exit (i.e., the intersection derived

from location clustering) to the main road and retrieve multiple

images at the projected points by invoking GSV APIs, which need

the parameters of location (i.e., projected points), size (i.e., 640×640),
field of view, and heading directions. We take the projected point

as the origin and generate two rays from this point to include all

location points of the last matched data that generate the intersec-

tion. The two rays form an angle θ and we retrieve �θ/30◦	 images
from GSV by varying the heading direction every 30◦ within the
angle. As a concrete example, Figure 9(a) presents a new-found rep-

resentative walkway that connects a road segment and a residential

building, and Figure 9(b) shows the retrieved GSV image from the

position where there is an eye in Figure 9(a). From this GSV image,

we can clearly see a walkway.

Image matching. For each walkway candidate, we extract the

features (such as corner, boundary) from GSV images as the key

descriptor using conventional image processing techniques [13].

For one GSV image, we first segment the image intoκ clusters based

on the pixel values, where we set κ = 5 for better performances.

Second, we remove the upper part of the segmented image because

walkways usually locate at the bottom part of an image. Then from

the cut image, we extract the key points, which are around the

borders of segmentations and describe the image [16]. Then we

calculate the image gradient magnitudes and orientations of key

points to form an image descriptor, which is denoted as a histogram.

We match it with template images by comparing their image de-

scriptors in χ2 distance, which returns a measure of difference.

Once the difference of at least one GSV image is lower enough, e.g.,

≤ ρ, we declare that this candidate walkway is verified and mark
it as “confirmed”; otherwise as “suspicious". We set ρ = 10 as the

default setting in this work.

(a) (b) (c)

Figure 10: The matched template image in the library.

For the GSV image in Figure 9(b), we derive the image processing

results shown in Figure 9(c) and Figure 9(d). In Figure 9(c), the

upper figure is the bottom part of one of the 5 clustered images and

the bottom figure is the corresponding key points highlighted by

circles. Figure 9(d) shows the image descriptor of one key point in

Figure 9(c), where bins on x-axis are the gradient orientations and

y-axis indicates the amplitude of associated gradient. We match this

image with the templates in the library and find one template image

shown in Figure10(a). Its clustered bottom part and key points are

shown in Figure 10(b). Figure 10(c) is a descriptor of one key point.

After the calculations of their descriptors on the χ2 distance, we
find they have low difference with χ2 < 10, which indicates that

the new-found walkway is verified and really exists.

Since GSV does not have images for the whole city, we may

retrieve no image at some locations. For such cases, we mark the

candidate walkways as “suspicious" for prudent use by the publics.

We integrate all discovered walkways into existing road map and

provide some hints to remind the users whether a walkway is

verified or not.

Building the template library.We can build a local template

library in advance for the auto-verification. Building a library con-

taining all the templates is out of the problem due to infinite cases.

We argue that, however, the types of different walkways in a spe-

cific city are limited so we only consider the most frequently used

walkways. This library consists of four categories of walkways in

total. Each category has many template images and the correspond-

ing image features, which describe the typical characteristics of

entries/exits of walkways in a city. Specifically, we review the im-

ages of intersections between walkways and main streets from GSV
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A

C D

B

Figure 11: All new-found walkways discovered from the NSE mobility data. Figure 12: The study area.

and select some regular entries/exits to collect their images as the

templates for building the local library. For each typical intersection,

we capture 3 images from the street with heading directions at the

medial axis of the walkaway and 30 degrees offset of the medial

axis. For each image, we extract its image descriptor using the same

image processing techniques. We can manually update this library

by adding more GSV images of new kinds of entries/exits.

4 EVALUATION

In this section, we implement VitalAlley and extensively evaluate

its performances using the NSE mobility dataset. We make our

source code publicly accessible through GitHub [26].

4.1 Experimental Setup

We implement VitalAlley in Python and run the system in a power-

ful HP Z440 workstation that has 12 3.5GHz Intel Xeon CPU cores

and 32GB memory. For data preprocessing, we realize a custom

HDBSCAN algorithm [5] to filter out the sojourn mobility data

and implement an hidden Markov model based map matching al-

gorithm [17] to accurately match mobility data with a base road

map. We leverage some open-sourced Python libraries, e.g., mat-

plotlib, networkx, numpy, etc. to compute, visualize, and verify the

results on a base road map, as well as capture the screenshots in

this paper. We also implement the automatic verification module

by invoking the GSV API [7]. We use the NSE mobility dataset and

an open-sourced road map for the evaluations of VitalAlley.

NSE mobility dataset. The dataset contains mobility data col-

lected from 108,337 students for 11 weeks in 2016 in the NSE project,

containing more than 400 million records of totaling billions of kilo-

meters in distance. As mentioned in Section 2.2, each record in the

dataset includes 16 attributes about the mobility and environmental

parameters during a student’s daily activity. VitalAlley mainly uses

the timestamps, step counts, and locations for walkway discovery.

Base road map.We obtain our base road map from the open-

sourced OpenStreetMaps (OSM) [20], which is the largest crowd-

sourced mapping project with more than 2 million registered con-

tributors. In this paper, we use the OSM Singapore map of 20/8/2016

for map matching and evaluations, which already includes many

passable roads in Singapore. We complete this map by supplement-

ing the missing walkways discovered from daily trajectories of local

students. To accelerate the walkway discovery for the whole city,

we divide the OSM Singapore map into four regions as shown in

Figure 11, i.e., A, B, C, and D, and run VitalAlley for each region

in parallel using the multi-threading technique.

After the location data classification, VitalAlley divides mobility

data into four types: sojourn data that are sampled when students

are staying at some specific place, e.g., school or home; noise data

that are with large estimated localization errors and thus far away

from the student’s trajectory; matched data that can well match

with the OSM roadmap; and unmatched data that cannot well match

with existing roads. Since the schools and homes of students are

non-uniformly distributed in Singapore, the records are dispersed

in the map. Figure 13 presents the concrete proportions of each data

type collected in each region. According to our statistics, the aver-

age portion of the four data types (i.e., sojourn, noise, unmatched,

and matched) are 80.1%, 0.8%, 8.6%, and 10.5%, respectively. For

all regions, the sojourn data occupy the largest portion, which is

reasonable as students spend most of their time at school and home.

For VitalAlley, unmatched data are the most valuable input, which

provides implicit information about the missing walkways. The

region D owns the most unmatched mobility data, where we thus

may discovery more walkways.

Performancemetric.Wedefineaccuracy =
Ntrue

⋂
new

Nnew

, where

Ntrue
⋂
new denotes the number of new-found walkways that are

truly exist and Nnew means the total number of walkways discov-

ered by our system. The larger accuracy is, the better performances

VitalAlley has.

4.2 Evaluation Results

In this subsection, we first present and analyze the overall results

of walkway discovery on the whole OSM Singapore road map, and

then conduct a detailed evaluation in a study area to carefully evalu-

ate the accuracy of VitalAlley and the effects of system parameters.
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Figure 13: Statistics of data types in each

region.
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Figure 14: The length distribution of all

new-found walkways.
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Figure 15: Different types of all discov-

ered walkways.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16: GSV images of the new-found walkways.

4.2.1 Overall performances. Figure 11 depicts all the new-found

walkways in Singapore by leveraging the NSE mobility dataset.

The discovered walkways scatter over the road map and connect

the motorways and POIs. In total, we have discovered 736 walk-

ways, with accumulated distance more than 150km. The number

of discovered walkways for region A, B, C, and D are 110, 109,

147, and 370, respectively. In principle, a region with more mobility

data will probably have more discovered walkways. In region D
which is near the downtown area of Singapore, we have the most

new-found walkaways as we have the most mobility data there.

From Figure 11, we see the walkways are in different lengths, and

we present the statistics of lengths of the new-found walkways in

Figure 14. Almost all of the new-found walkways are with lengths

less than 1km, and 90% of the walkways are shorter than 598m.

This is reasonable as walkways usually act as the small shortcuts be-

tween road segments/POIs. According to our statistics, the shortest

walkway is only 11m, while the longest walkway achieves 1829m.

For each discovered walkway, we invoke the GSV APIs to re-

trieve its images for auto-verifications, and also check the type

each walkway belongs to. Among all the new-found walkways,

we mainly have four types of walkways, namely lawn, floor of

HDB (the typical residential buildings in Singapore), open field

and shopping mall, which account for 17.6%, 55.8%, 23.6% and 3.0%,

respectively, as the statistics shown in Figure 15. Walkways derived

from the floors of HDB account for the largest proportion mainly

because the HDB building widely exist in Singapore and many of

such residential buildings have the first floor empty where people

can walk through. Besides, the lawns and open fields are also fre-

quently used by the local residents as the shortcuts for accessing

to other neighborhood. The interiors of shopping malls are also

occasionally used as walkways by some students who are familiar

with the inner connectivities of those malls. Figure 16 shows the

images of some typical walkways we find in Singapore. Figure 16

(a) plot the walkways in the lawn, where we can see some clear

walking tracks used by the pedestrians. Figure 16 (b) shows the

walkway around the HDB buildings, which is a small trail connect-

ing a road segment and the HDB residential building. Figure 16

(c) shows a walkway in an open field which is a flat ground, and

Figure 16 (d) shows a walkway within a shopping mall, which con-

nects two parallel road segments. Figure 16 (e-h) illustrate the key

points of each type of walkways above. The features of walkway

in shopping mall are complicated, as shown in Figure 16 (h). We

identify walkways passing through shopping malls by exploiting

additional information (e.g., positions and names) from OSM. Such

walkways widely exist in Singapore and facilitate people’s daily

mobility.
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Figure 17: Accuracies for walkways of different lengths.

Accuracy evaluation in a study area. To evaluate the accu-

racy of our system, we select a small region around the central area

of Singapore (i.e., the rectangle region in Figure 11) covering about

9km2 area to conduct a detailed study. Within this region, we have

discovered 224 walkways in total, as shown in Figure 12. For each

new-found walkway in the study area, we manually investigate

whether it is true. If we are able to find a walkway according to

the positions calculated by our system and the walkway indeed

connects two road segments/POIs indicated by our location cluster-

ing, then we consider this walkway as true in reality; otherwise we

think it is a false walkway and cannot be practically used by the

pedestrians. For this specific study area, we finally find 209 true

walkways with manual verifications, with the accuracy as high as

93%.

21



/��� !���&��0�1�( 2����0���#  -�����"�����
��!�����)���*��

�
��

��
��

��
�

-
"�

��

��
��)

��
�*

��
�

	�
	�

��
��

��
�

%
��
"

��
��
�,
�

8��0�9��:��;� '���&��;

Figure 18: Accuracy of different types of walkways.

We explore the accuracies for walkways of different lengths

and present the results in Figure 17. Specifically, we classify all

walkways into four groups according to their lengths (in m), i.e.,

(0, 200], (200, 400], (400, 600], and (600, ∞). Among the four groups,
we find a large number of walkways are with short length, i.e.,

≤ 200m. The distribution of walkways on length is in accordance

with the overall distribution in Figure 14. Most walkways are in

median lengths and there are few walkways too long, e.g., > 600.

With respect to accuracy, group (200, 400] has the lowest accuracy
as 88%, and group (0, 200] has the highest accuracy as 94%.

We also study the accuracies for different types of walkway, and

present the results in Figure 18. For lawns and shopping malls,

VitalAlley achieves 100% accuracy, which means that all the new-

found walkways on lawns and shopping malls are verified as truly

“walkable” after manual investigations. For walkways on lawns,

the auto-verification module can accurately identify them as the

features of lawns are prominent in images. Besides, our base road

map contain the information about shopping malls and once a

walkway passing through a shopping mall can be easily identified.

As long as those features are extracted, it is highly possible that

the walkways endorsed by the GSV-based auto-verification module

exist in reality. For walkways belonging to types of “floor of HDB”

and “open field”, VitalAlley still achieves accuracies of as 91% and

93%, respectively.

Utility study of discovered walkways. The motivation for

walkway discovery is that those widely existing walkways can

provide significant convenience and largely save the walking time

when compared to using existing road segments. Thus we conduct a

utility study for the discovered walkways in the study area. We initi-

ate 100 travel demands with trip origins and destinations being the

students’ homes and schools. We implement a shortest path based

route planning algorithm, which will return a shortest walking

route based on the available road map. For each pair of trip origin

and destination, we generate two routes based on the original OSM

road map and the new road map supplemented with our new-found

walkways. We calculate the distance difference between the two

routes and adopt the saved walking distance when compared to the

one planned on the original road map as the measure of utility. The

larger the saved walking distance is, the more efficiency the walk-

ways can provide. We calculate the distance differences of the 100

trip queries, and plot the statistics in Figure 19. For all trip planing

queries, the routes derived from the completed road map are shorter
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Figure 19: Utility of walkways for route planning.

than the ones walking on existing roads. Among all queries, 50%

can save walking distance than 174m, and the 90-percentile saved

walking distance is 385m. The results in Figure 19 demonstrate that

it is necessary to discover those missing walkways as they really

facilitate people’s mobility.

4.2.2 Parameter Setting. We evaluate the impacts of system

parameters and design choices in the study area.
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Figure 20: The impacts of support value on number of dis-

covered walkways and accuracy.

Impacts of support value. In the representative walkway iden-

tification module, we use a threshold to filter out some trajectory

clusters with small support. In fact, the support reflects how likely

a trajectory cluster is to generate a representative walkway used

by enough pedestrians. Figure 20 shows the effects of choosing

different supports as the threshold on the number of discovered

walkways and accuracy. The support value is ranged from 2 to

12. When support = 2, nearly 224 walkways are correctly found

in the specific region with an accuracy of 93%. Larger support re-

quires a walkway traveled by more pedestrians and thus leads to

a decreased number of discovered walkways. On the other hand,

the accuracy increases along with increase of support values. Only

31 walkways are found with a high accuracy as 97% when we set

support = 12. According to Figure 20, we find support = 3 can

balance both number of discovered walkways and the accuracy,

and we thus set support = 3 as the default setting.
Impacts of data amount used. The data amount used will also

affect the effectiveness of walkway discovery. With more data, we

can collect the observations about more potential walkways and it
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Figure 21: Impacts of data amount used on the number of

discovered walkways and accuracy.

is more possible to accurately identify them. We vary the number

of weeks of mobility data used, and present the resulting number

of discovered walkways and accuracy in Figure 21. When we in-

crease the amount of used mobility data, the number of discovered

walkways gradually increase as well. It is reasonable since more

mobility data will include the trajectories from more walking paths

and we thus can identify more walkways. When we use data more

than 9 weeks, the benefit becomes negligible as the frequently used

walkways have been covered by existing data and extra data may

provide little new knowledges. On the other hand, the impact of

data amount on the accuracy is less significant. More data lead to

slight increase on the accuracy. When we use more than 6 weeks of

data, the accuracy becomes stable around 98.5%. Extra data bring

no increase on accuracy. Therefore, 9 weeks of mobility data seem

to be a good amount for accurate and comprehensive walkway

discovery.

Table 1: Effect of GSV based auto-verification on the accu-

racy of walkway discovery.

Support 2 4 6 8

w/ GSV 93.2% 94.8% 95.7% 96.0%

w/o GSV 80.9% 88.6% 93.5% 95.8%

Impacts of GSV based auto-verification.We invoke the GSV

APIs to retrieve images of the discovered walkways and automati-

cally verify them based on computer vision techniques. To evaluate

the performance of this module, we conduct experiments with and

without the GSV-based auto-verification module. We use 9 weeks

of mobility data during the comparison and vary support from 2

to 8. The results are shown in Table 1. Note that for both with

and without this module, the system can find the same number of

walkways. By enabling this module, the system can always achieve

higher accuracy than the case without this function, having the

largest performance gain of 12.3% on accuracy when support = 2.
When we increase the support value, the gain benefited from GSV

becomes small as the parameter of support value will filter out

many invalid walkways.

Impacts of step estimator. In the system design, we propose

a step estimator to enhance the walkable area estimation. Thus

we also run experiments based on only available step count data

Table 2: Effect of step estimator.

# of walkways Accuracy

Basic method 95 93%

Enhanced method 224 94%

(denoted as basic method) and enabling the step estimator (denoted

as enhanced method). Table 2 shows the comparison results. For

both methods, they achieve similar accuracy while the enhanced

method still has a bit higher accuracy. On the other hand, VitalAlley

can discover much more walkways with the step estimator when

compared using the step count data only, i.e., 224 vs 95 with an

improvement of 136%. Since the step count data in the NSE project

may not be continuously updated, thus some mobility data cannot

be directly exploited by the basic method. Once the step estimator

is trained for a student, all the mobility data can be used by the

enhanced method and as a result more walkways are found.

5 RELATEDWORK

Map inference.Map inference aims to automatically generate the

whole map from the satellite images or GPS trajectory data. The

aerial imagery methods [21, 35] employ image processing tech-

niques to draw only the main roads due to the limit of image reso-

lutions, and thus cannot be used for discovering small trails like the

walkways. There are three categories of methods proposed for the

GPS trajectory data based map inference, i.e., K-means [1, 31], Ker-

nel Density Estimation [4, 25], trace merging and clustering [10, 14].

Most of these methods, however, build on various impractical as-

sumptions of the GPS data, including low noise and high sampling

frequency (e.g., 1 Hz). They perform poorly once the assumptions

are not hold [3, 14]. In contrast, our method preserves no assump-

tion on the input data, and is more robust against noisy data like

NSE mobility data.

Map updating. Map updating aims at completing a given road

map by updating missing roads from GPS data. As discussed in

Section 2, several recent works, i.e., CrowdAtlas [27], COBWEB [22],

and GLUE [33], have been proposed to find missing roads, which

are in particular the well-structured motorways, based on GPS

data collected from vehicles. These works extract new-found roads

mainly relying on trajectory clustering [27] or location point clus-

tering [22, 33] coupled with some well-tuned thresholds, which

thus make them be prone to failure when involving noisy data. In

this paper, we consider to complete a given road map by updating

the missing walkways from personal mobility data, which are noisy

and random in nature. The unstructured and pedestrian-oriented

characteristics of walkways implicitly make the problem more dif-

ficult and essentially distinguish our work from the existing map

updating works. To the best of our knowledge, this is the first work

to discover and update walkways from noisy mobility data at large

scale.

MapMatching.Map matching is a technique to match location

data to existing roads that minimizes the influences of localization

errors. Existing map matching methods are classified into three

groups, i.e., based on the geometry of each road [28], based on

the topology of the road network [19], and based on matching
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probability [17]. In order to compensate for noise and gaps of indi-

vidual trajectory, leveraging a collection of trajectories to do map

matching has been proposed in [12], which increases the density of

trajectories, leading to a better matching results, which is similar

to [27]. Since the third one globally considers all location observa-

tions and achieves the best accuracy [24], in this paper we choose

one representative algorithm in [17] to perform map matching on

the mobility data. These works are parallel with our work and can

benefit from a full road map completed by our system.

6 CONCLUSION

This paper presents VitalAlley for discovering and verifying the

missing walkways from the NSE mobility data. VitalAlley proposes

an ellipse model and a novel weighting scheme to estimate walkable

areas, and identify representative walkways from each walkable

area through a two-phase clustering method. The GSV is also in-

volved to automatically verify the new-found walkways. Experi-

mental results using the large-scale NSE mobility data demonstrate

the performances of VitalAlley that finds 736 walkways (totaling

161km in distance) for the OSM Singapore road map. A detailed

evaluation in a study area shows that VitalAlley can achieve accu-

racy as high as 96%.
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