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User authentication on smart devices is indispensable to keep data privacy and security. It is especially significant for emerging

wearable devices such as smartwatches considering data sensitivity in them. However, conventional authentication methods

are not applicable for wearables due to constraints of size and hardware, whichmakes present wearable devices lack convenient,

secure and low-cost authentication schemes. To tackle this problem, we reveal a novel biometric authentication mechanism

which makes use of sounds of human dental occlusion (i.e., tooth click). We demonstrate its feasibility by comprehensive

measurement study, and design a prototype-BiLock with two Android platforms. Extensive real-world experiments have

been conducted to evaluate the accuracy, robustness and security of BiLock in different environments. The results show that

BiLock can achieve less than 5% average false reject rate and 0.95% average false accept rate even in a noisy environment.

Comparative experiments also demonstrate that BiLock possesses advantages in robustness to noise and security against

replay and observation attacks over existing voiceprinting schemes.
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1 INTRODUCTION

Biometric authentication on personal devices such as smartphones and smartwatches is becoming increasingly

popular. These small form-factor devices contain enormous amounts of sensitive data e.g. contacts, messages

and health records stored, and frequently used in public places. Conventional authentication mechanisms

e.g. passwords may involve cumbersome input efforts on small devices and are more vulnerable to shoulder

surfing and smudge attacks [33]. Alternatively, biometric authentication such as fingerprints [22, 23], face/iris
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Fig. 1. Application scenarios of BiLock. A user places his/her smartphone or smartwatch 5 cm to 15 cm away to his/her

lips, and performs an occlusion gesture. The microphone embedded in the smartphone or smartwatch records the sounds

generated by the occlusion gesture and extracts features, which are fed into a classifier for user authentication. BiLock is

able to achieve average FRR and FAR of 4.33% and 0.82% in presence of noise up to 50 ∼ 60dB (measured next to the device)

in indoor environments.

recognition [11, 46], and voice-prints [8, 17], are attracting extensive research interests and resulting in commercial

successes, for their more user-friendly and secure usage [4].

Designing a ubiquitous, robust and socially acceptable biometric authentication mechanism for small form-

factor devices e.g. smartwatches is non-trivial. For example, fingerprints require a capacitive or ultrasonic sensor

to function [29], whose size is prohibitive to embed into wearable devices such as smartwatches. Face/iris recog-

nition involves additional hardware and intensive computation not always affordable on resource-constrained

devices [13]. Due to the ubiquity of microphones and the lower energy footprints (compared with face recogni-

tion), voice-based schemes have been increasingly applied in smartphone and smartwatch authentication, such

as Google Pixel and Samsung Gear Live smartwatch [31]. Yet they are still considered annoying in libraries and

offices and susceptible to changes (e.g. when the user caught a cold [30]).

In this paper, we propose BiLock, a new biometric authentication scheme for small personal devices based on

dental occlusion. In principle, BiLock extracts unique signatures from the sounds generated by a user’s occlusion

activities, which are recorded by the built-in microphone of a smartphone or a smartwatch placed close to the

user’s lips (see Fig. 1). BiLock brings about the following advantages. (i) Ubiquitous.Microphones are available

in a wide range of mobile, wearable and IoT devices. (ii) Socially acceptable. Dental occlusion acoustics is more

socially acceptable than voice-based schemes in public places such as libraries and offices, which is because

sounds of tooth clicks are more imperceptible and unobtrusive to others. It has also be exploited as a convenient

hand-free interface in the HCI community [3][37]. (iii) Robust. Sounds generated by dental occlusion are resilient

to human speeches and other interference due to their differences in frequencies. (iv) Reliable. Using dental

occlusion acoustics for authentication is more reliable than touch-based methods such as PIN and lock patterns

in mobile scenarios where they are likely to produce input errors.

Contributions and Roadmap. To enable a working system, we need to answer the following problems. (i) Are

the sounds generated by dental occlusion distinctive for different users while consistent for the same user over time?

(ii) How to extract signatures from dental occlusion sounds for accurate and robust authentication? The design of

BiLock addresses the above challenges with the following contributions.

• Using measurements of 50 participants collected over 6 months, we demonstrate the diversity of dental

occlusion sounds captured by commodity embedded microphones across users, and their consistency for

the same user. The measurements serve as an empirical feasibility study of dental occlusion acoustics as a

new biometric modality for authentication or access control for tens of users.
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• We design a pipeline that segments raw dental occlusion sounds, extracts effective features, and accurately

classifies the generated signatures for authentication.

• We prototype BiLock with a smartphone and a smartwatch, and comprehensively evaluate its performance

in various contexts. Results show that BiLock achieves a false reject rate (FRR) of 4.33% and a false accept

rate (FAR) of 0.82% even in presence noise of 50 ∼ 60dB in indoor environments. We also demonstrate it is

more robust and secure than two commercial voice-based authentication schemes.

In the rest of this paper, we review related work in Sec. 2, present the measurement study in Sec. 3 and elaborate

on the design of BiLock in Sec. 4. We show the evaluations in Sec. 5, discuss the future work inSec. 6 and conclude

this paper in Sec. 7.

2 RELATED WORK

BiLock is related to the following categories of research.

2.1 Biometric Authentication on Mobile and Wearable Devices

Examples of physiological and behavioral characteristics for authentication include fingerprints, voice, iris, retina,

face, keystrokes etc. and new measures are under development all the time [43]. To perform authentication

on mobile and wearable devices, various biometrics measurable by different sensors on mobile and wearable

devices have been explored. Fingerprints are widely adopted in current mobile devices, which are recognized

by capacitive sensors. However, fingerprints may fail in case of water, cuts or bruises on fingers [20]. They

also require a sensor sized of a fingertip, which may not always be available on wearable devices such as

smartwatches. The development of computer vision has enabled face recognition such as Apple’s FaceID [2]

as an attractive authentication mechanism. Yet the computation overhead still prohibits its usage on resource-

constrained wearable devices. Keystrokes and finger gestures are prevailing for user authentication on devices

with a touch-screen [35][12][27][28]. These efforts exploit motion sensors e.g. accelerometers to extract the unique

patterns in the rhythm, strength and other attributes of writing/tapping behaviours. However, the performance

of these systems are vulnerable to user movements such as walking. In contrast, gait-based authentication is

performed during walking using inertial sensors in smartphones [19]. Other biometrics such as heart rate [45]

and brain waves [9] have also been proposed due to the popularity of medical wearable devices. BreathPrint [7]

is a recent work that utilizes the sounds of breath detected by phone microphones to verify legitimate users.

As concluded in [43], there is no single best biometric feature for authentication in terms of robustness,

distinctiveness, availability, accessibility and acceptability. Our work aims to explore dental occlusion as a new

biometric authentication mechanism for mobile and wearable devices equipped with commodity microphones.

Compared with other features detectable by microphones, such as voice and breath, sound of dental occlusion

enjoy the advantages of being more secure to replay attack, more robust to external interference, and more stable

to users’ physiological status.

2.2 Dentistry and Tooth Click Interfaces

Sounds of dental occlusion have long be utilized in dentistry. Stewart et al. [39] first proposed to diagnose occlusion

problems using the sounds of tooth clicks. Such diagnosis was conducted by professional dentists in the early

days and has been digitalized with the development of computer technologies [36][32]. In addition to gnathosonic

research, tooth clicks have also been exploited in assistive HCI interface designs for the disabled. Researchers

have proposed tooth click based input or control interfaces by recording the sounds of tooth clicks with bone-

conduction microphones [24][25] or by capturing tooth click induced vibrations with accelerometers [37][38].

Furthermore, some recent work [3] tries to localize the pair of teeth clicks where the sounds of tooth clicks

come for hands-free interaction. BiLock shares the similar principle of gnathosonic research. However, BiLock
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Fig. 2. An illustration of dental occlusion. Diversity in dental occlusion among individuals results in different sounds of

dental occlusion [21].

harnesses the sound of tooth clicks as a biometric feature for user authentication, rather than an indicator of

normal or abnormal occlusion. BiLock can be combined with previous research on tooth click interfaces once the

user is authenticated.

2.3 Sensing Non-speech Body Sounds

Many research efforts have employed microphones in mobile and wearable devices to perceive non-speech body

sounds for activity recognition. For instance, BodyScope [44] is a wearable acoustic sensing system attached to a

user’s neck to recognize activities such as eating, drinking, and coughing. SymDetector [40] is a smartphone-based

application to detect sound-related respiratory symptoms such as sneeze, cough and sniffle. The microphone of

smartphones have also been used to detect body sounds during sleep to assess sleep quality [15] or infer sleep

stage [14]. All these systems can unobtrusively recognize activities that produce non-speech body sounds with a

high accuracy. BiLock also senses non-speech sounds (from tooth clicks in our case). But instead of exploiting

these sounds for activity recognition, BiLock takes these sounds as unique signatures for user authentication.

3 MEASUREMENTS AND FEASIBILITY ANALYSIS

This section presents a measurement study to show that the dental occlusion characteristics are different across

users while consistent for the same user.

3.1 Physiological Mechanism of Dental Occlusion

Dental occlusion refers to the process of contacting between the maxillary (upper) and mandibular (lower) teeth.

In this work, we make use of the sounds produced during dental occlusion for authentication. Such sounds are

detectable by commodity microphones and differ for individuals who have different patterns of dental occlusion,

which is the rationale of our paper. The diversity of dental occlusion comes from the differences in the shapes,

sizes and the positions of teeth, which has been shown in medical studies such as [21, 34, 42]. Fig. 2 illustrates

the parameters that depict the differences in dental occlusion.

3.2 Measurements

We collected the sounds of dental occlusion of 50 volunteers (labeled as V1 ∼ V50, 30 males and 20 females, aged

20 to 43). The sounds were measured by the microphone embedded in a Samsung Galaxy Tab S2 tablet and a

Huawei Watch 2. The smartwatch contains a Quad-core 1.1 GHz CPU and 768 M RAM, and runs Android Wear

OS 2.0 operating system. The Samsung tablet consists of a Qualcomm Snapdragon 652 CPU and 3 GB RAM, and

runs an Android 6.0 operating system. Both platforms have a single microphone sensor without noise reduction.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 152. Publication date: September 2018.



BiLock: User Authentication via Dental Occlusion Biometrics • 152:5
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Fig. 3. Setup of measurement study

We developed an Android application to record the sounds and converted raw audio signals into 16 bit linear

.wav files. We set a sampling rate of 44.1 kHz on the two devices.

The measurements were collected in two indoor environments, a meeting room and a lab room. In the meeting

room, we artificially generated noises of 4 average levels by controlling the volume of a TV, i.e. 30 ∼ 40 dB (N1),

40 ∼ 50 dB (N2), 50 ∼ 60 dB (N3) and 60 ∼ 70 dB (N4), respectively. In the lab room, the average noise level was

50 ∼ 60 dB. In the meeting room, the participants remained seated (see the middle sub-figure in Fig. 3), while in

the lab room, the participants walked in straight lines while performing the tooth click gestures (see the right

sub-figure in Fig. 3). Thus there were a total number of 5 settings for the measurement study.

Before data collection, we explained to each participant the purpose of the project, the principle of BiLock,

and its usage. We then asked each participant to experiment with tooth clicks (on both sides) until he/she found

the way he/she could comfortably perform the gesture repeatedly. Most participants were able to figure out a

comfortable way within 3 ∼ 5 clicks. Then in each setting, each participant put the tablet or smartwatch about

10 cm away from his/her lip, and performed tooth clicks for 100 times during 6 sessions. To make experiments

closer to practical scenarios, we asked the participants to perform tooth clicks naturally as they do in daily life,

and have a short rest every 5 continuous clicks. The sounds of every 5 tooth clicks are recorded at a time and

stored in a single .wav file. We collected data from different sessions to investigate the variations in the tooth

click gestures of the same user over time. Specifically, we regarded the first day of the measurement as Session 1

(S1). The subsequent sessions were 3 ∼ 4 days (Session 2, S2), 2 ∼ 3 weeks (Session 3, S3), 1 ∼ 2 months (Session 4,

S4), 3 ∼ 4 months (Session 5, S5), and 5 ∼ 6 months (Session 6, S6) after the first day, respectively. The number of

repeated instances was 20 for each during S1 ∼ S4 and 10 for each during S5 ∼ S6. We restricted the number of

repetitions in each session to avoid fatigue. In summary, we collected a total number of 100 (number of instances)

× 5 (number of settings) × 50 (number of participants) = 25, 000 instances in the measurement study.

3.3 Data Analysis

In this section, we shall conduct an analysis with the dataset collected by the above experiments, in order to

demonstrate the following observations that we make.

• The same person show consistent signal patterns of tooth click over time.

• Different people show different signal patterns when they perform tooth click.

3.3.1 Intra-User Analysis. We use samples of a participant X collected in each of the six sessions (S1 ∼ S6)
under 30 ∼ 40 db noise in the meeting room, and compute their average power spectrum density (PSD) in

each session as shown in Fig. 4(a). Intuitively, we can see that the average PSD of collected samples remain

highly consistent over different sessions. To quantify this, we calculate the correlation coefficients of PSD curves
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Fig. 4. The PSD curves and correlation coefficients of samples collected in different sessions from different participants
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Fig. 5. The overall data processing flowchart of BiLock

between the first session (i.e., S1) and other sessions (i.e., S1 ∼ S6), and obtain the corresponding results as shown

in Fig. 4(b). As we can see, the average correlation coefficients between different sessions are all above 0.96 even
after a half year, which validates that sound of dental occlusion is a favorable biometric for user authentication.

However, we can also notice that although the correlation keeps high, it decreases slightly over time as whole.

The underlying reason is that people may slightly change the way of clicking tooth over a relatively long time.

3.3.2 Inter-User Analysis. On the other hand, we also demonstrate the uniqueness of this novel biometric by

plotting the PSD curves of audio samples collected from another participant Y as shown in Fig. 4(c). Comparing

with Fig. 4(a), the overall trend of PSD curves computed for participant Y exhibits noticeable difference from

those of user X. Correspondingly, we also compute the correlation coefficients of PSD curves calculated for user

X and Y in different sessions as shown in Fig. 4(d). We can see that the overall correlation coefficients between

different users are below 0.5, which is obviously lower than those of the same person in Fig. 4(b). The results

indicate that sounds of dental occlusion show noticeable difference among different people.

4 BILOCK DESIGN

This section presents the design of BiLock. At a high level, BiLock processes raw audio signals, detects occlusion

events, extracts features from segments containing the occlusion events, and feeds them into a two-class classifier

to determine whether the signal segments come from a legitimate user or not (Fig. 5). As next, we elaborate

on how to properly adopt acoustic signal processing and machine learning techniques to enable a functional

occlusion based user authentication pipeline.

4.1 Audio Preprocessing

As with other non-speech body sounds, the sounds of dental occlusion are subtle and vulnerable to other

interference such as human speech. Therefore the raw audio signals need to be filtered to enhance the signal to

noise radio (SNR). Fig. 4 shows the average power spectral density of 100 instances of dental occlusion gestures

collected in the measurement (see Sec. 3.2). As is shown, over 90% of the power spectrum distributes within
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Fig. 6. Examples of occlusion event detection under noise levels of (a) 40 ∼ 50 dB, (b) 50 ∼ 60 db (c) 60 ∼ 70 dB

[10, 15000] Hz. Hence we apply a 6-order Butterworth filter with a passband of [10, 15000] Hz to filter out-of-band
interference. Since the frequency band of dental occlusion overlaps with that of human speech, we further utilize

wavelet de-noising to improve SNR in the passband. Wavelet de-noising is suited in analyzing short-duration,

transient and abrupt signals and has been adopted in other non-speech body sound sensing schemes such as [1, 41].

In BiLock, we use a 3-level discrete wavelet decomposition with Daubechies 3 (db3) wavelet as mother wavelet,

followed by soft coefficient thresholding. We refer readers to [6, 10] for details on wavelet de-noising.

4.2 Occlusion Event Detection

After de-noising, the next step is to detect dental occlusion events and extract the corresponding signal segments.

BiLock adopts an adaptive energy-based event detection scheme to deal with a wide range of noise levels.

Specifically, we apply a sliding window of widthW on the signal S(i) (i is the sample index). Assume the power of

remaining noise follows a Gaussian distribution and denote the mean and the standard deviation of signal power

at index i are μ(i) and σ (i), respectively. Then the average signal power within a sliding window is calculated by:

μ(i) =
1

W
A(i) + (1 −

1

W
)μ(i − 1)

σ (i) =
1

W
B(i) + (1 −

1

W
)σ (i − 1)

(1)

where μ(0) = 0 and σ (0) = 0. A(i) and B(i) represent the cumulated power and the overall standard deviation of

signals within a sliding window, respectively, where

A(i) =
1

W

W +i∑
k=i

|S(k)|2

B(i) =

√√√
1

W

W +i∑
k=i

(|S(k)|2 −A(k))2

(2)

Finally a potential start point of S(i) can be determined if

|S(i)|2 > μ(i) + γ1σ (i) (3)

where γ1 is a constant independent of the noise level. Similarly, an end point of S(i) is detected if

|S(i)|2 < γ2μ (4)

where γ2 is also a constant independent of the noise level. μ is the average noise power when there is no dental

occlusion event. In BiLock, we empirically setW , γ1 and γ2 as 6 ms, 2 and 5, respectively. We further examine the
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amplitudes of the detected peaks and remove those peaks with amplitude below 0.05 to avoid fake peaks. Fig. 6

shows two examples of event detection and segmentation with noise levels of 40 ∼ 50 db, 50 ∼ 60 db and 60 ∼ 70

dB, respectively.

4.3 Feature Extraction

Distinctive and robust features are crucial for an authentication system. In BiLock, we extract 13-order Mel-

frequency Cepstral coefficients (MFCCs) from each signal segment with a Hamming window. We do not perform

framing here because the duration of each event is relatively short (about 30 ms). Fig. 7 plots the correlation of

occlusion sounds represented by the 13-order MFCCs of the same person and across persons, respectively. As is

shown, the occlusion sounds represented by MFCCs still correlate for the same person, and are distinctive for

different persons. The correlations are similar to those calculated from the raw PSDs.

4.4 Model for Authentication

As with previous user authentication schemes [5][35], we adopt a support vector machine (SVM) as the classifier

for user authentication. Specifically, we use a two-class SVM classifier with radial basis function (RBF) kernel in

BiLock. In its practical usage, a user authentication system may collect samples from both legitimate users and

impostors. As shown in Fig. 8, we design techniques to harness these samples in model training (Sec. 4.4.1) and

model adaptation (Sec. 4.4.2), as described below.

4.4.1 Model Training. Unlike previous studies on acoustic based activity recognition [14][15][40][44], a user

authentication system may only have a limited number of positively (i.e. legitimate) labelled samples and some

unlabelled samples (can be both positive and negative) for training. For instance, a voice-print authentication

application may collect a few samples from the legitimate user to initialize, and some unlabelled samples to

further train its classifier. Therefore, a challenge for BiLock is how to train a two-class classifier with limited
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amounts of positively labelled training samples. We bootstrap the training of the two-class SVM classifier by (i)

constructing a one-class auto-encoder to assign pseudo-labels to the unlabelled training samples and (ii) train the

SVM using pseudo-labelled samples with high confidence.

We first construct a one-class auto-encoder using the labelled samples from the legitimate user. We use an auto-

encoder because it often outperforms simpler classifiers such as SVMs. An auto-encoder is a special neural network

with an input layer, multiple hidden layers and an output layer. It learns a latent and compressed representation

of input data and then reconstructs output from this presentation, aiming to minimize the difference between the

input and the output. The learned latent representation is called a coder. The process of obtaining the coder from

the input is called encoding and reconstructing output from the coder is called decoding. Denote I, F and Î as

the input, representation and output domains, respectively. Further use ϕ andψ to represent the encoding ant

the decoding process. Then an auto-encoder A = (I,ϕ,ψ ) works as follows.

ϕ : I → F (5)

ψ : F → Î (6)

ϕ,ψ = argmin
ϕ,ψ

| |I − ˆI | |2 = argmin
ϕ,ψ

| |I − (ϕ ◦ψ )I | |2 (7)

where I and ˆI are the input and output data sets, respectively. Since the number of nodes in the hidden layers are

usually smaller than that of the input layer, the obtained representation can be viewed as a compressed version

of the input data. In BiLock, we use an auto-encoder with one input layer with 13 nodes, one hidden layer with 8

nodes, and one output layer with 13 nodes. The transfer functions of encoder and decoder are saturating linear

function and pure linear function, respectively. We set a threshold τ as the maximum reconstruction error of the

positively labelled training samples.

Then for each unlabelled sample x in the training data, we feed it into the auto-encoder to calculate its

reconstruction error Δ. If Δ is smaller than the threshold τ , then the sample is pseudo-labelled as positive

(legitimate). We then sort the samples based on their reconstruction error, and select κ positive/negative samples

with the smallest/largest reconstruction errors to be fed into the two-class SVM for training. We empirically set κ
as 60% in our system implementation according to evaluation results in Sec. 5.2.

4.4.2 Model Adaptation. As shown in Sec. 3.3, the correlation of dental occlusion sounds of the same person

still decreases gracefully over time. Therefore the model for authentication also needs to be updated after a period

of time. To make the model up-to-date, we propose a model adaptation scheme as follows.

A sample to be tested is first fed into the two-class SVM classifier, which is labeled as either positive or negative.

The sample is also associated with a confidence given by the SVM model. If the confidence exceeds a threshold

β = 0.5 and the sample substantially differs those in the training set, the sample will be added into the training

set to retrain the model at a later time. We utilize Kullback-Leibler (KL) divergence as a metric to quantify the

difference between two feature vectorsMFCCi
t
(i = 1, 2, ..,M) andMFCCt+Δt

i (i = 1, 2, ..,M) as follows:

KL(Δt) =
M∑
i=1

MFCCi
t
loд

MFCCi
t

MFCCt+Δt
i

(8)

whereM = 13 in our case,MFCCi
t
(i = 1, 2, ..,M) is the mean feature vector of the samples in the training set

collected up to time t ,MFCCt+Δt
i (i = 1, 2, ..,M) is the feature vector of a newly sample tested at time t + Δt . By

empirically setting a threshold η for the KL divergence, BiLock detects significantly different samples and uses

them to update the SVM model.
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5 EVALUATION

The section presents the evaluations of BiLock. We first introduce the evaluation setups in Sec. 5.1, then show the

overall performance of BiLock in Sec. 5.2, compare the security of BiLock with two commercial voice-printing

schemes in different contexts in Sec. 5.4, and finally investigate user experience of BiLock in Sec. 5.5.

5.1 Experiment Setup

As aforementioned, we implement BiLock as an Android App with Java on two platforms. The training of

classifiers are conducted on a desktop with four-core Intel (R) Xeon (R) E3-1231 CPU and 16 G RAM running

Windows 8 with MatLab R2015b software. The trained classifiers, as well as audio processing and event detection

algorithms are fed to a Samsung Galaxy Tab S2 and a Huawei Watch 2, which are used for the measurement

study in Sec. 3.

All the evaluations in Sec. 5.2 and Sec. 5.3 are performed on datasets collected in the measurement study (see

Sec. 3.2) unless specified otherwise, with the following metrics.

• False Accept Rate (FAR): FAR is a measure of likelihood that an authentication system incorrectly accepts

an access trial of an unauthorized user.

• False Reject Rate (FRR): FRR represents the likelihood that an authentication system incorrectly rejects the

access attempt of an legitimate user.

In the evaluation, we treat each volunteer (e.g., V1) as a valid user and other volunteers (e.g., V2 ∼ V50) as
impostors. With a small number of samples (i.e., 20 for the valid user without specification) from the valid user

and impostors, we train an authentication model following the routine as described in Sec. 4. After that, we

can obtain a model that can accept V1 as a valid user and reject V2 ∼ V50. We then test the model by feeding all

remaining samples of V1 ∼ V50. When a testing sample of the impostors (i.e., V2 ∼ V50) is wrongly accepted, a

false accept instance occurs; when a testing sample of the valid user (i.e., V1) is wrongly rejected, a false reject

instance occurs. By calculating the ratios false accept/reject instances, we can obtain the FAR/FRR of BiLock. For

each valid user case, we repeat the above process for 10 times by randomly selecting the training samples and

compute the average FAR and FRR.

5.2 BiLock Performance

We first evaluate the overall performance of BiLock in different noise levels, and then study the effectiveness of

different components and the performance across users and distances to users’ lips.

5.2.1 Overall Performance. Since BiLock is an acoustic sensing based approach, it is important to evaluate its

overall performance under different noise levels. Fig. 9 shows the FRRs and FARs of BiLock trained and tested

under the 4 noise levels in the meeting room (i.e. N1 − N4, 16 training-testing combinations) with the tablet and

smartwatch platforms. The FRRs and FARs are averaged across the 50 participants. As expected, the performance

of BiLock is negatively affected by the noise levels. In the cases where BiLock is trained and tested under the same

noise level, the FRR and FAR increase with the levels of noise. However, when the noise level does not exceed

50 ∼ 60 db, the FRRs and FARs almost remain constant, with average values of (4.66%, 0.88%) for tablet and (4.0%,
0.76%) for smartwatch, respectively Even when noise level reaches 60 ∼ 70 db, the performance just degrades

slightly by about 3% for FRR and 0.5% for FAR. The results show the robustness of BiLock against common noise

intensity. On the other hand, when the system is trained and tested under different noise levels, the average FRRs

and FARs are (5.2%, 1.06%) for tablet and (5.0%, 0.97%) for smartwatch, respectively. The results are very close

to those of the cases where BiLock is trained and tested in the same setting, which indicates that BiLock does

not need to be re-trained even when the environment changes. Moreover, from the perspective of hardware, the

average FRRs and FARs of all the 16 cases are (5.5%, 1.1%) for tablet, and (4.8%, 0.95%) for smartwatch, respectively.
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Fig. 9. The overall performance of BiLock implemented on the tablet and smartwatch
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Fig. 11. Impact of distance to user’s lips.

There is no notable performance gap between two hardware platforms. Therefore we only show the performance

of BiLock on the smartwatch in the subsequent evaluations.

5.2.2 Performance in Mobile Scenario. Wearables are commonly used in mobile scenarios. As a result, we

evaluate the performance of BiLock when it is used in motion. Similarly, we utilize data under four different noise

levels to train BiLock and request participants to test it while moving around in the lab room (about 50 ∼ 60 db
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Fig. 12. Evaluation of the effectiveness of model training

noise level). Fig. 10 shows the average FAR and FRR across all users in each testing case. The average FRR and

FAR for all cases are about 5.7% and 1.1%, with standard deviation of 1.3% and 0.3%, respectively. In comparison,

the average FRR and FAR in cases of Ni − N3 (i = 1, 2, 3, 4) as shown in Fig. 9(b) are 5.1% and 0.9%, respectively.

The results indicate that human walking has minute impact on the performance of BiLock. Even though human

walking causes some noises, they are not powerful enough to cause noticeable degradation of SNR of occlusion

sounds. In our opinion, this is also an outstanding advantage over gait-based authentication systems with inertial

sensors.

5.2.3 Impact of Distance to Lips. In this experiment, we place the smartwatch at different distances away

from one participant’s lips to test the effective operation range of BiLock. Specifically, we request each of all the

participants to use BiLock with distances varying from 10 cm to 50 cm in the meeting room with 50∼60 db noises.

Fig. 11 shows the results. As is shown, with a larger distance to the user’s lips, both the FRR and FAR increase.

This is because the sounds of dental occlusion decay quickly in space. With a distance of 50 cm, the sounds are

overwhelmed by background noises and BiLock fails to work. In addition, BiLock consistently achieves low FARs

and FRRs when the device is placed 20 cm within the lips. Therefore, users can hold a device at any distance to

their lips within 20 cm as they like without affecting system performance. It is also a reasonable operation range

in practical authentication scenarios.

5.2.4 Effectiveness of Model Training. To evaluate the effectiveness of our model, we compare the performance

of BiLock with different implementations. Referring to Fig. 8, we mainly consider another two feasible methods

by only using a one-class SVM, and an autoencoder as authentication model. Except these changes, other settings

remain the same. Fig. 12 shows the FRRs and FARs of three different approaches under different noisy environment.

Comparing one-class SVM and autoencoder, the latter obviously outperforms the former in FRR and FAR. This is

because autoencoder produces better representation of the input data and is more powerful in labeling the data.

Moreover, we can notice that comparing with only using autoencoder as authentication model, combining it

with a two-class SVM can further decrease FRR and FAR by 2.1% and 3.1%, respectively. Instead of identifying a

sample by a threshold, a two-class SVM figures out a hyperplane with training data in the training stage, and

then categorizes samples into either side of the hyperplane.

5.2.5 Effectiveness of Model Adaptation. To demonstrate the performance of BiLock over time and the need

for model adaptation, we evaluate BiLock on 50 participants trained on the dataset of the first session (i.e., S1)
and then tested in all the six sessions with 100 tests for each participant in each session. Fig. 13 shows the results
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Fig. 13. Evaluation of the effectiveness of model adaptation
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Fig. 14. Evaluation of the impact of user diversity

averaged over the 50 participants with and without model adaptation. Without model adaptation, the average

FRR increases from 4.7% to 8.2%. In contrast, the average FRR remains at around 4.9% even after 3 months if

model adaptation is applied. The average FARs with and without model adaptation seem insensitive to the time

lags between training and testing. This indicates human dental occlusion is distinctive enough and does not

change over a long time.

5.2.6 Impact of Users. We also consider the impact of user behavior diversity on system performance. Limited

by page space, we only display 20 randomly selected participants’ results, each of which is obtained by averaging

all testing cases. As shown in Fig. 14, the maximum and minimum FRR and FAR are (6.2%, 1.4%) and (2.4%, 0.1%),
respectively. This substantiates the following two main points. On one hand, different people have different dental

occlusion behaviors. Someone has stronger consistence and uniqueness in dental occlusion and thus achieve

lower FRR and FAR; while someone performs dental occlusion in a slightly varied way, which leads BiLock to

mis-authorize users’ attempts. On the other hand, the FRR and FAR do not exceed 7.0% and 1.5% even in worst

cases. We notice that the performance degradation for certain participants is caused by changes of occlusion

positions and intensity after long-time experiments. Multiple trials can be adopted to improve the performances

of those participants.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 152. Publication date: September 2018.



152:14 • Y. Zou et al.

Threshold � (%)
20 40 60 80

FR
R

 a
nd

 F
AR

 (%
)

0

20

40

60
FRR FAR

Fig. 15. Impact of threshold κ.

Number of samples
0 10 20 30 40

FR
R

 a
nd

 F
AR

 (%
)

0

50

100
FRR FAR

Fig. 16. Impact of # of training samples.

5.3 Impact of Parameters

5.3.1 Impact of Threshold κ. The threshold κ is an important parameter in constructing the two-class classifier

during model training (see Sec. 4.4.1).In theory, a large κ filters large numbers of feasible samples and restricts

data fed back for model evolution; while a small one may introduce mislabeled samples in the feedback loop,

which deteriorates the accuracy of the classifier. To evaluate its impact, we vary κ in the system design and obtain

BiLock’s corresponding performance. Fig. 15 shows average FRR and FAR with different thresholds ranging from

0% to 100%. From the results, a medium threshold κ = 60% yields the lowest FRR and FAR, which is used in the

aforementioned evaluations.

5.3.2 Impact of Number of Training Samples. As a user-friendly authentication mechanism, BiLock should

impose little overhead to train an accurate classifier. Fig. 16 plots the FRR and FAR averaged over all the 50

participants with an increasing number of training samples. As indicated in the figure, the average FRR falls

sharply before the size of training samples reaches 20. Then it stabilizes with the increase of training samples.

The average FAR remains consistently low with few training samples. The results show that BiLock needs about

20 samples from a legitimate user for authentication at a reasonable accuracy. Therefore we fix the number of

training samples to 20 in all the evaluations, unless specified otherwise.

5.4 Comparison with Commercial Systems

In this part, we compare BiLock with voice-based authentication methods from different aspects with three

experiments. Particularly, we make use of two commercial voice-based authentication schemes which provide

voice authentication services for unlocking screen or login for comparison. The first application is LockScreen

which is developed on the basis of a professional voiceprint recognition engine launched by iFLYTEK, a top

speech processing company [18]. The other application is WeChat’s voice authentication which is used for login

service. For both applications, users need to predefine their voice passwords first and speak them to the device

for multiple times with microphone active. Then the applications will extract the passwords and voiceprint from

audio signals and store them in the database. Only when both the password and voiceprint are matched, a person

will be authenticated correctly. We first train three systems under the noise of 30 ∼ 40 db noise in the meeting

room scenario. After that, we conduct three-part comparative experiments.

In the first experiment, we request 10 participants to perform 100 authentication trials individually with

WeChat, LockScreen and BiLock under four noise levels (N1 ∼ N4) in the meeting room scenario. The aim is to

get knowledge of the robustness of the three systems to noise. In the second experiment, we mainly consider

the security comparison of WeChat, LockScreen and BiLock against replay attack. In the meeting room, when

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 152. Publication date: September 2018.



BiLock: User Authentication via Dental Occlusion Biometrics • 152:15

N1 N2 N3 N4

Noise levels

0

5

10

15
FR

R
 (%

)
WeChat
LockScreen
BiLock

Fig. 17. The comparison of FRR between WeChat,

LockScreen and BiLock under different noise levels.

20 40 60 80 100
Recording distance (cm)

0

50

100

FA
R

 (%
)

WeChat
LockScreen
BiLock

Fig. 18. The comparison of FAR between WeChat,

LockScreen and BiLock at different distances.

a participant conducts 100 authentication trials with each application, we place another smartphone to record

sounds with distances of 20 cm, 40 cm, 60 cm, 80 cm and 100 cm away from the site respectively. After that, we

play the recorded audios to each application to pretend legitimate users. In the third experiment, we evaluate the

security levels of the three methods against observation attack. Specifically, we randomly pick five participants to

act as impostors, and another five participants (labeled as U1 toU5) as legitimate users. The impostors are asked

to mimic the actions (i.e., clicking teeth and speaking words) of the five legitimate users. For each legitimate

user, each impostor attacks the "password" for 200 times per method. The impostor can observe the input of a

user every 20 attack attempts, at a distance of about 0.5 m. This experiment is conducted in the meeting room

scenario with 40 ∼ 50 db noise. All the above user studies in our work received IRB approval.

5.4.1 Robustness to External Interference. Fig. 17 shows the average FRRs of WeChat, LockScreen and BiLock

over different participants under each noise level. The overall FRR averaging over all noise levels are 4.7%, 8.8%
and 4.2% for WeChat, LockScreen and BiLock, respectively. As the noise level increases from 40 ∼ 50 db to 60 ∼ 70

db, WeChat and BiLock can keep a stable low FRR with a slight increase of 5.1% and 3.2% respectively, while the

FRR of LockScreen increases over 7%. The results indicate that our system is comparable with WeChat and better

than LockScreen in robustness to noise interference. The reason for BiLock’s favorable low FRR under different

levels of noise is that human voice share more similarity in frequency domain with external noise interference,

and is easier to be affected by a user’s emotions, health states and even speech speed.

5.4.2 Security against Replay Attack. Fig. 18 displays the recognition results of WeChat, LockScreen and

BiLock under replay attack at different distances. In such a circumstance, we regard recorded copies as impostors

and thus utilize FAR as the evaluation metric. Obviously, FARs of all the three systems decrease with distance,

from (99.0%, 92.2%, 87.5%) to (89.4%, 74.5%, 5.6%). With increasing distance, it is more likely for the systems to

reject impostors since the SNR decreases with distance. Meanwhile, we can note that FAR of BiLock is much

lower than that of WeChat and LockScreen under the same distance. The underlying reason is that sounds of

dental occlusion are more close to impulse wave and decay faster than human voice in most normal cases. Due to

this property, when the recording distance exceeds a certain range, it is rather difficult to differentiate occlusion

sounds and background noises with a commercial microphone. As a result, we conclude that BiLock has a higher

security level against replay attack compared with voiceprinting schemes.

5.4.3 Security against Observation Attack. Fig. 19 shows the FAR of WeChat, LockScreen and BiLock under

observation attack against five valid users. Overall, the FARs of BiLock, WeChat and LockScreen are similar, with
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and willingness of using them in public scenarios.

average values lower than 1.5%. The FARs of the observation attack against the five valid users are consistently

low (< 1.5%). Also, it is more difficult to conduct observation attack than replay attack. The reasons for these

results are two-fold. On the one hand, sounds of clicking teeth mainly depend on the properties such as material,

shape, mass and layout of teeth. Even the same gesture may differ in sounds across people. On the other hand, It

is difficult to mimic the teeth clicking gestures by observation, because a user often keeps his/her mouth closed

while performing the dental occlusion gestures.

5.5 User Survey and Feedback

In addition to validating BiLock’s effectiveness, we also investigate its user experience. We conducted a survey

with 100 participants. All the participants have already installed and usedWeChat voice login, a popular voiceprint-

based authentication scheme, and AliPay login, a popular face recognition based authentication scheme before.

Among the 100 participants, 50 of them have taken part in the previous experiments (Sec. 3.2). We first informed

all the participants of the aim of the study as well as the usage of BiLock. Since 50 of the participants have had

experience with BiLock, they were not asked to use BiLock again. The remaining 50 were newly recruited from

our campus for the user study. So they were asked to install the BiLock APK on their smartphones, and use

BiLock for authentication in different daily scenarios such as libraries and lab offices. Finally, we designed a

questionnaire and distributed it to all the 100 participants via a platform named Sojump, and collected feedback

from each participant. The questionnaire consists of the following three questions.

• By jointly considering the accuracy, robustness and usability, please rate the overall score of the three au-

thentication methods (BiLock, WeChat voice login, AliPay login) from 0 to 10 (0 means worst; 10 means

perfect).

• How are you willing to use the three methods (BiLock, WeChat voice login, AliPay login) in public e.g., library,

lab office? Please rate your willingness from 0 to 10 (0 means I never want to use it in public; 10 means I would

certainly love to use it in public).

• Can you list some advantages and disadvantages of BiLock over WeChat voice login and/or AliPay login?

Fig. 20 shows the results of post-usage survey in terms of the overall rating and the willingness to use the method

in public. The average overall ratings are 6.5, 6.8 and 7.6 for voice-based, face recognition-based and BiLock,

respectively. Using the nonparametric Wilcoxon signed-rank test, the Z values and p values for BiLock and

voice-based are −2.2749 and 0.0116, while those for BiLock and face recognition-based are −1.7891 and 0.03673.
Hence the differences in terms of overall rating between BiLock and the other two methods are statistically
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significant. The average scores of willingness to use each in public are 4.3, 5.6 and 6.4 for voice-based, face

recognition-based and BiLock, respectively. Similarly, we calculate the Z -values and p-values for BiLock and

voice-based authentication as −2.8563 and 0.00212, indicating statistically significant difference. However, for

BiLock and face recognition based authentication, the Z-value and p-value are −1.3728 and 0.08534, meaning

that the result is not significant at p ≤ 0.05. The results show that BiLock is more acceptable than voice-based

authentication in public, and is at least comparable in terms of acceptance to face recognition based method.

At last, we also collect their specific comments about the advantages and disadvantages of three methods from

different perspectives. We display several representative comments as follows.

• "It is rather embarrassing to speak out words in public when using voiceprinting method. In contrast, BiLock is

more imperceptible and easy to use. But I prefer to use BiLock without placing the device so near to my mouth

if possible."

• "I use voice-prints frequently but BiLock is also cool. I think BiLock may be more robust when I caught a cold.

Sometimes my phone does not recognize my voice when I got sick."

• "First, it is more natural than making voice especially in public places. Second, it is also helpful for the dumb

and can be applied on head-mounted devices. Third, it is more secure than voiceprinting method as the intensity

of tooth-click sounds is much lower than voice. However, I am not sure whether it can still keep high accuracy

in more noisy environments such as crossroads, airports, concerts and etc. "

6 LIMITATIONS AND FUTURE WORK

Although BiLock shows favorable properties, it has the following limitations and deserves future work towards a

more practical system.

First, the robustness of BiLock under more noisy environments can be further enhanced. In the current version,

BiLock can achieve high performance in environments with 60∼70 db noises which cover a wide range of daily

scenarios. However, it remains uncertain whether BiLock can keep high performance in environments with more

powerful noises such as busy crossroads, highways and airports. Even if its performance degrades much in such

environments unfortunately, it deserves to explore more advanced denoising techniques for signal enhancement,

such as spectral subtraction, adaptive filtering and the like.

Second, the implementation of model training and adaptation in BiLock can be improved. Due to the heavy burden

of model training and adaptation for resource-constrained devices, current version of BiLock relies on off-line

training and adaptation with model parameters determined with desktops. However, such an implementation is

obviously inconvenient and cumbersome in practical scenarios. An alternative way is to upload data to the cloud,

train and adapt the model, and send back model parameters to mobile devices. In this way, for devices lacking

computational capability, they can afford to update the model with environmental variance. We leave this as one

of our future work.

Third, the evaluation of BiLock can be more comprehensive and practical. As a concept-of-proof system, during

data collection, although the participants are informed to act naturally, it is unavoidable that they perform tooth

clicks a little bit mechanically. However, as indicated by [3], the system performance during live usage scenarios

does not mirror that in controlled settings since tooth clicks in the two states differ slightly. As a result, from the

perspective of practical use, it needs to obtain the live performance of BiLock by testing it in more practical ways

in our future work. In addition, our present post-usage survey only shows a single score to assess the subjective

satisfaction and acceptance in public of BiLock. We plan to design better UIs for BiLock and conduct a more

comprehensive user experience study with standardized questionnaires such as UEQ [26] and AttrakDiff [16].
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7 CONCLUSION

Considering shortcomings of existing methods, this paper proposes a novel biometric authentication scheme that

utilizes sounds of dental occlusion as a unique feature.We demonstrate the feasibility of our scheme and also design

a prototype-BiLock with embedded microphones on mobile devices to validate its effectiveness. Comprehensive

experiments have shown that BiLock can achieve very low FRR and FAR even in noisy environments. In addition,

compared with voiceprinting method, our scheme shows evident superiority in robustness and security. Without

additional hardware, BiLock can run as a stand-alone application, or be seamlessly embedded with existing

authentication system on most smart devices. We believe that the performance of BiLock can be further improved

by optimizing the autoencoder and SVM models in the future work.
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