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Abstract—In many sensor network applications, multiple data forwarding tasks usually exist with different source-destination node pairs.
Due to limitations of the duty-cycling operation and interference, however, not all tasks can be guaranteed to be scheduled within their
required delay constraints. We investigate a fundamental scheduling problem of both theoretical and practical importance, called multi-
task schedulability problem, i.e., given multiple data forwarding tasks, to determine the maximum number of tasks that can be scheduled
within their deadlines and work out such a schedule. We formulate the multi-task schedulability problem, prove its NP-Hardness, and
propose an approximate algorithm with analysis on the performance bound and complicity. We further extend the proposed algorithm by
explicitly altering duty cycles of certain sensor nodes so as to fully support applications with stringent delay requirements to accomplish all
tasks. We then design a practical scheduling protocol based on proposed algorithms. We conduct extensive trace-driven simulations to
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validate the effectiveness and efficiency of our approach with various settings.

Index Terms—Wireless sensor networks, duty-cycling, data forwarding, schedulability

1 INTRODUCTION

AS an emerging and promising technique, wireless sen-
sor networks (WSNs) have spawned a variety of criti-
cal applications in practice, such as environmental
monitoring, data collection, object tracking [1], [2], [3], [4],
[5], [6], [7], etc. In most applications, sensor nodes are pow-
ered by batteries, while frequent replacements of such
power sources are normally prohibited [8]. To close the gap
between limited energy supplies of sensor nodes and the
long-term deployment requirement, recent research works
suggest to operate sensor nodes in the duty-cycling work
mode, where radio chips are not operating all the time.
Instead, they are controlled to alternate between the active
state and the dormant state. If the active state of each sensor
node accounts for only a small portion in the time domain,
e.g., <5 percent, such networks are referred to as low-duty-
cycling WSNs. As reported by recent studies [8], [9], [10],
[11], idle listening of radio is the major source of battery
drain in WSNs. The duty-cycling technique thus signifi-
cantly reduces the energy consumption of sensor nodes,
and as a result, dramatically prolongs the network lifetime.
Although the duty-cycling technique notably increases
the network lifetime, excessive challenges are introduced to
the packet forwarding efficiency and latency in the network.
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First, in duty-cycling networks, sensor nodes are not always
active. To forward one data packet, the sender needs to
hold the packet and wait until the receiver becomes active,
which leads to a relatively long per-hop transmission delay.
Such a unique per-hop delay in duty-cycling WSNs is
known as sleep latency. Due to this latency, sensor nodes
may not get adequate bandwidth to transmit packets in
time, and a data packet may suffer an extremely long delay
during the delivery from the source node to the destination
node. Second, due to the duty-cycling property, multiple
sensor nodes may simultaneously transmit packets to the
same receiver during its brief active time, which may incur
heavy packet collisions, leading to a further increased per-
hop latency. The problem can become even worse if 1) mul-
tiple data forwarding tasks with different source-destina-
tion pairs coexist in the network and each of those tasks has
its own time constraint, and 2) interference hinders concur-
rent transmissions of nearby wireless links.

There have been many attempts made for scheduling
packet forwarding to minimize the transmission delay in
duty-cycling WSNs. Most of existing works, however, take
relatively simple assumptions on network settings, e.g.,
routing path for each forwarding task is given in advance or
the interference between links are omitted when the net-
work duty cycles are extremely low [2], [12], [13]. None of
them tackles the scheduling problem with a general net-
work setting, i.e., considering the limitations and require-
ments in practical routing choices, interferences, etc. It has
been assumed that all transmission tasks can be scheduled
within their own deadlines in [12], while it is not true in
general duty-cycling WSNs. In particular, given a set of
source-destination pairs without specified routing paths,
due to duty cycle and interference limitations, not all
required data forwarding tasks are guaranteed to be sched-
uled within their respective delay constraints. Naturally, we
are interested in the questions what is the maximum number of
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tasks that could be completed within their deadlines and how to
work out such a schedule. These two questions essentially
query the fundamental capability of duty-cycling WSNs to
support real-time applications, which we call schedulabil-
ity. So far as we know, the raised questions are not well
understood yet.

In this paper, we investigate the multi-task schedulabil-
ity problem in duty-cycling WSNs thoroughly and make
the following contributions. We formally define the multi-
task schedulability problem, prove its NP-Hardness, and
propose an approximation algorithm. In particular, given a
set of data forwarding tasks, the proposed algorithm out-
puts a schedule to approximately maximize the number of
tasks that can be completed within their time constraints.
We analyze the performance bound and time complexity
of the proposed algorithm as well. In practice, some appli-
cations have stringent requirements to accomplish all data
forwarding tasks within their deadlines. To this end, we
examine how our algorithm can be extended to support
those applications by enforcing only a small number of
sensor nodes to increase their duty cycles. We further
introduce multi-task data forwarding protocol (MTDEF) for
practically operating networks to meet application needs.
We conduct extensive trace-driven simulations to verify
the effectiveness and efficiency of the proposed
approaches. The experiments demonstrate an urgent need
to develop efficient schedules for multi-task data forward-
ing. According to simulation results, the system perfor-
mance is notably improved by our solutions. To the best of
our knowledge, this is a pioneer work that explores the
schedulability problem in duty-cycling WSNs.

The rest of this paper is organized as follows: related
works are reviewed in Section 2. In Section 3, we for-
mally investigate the schedulability problem, and prove
its NP-Hardness. In Section 4, we present the approxi-
mate algorithm and in Section 5 we extend the algorithm
to adjust sensor duty cycles. In Section 6, we evaluate
our approach with extensive simulations. We conclude
in Section 7.

2 RELATED WORK

There exist a number of studies for scheduling data for-
warding tasks in WSNs. In [14], the authors propose a colli-
sion-free data aggregation protocol for distributed sensor
networks. Authors in [15] introduce a distributed algorithm
to calculate the schedule represented by a series of time
slots. In [16], the authors design an opportunistic schedul-
ing approach with delay constraints so as to maximize the
system throughput. For high data rate wireless sensor net-
works, [17] proposes a novel scheduling technique named
Dynamic Conflict-free schedule.

In the duty-cycling network context, authors in [13]
propose an opportunistic flooding protocol for informa-
tion dissemination. [2] introduces dynamic switch-based
forwarding (DSF). DSF achieves the optimized schedule
by using the dynamic programming technique. In a most
relevant work with this paper [12], the authors study
how to schedule multiple tasks such that the work load
can be balanced over the sensor network. The authors in
[18] propose a practical opportunistic routing scheme. In
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TABLE 1
Notations in the Problem Formulation
t Time index
T Working period
u,v Indices of sensor nodes
P, A set of slots within T for node u to open radio
n Total number of tasks in the network
Ci Delay constraint for task i
I Binary indicator which indicates whether links e,

and ¢, interfered with each other
Binary decision variable indicating whether u
transmits the data of task; to v at time ¢

[12], authors assume that the routing path for each task
is given in advance and the network has sufficient band-
width to simultaneously support all the tasks. Most
above existing works simply omit interference between
any two different links by assuming such interference is
negligible when the duty cycle of sensors is extremely
low. This work significantly differs from aforementioned
literatures as follows: given a set of source-destination
pairs without predetermined routing paths, due to duty
cycle and interference limitations, not all required data
forwarding tasks are guaranteed to be scheduled within
their respect delay constraints. Therefore, this paper
investigates a more fundamental and general scheduling
problem in duty-cycling WSNs. So far as we know, such
a study is still lacking in the community.

There are also a variety of works focusing on the duty
cycle adjustment in duty-cycling WSNs. In [19], the authors
introduce different approaches for real-time communication
in WSNs. They combine the duty cycle adjustment at indi-
vidual node and the placement of sink nodes to achieve a
hybrid system design. In [20], Dutycon is proposed to
achieve a dynamic duty cycle control for end-to-end (E2E)
delay guarantees in wireless sensor networks. In [21], the
authors investigate how to bound communication delay in
energy harvesting sensor networks. Unlike this paper, most
of them, however, focus on the duty cycle adjustment for
one-to-one or one-to-many data delivery in the network.

3 PROBLEM FORMULATION

In this section, we present the system model and mathemat-
ical formulation of the schedulability problem. We then ana-
lyze the hardness of the formulated problem. To facilitate
our discussion, key notations used in this section are tabu-
lated in Table 1.

3.1 System Model

In this paper, a wireless sensor network is modeled as an
undirected graph G = (V, E), where V and E represent the
sets of all sensor nodes and wireless links, respectively. In
duty-cycling WSNs, for the sensing purpose, sensor nodes
normally work on a periodical operation basis, i.e., the time
line of each sensor node is divided into working periods
with duration 7' (e.g., T' can be any common multiple of
durations of all sensor nodes). In one working period, T is
further divided into multiple time slots with equal length.
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Fig. 1. lllustration of a data forwarding task.
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For any sensor node u, it randomly selects several time slots,
recorded by a set P,, in which u activates radio to receive
data. In the remaining time slots of 7', sensor node v’s radio
is dormant unless it needs to send data. The random active-
state selection policy reduces the chance of interference or
collision due to concurrent transmissions from multiple sen-
sor nodes. After determining an active/dormant pattern in
one working period, sensor node v will repeat such a pat-
tern over its lifetime [2], [12], [13]. For simplicity of presen-
tation, the length of one time slot is set to 1, which is the
minimum time unit in the system.

Interference between two wireless links is characterized
by interference graph or conflict table [17], [22], which is the set
of all link pairs (e, e,), where e,,, ¢, € E and ¢, # e,, such
that the minimum distance between either endpoints of ¢,,
and e, is smaller than the interference range, i.e., links e,
and e, are interfered with each other. Particularly, we
denote I =1, if e,, and e, are interfered with each other;
otherwise, I:j;'l =0.

A task is formally defined as a data forwarding request
from a source node to a destination node without pre-calcu-
lated routing path. Consider n tasks in the network, each
task task;, 1<i<n, can be represented by a triple
(vs;, vy, ¢i), in which vy, v, and ¢; are the source node, desti-
nation node, and time constraint of task;, respectively. We use
N to denote the set of all tasks. A schedule for n tasks records
the time and the forwarding sequence for sensor nodes to
transmit data. In particular, z (¢) in the schedule repre-
sents that at time ¢, sensor node u sends the data packet of
task; to sensor node v. The schedule is feasible if 1) at any
time, a sensor node can either send or receive data, but not
both; 2) any sensor node cannot receive data from multiple
senders simultaneously; 3) concurrent transmissions should
not be interfered with each other. Furthermore, task; is suc-
cessfully scheduled, referring to as xfwd (t) =1, whereuisa
neighbor of vy, and ¢ < ¢;. '

We assume that sensor nodes are synchronized and each
node has a local view of the conflict table and neighbors’
working patterns. Fig. 1 illustrates a task (vg,vs,6) in an
example network. The data are generated at time 1 and
there are two possible routing paths to schedule this task:
Vg — V1 — VU — Us and Vg — V3 — U4 — Us. Given the
active/dormant pattern of each sensor node, only the latter
choice can successfully finish the task before its deadline.

3.2 Problem Formulation

The schedulability problem studied in this paper can be
formally described as follows: given a wireless sensor
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network with working period 7, the active/dormant pat-
tern P,, Vu € V, n tasks (v, v4;,¢;), i € N, where |[N| =n,
and the interference table, to derive a schedule so as to
maximize the number of tasks that can be successfully
scheduled within their deadlines. Formally, denote
z! (t) as an binary decision variable for u,v €V and
1 < i < n. The decision variable xi,v(t) =1, if sensor node
u transmits the data of task; to sensor node v at time ¢;
otherwise, ! (t) =0. Therefore, for 1<t <c¢", where
¢ = maxj<;<n{ci}, we have

n_ ¢

SN A, 0, (1)

i=1 t=1 UENW

n

s.t. SN @)+, ) <LuveV (2

i=1 ueN,

2 (#)=0,t| T+1¢ P u,veV (3)

u,v

20+ 100 (1) <1 (), (W W) B (4)

Uyv u v

Ci

S w0 =3 Y d B uveTieN (5)

t=1 veNy, t=1 ueN,

3311 t)=0,uecV,i#jiecN, (6)
where N, denotes the neighborhood set of sensor node u
and V; represents V/{vs,,vq }. Eq. (2) ensures that at any
time slot ¢, a sensor node can only send or receive one
packet, but not both. Eq. (3) restricts that sensor node u
can transmit data to node v only when v is active. Eq. (4)
guarantees that transmissions for task; and task; are not
interfered with each other. Eq. (5) refers to flow balance
equations on all intermediate forwarding nodes for each
task;. Eq. (6) ensures that any destination node j does
not receive the data that are not designated to itself, i.e.,
vg;. The objective function in Eq. (1) is to maximize the
total number of tasks that can be successfully scheduled.
In Fig. 2, we provide an instance of the schedulability
problem with four tasks. The optimal strategy can at
the most schedule three tasks: v — v5(4) — vs(6),
vy — v5(2) — vg(4), and vy — v7(4) — vy(6), where the
number in the bracket indicates the time when the corre-
sponding node receives the data. Different strategies
result in a various maximum number of tasks that can
be accomplished successfully. For example, if we apply
the greedy strategy to schedule as many tasks as possi-
ble at time 2, or we apply the greedy strategy to sched-
ule the task with the smallest delay constraint first at
time 6, the maximum number of tasks can be completed
is only 2. As a matter of fact, the schedulability problem
is generally hard and we will examine its hardness in
the next section.
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Fig. 2. An instance of the schedulability problem.

3.3 Hardness of the Schedulability Problem

To understand the hardness of the schedulability problem,
we define the decision schedulability (DS) problem as: given
an integer k < n, does the optimal solution of the original schedul-
ability problem equal to k? We will prove that DS problem is
NP-Complete.

Lemma 1. The DS Problem is NP-Complete.

The detailed proof is given in Appendix A, which can
be found on the Computer Society Digital Library at
http:/ /doi.ieeecomputersociety.org/10.1109/TPDS.2013.65.
Thus, we have

Theorem 1. The schedulability problem is NP-Hard.

4 PRroTocoL DESIGN FOR SCHEDULABILITY

Since the schedulability problem is NP-hard, we intro-
duce a heuristic algorithm called Heuristic Algorithm for
Schedulability (HAS) in this section. The basic idea of
HAS is to jointly consider both the time urgency of tasks
and the interference between wireless links, such that
urgent tasks through wireless links not interfered are
preferred to be forwarded. Based on our proposed algo-
rithm, we further design a multi-task data forwarding
protocol for duty-cycling WSNs in the next section.

4.1 HAS Algorithm Design

The scheduling result for any sensor node v is an 1 x ¢*
vector, in which the entry in column & can be expressed
by a triple (a,i,u),, where i and v indicate task and
neighbor indices respectively, and a € {-1,0,+1}. If
a=0, 7 and u are marked as NIL, and sensor node v
takes no action at time k. Sensor node v sends the data
of task; to neighbor u, if a = —1; otherwise, it receives
the data of task; from neighbor u. The objective of our
algorithm is to properly set entries of the scheduling vec-
tor for each sensor node, such that the total number of
tasks that are successfully scheduled can be approxi-
mately maximized.

The detail of the proposed HAS algorithm is given in
Algorithm 1. The scheduling process is generally controlled
by three sets: Sqj, £cqy and 7 4. More notations used for the
protocol design are summarized in Table 2:
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TABLE 2
Notations in the Algorithm Design

Ll All sensor nodes having data to forward

Sedg All potential outgoing links from .7

Tend Nodes in .%,; allowed to send data

Ppsna | Nodes to be transmitted with higher priority
Zpedg | Transmissions after the augmenting operation
W(inira) | Weight for the transmission from v to u for task;
Iviy) | All wireless links interfered with link ((v,i),u)

A System parameter in Eq. (7)

e At the beginning of a time slot, S,; contains all the
sensor nodes that have data to forward. More pre-
cisely, an element in S, can be represented as (v, ),
indicating sensor node v holding the data packet of
task; to send. Initially, Sq; contains (vs;,7), 1 <4 < n.

e For each (v,i) in Sy, edges between node v and all
its neighbors with smaller hop counts to v; com-
pared with v will be included in &£.4,. In particular,
an element in .4, can be expressed as ((v,i),u),
where u is the neighbor of v. Note that £.4, contains
all potential outgoing links from S,; in the current
time slot.

e 7,0 will contain certain sensor nodes in S,; that
are allowed to send data in the current time slot.
How to make the scheduling decision will be
introduced next.

Algorithm 1: The HAS Algorithm

: G=(V,E) and n tasks task;, 1 <i<n.

Output: The scheduling vectors.

Fatt = Ui<ical (s ) s 1 15

2 éaedgv %nda @psndagpedg +— NULL;

3 Add a virtual terminal v; in G and connect v; to each
destination node;

4 Label the hop count of each node by BFS starting from
Vd;

s while r < ¢* and .%;;; # NULL do

if is_Aug is true then

Input

—

=)

=

| DutyCycleAd just( P psna; Lpedg»t):

8 DataForwardSchedule( P psna, Lpedg);
9 t=t+1;

As aforementioned, the HAS algorithm considers both
the time urgency of tasks and the interference influence of
wireless links during scheduling. Particularly, at the begin-
ning of time slot ¢, the time urgency of task; can be charac-
terized by ¢; —t, which measures the available time left
before the deadline. On the other hand, if sender u sends
the data packet of task; via link ((v,),u), the corresponding
interference influence can be captured by |I((,; .|, where
I((v5y,u) is the set including all wireless links interfered with
link ((v,4),u) and |I(.)| represents the size of I().)-
Thus, for each element ((v,%),u) in .4, We can define its
weight as follows:

Wiy = M — 1) + (1= MLyl (7)
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where X € [0,1]. Although we combine the time urgency
and the interference influence through a linear relationship
in Eq. (7), such a simple linear relationship is later shown to
be quite effective in Section 6. To determine which sensor
nodes are allowed to transmit in the current time slot, all
edges in &.q, are placed in a priority queue following an
increasing order based on Eq. (7). We repeat following oper-
ations until the priority queue becomes empty:

e Pop out the first edge (e.g. ((v,4),u)) in the priority
queue.
Delete element (v, i) from S,; and record it in 7 .
Delete all the edges that are interfered with ((v, %), u)
from both £.4, and the priority queue.

After the priority queue becomes empty, each element
(v, 1) included in 7 4,4 can send data in the current time slot,
and the desired link for transmission is recorded in 4.
Moreover, elements left in S, fail to be scheduled at the
current time. The detailed interpretation can be found in
Algorithm 2, which serves as a sub-route of Algorithm 1.
Based on 7 4, £cqg and Sy, the scheduling vector of each
node for the current time can be updated accordingly.

Algorithm 2: DataForwardSchedule( P psna, ZLpedg)

U L — Fa — gpsnd’ Tina < NULL;

2 foreach (v,i) in 7, do

3 foreach neighbor u of v with a smaller hop count do

4 if u is active at time t then

5 L | add edge ((v,i),u) into &yg;

6 delete edges interfered with links in .Z)eq, from &,qg;
7 foreach edge ((v,i),u) in &4, do

8 calculate W,y ) = Mei —1) + (1 =N) L) |5

9 | push edge ((v,i),u) into a priority queue Q;

10 while priority queue Q is not empty do

11 | pop out the first edge (({v,i),u)) from Q;

12 if node u is the destination node vy, for task; then
13 ‘ delete (v,i) from .%;;

else

14 | delete (v,i) from ., and record it in Fg,q;

15 | delete all the edges interfered with ((v,i),u) from
both &4, and Q;

16 S — it Y Tsnds
17 update scheduling vectors based on Fy,4, &eaq, and 5

Note that lines 6 and 7 in Algorithm 1 are reserved for the
duty-cycling adjustment operation which we will introduce
in the next section. At the current stage, line 6 and line 7 in
Algorithm 1 will not execute, and both P,,,s and £,.q4, equal
to NULL. We will introduce them in Section 5.

4.2 Performance Lower Bound of HAS

The rationale behind HAS is to extend the original graph
G = (V,E) in the time domain to implicitly form another
graph G' = (V', E’), and the scheduling result can be con-
sidered as the maximum number of non-interfered paths
explored in G'. More precisely, G’ can be organized into ¢*
columns and each column corresponds to one time slot. In
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particular, any column ¢ contains all the nodes in S, at the
beginning of Algorithm 2’s tth loop in Algorithm 1. Edges
in E' crossing columns ¢ and ¢ + 1 include all elements in
Eedq at the beginning of Algorithm 2’s tth loop. Initially, the
first column only contains n original source nodes. More-
over, if a destination v,y appears in column ¢ and there are k
sources designated to v; (not exceed their time constraints
yet until ¢), we artificially place v; in the column ¢+ 1 as
well and add k non-interfered links between these two v s.
By doing so, a successful schedule result for an arbitrary
task; can be represented by a non-interfered path in &,
starting from v, in the first column and ending at v, in a
¢;th column. Clearly, the length of one path explored in G’
can be measured by the time constraint of the task, which
will facilitate our later analysis.

In HAS, if we only consider the time urgency of tasks, i.e.,
A =1in Eq. (7), the algorithm is essentially equivalent to
select the maximum number of non-interfered paths with
least time constraints or path lengths in G' = (V', E').
Although, as we will see in Section 6, such an extreme set-
ting fails to provide the best scheduling result, it offers us a
performance lower bound for executing Algorithm 1 with
the proper setting in general. How to configure A is post-
poned to Section 6. In the rest of this section, we exploit the
performance lower bound of HAS.

We introduce the concepts of heavy weight and light
weight paths in G' = (V',E’). A heavy weight path is
defined as the one whose time constraint is larger than /,
and all remaining paths are light weight paths. { will be
specified and adjusted later in Lemma 4. For simplicity
of presentation, we denote non-interfered paths returned
by the optimal strategy and our proposal as OPT and
HAS, respectively. We define that:

o [ isthe largest number of interfered links in network.
e disas the maximum node degree in the network.
e m isthe number of destination nodes, where m < n.

Lemma 2. OPT contains no more than |E'| /1 heavy paths.

Proof. We prove it by contradiction. Non-interfered paths in
OPT are at least edge-disjoint paths. If OPT contains
more than |E’|/l heavy paths, the total number of edges
involved will be greater than |E’|, which is a
contradiction. 0

Lemma 3. OPT contains no more than |HAS| x 1 x I light
weight paths.

Proof. Denote pyas as the path interferes one fixed light
weight path popr in OPT for the first time. Thus, all
of previously selected edges in HAS do not interfere
with popr, which indicates that both pyas and popr
can be selected by our algorithm as well. Since HAS
chooses ppag, which implies that the time constraint
of prag is smaller than that of popr. Thus, the weight
of pras is less than [ since popr is a light weight path,
implying prpag is a light weight path as well. On the
other hand, each edge of one light weight path
selected in HAS interferes with I different paths in
OPT in the worst case. Thus, OPT contains no more
than [HAS| x I x I light weight paths. O

Lemma 4. The approximation ratio of the HAS algorithm

with A = 1is O(,/[E]).
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Proof. Since a path must be either a heavy weight or light
weight path, based on Lemmas 2 and 3, we have

|OPT| < |E'|/l+ |[HAS| x I x I. (8)
By setting [ = /| E’|, we can rephrase Eq. (8) as follows:

|OPT| < |E'|/I|E'| + |HAS| x \/|E'| x I
= |OPT| <2 x I x/|E| x |[HAS).

The last inequality holds as [HAS| > 1and I > 1. ]
Lemma 5. |E| is no larger than O(n[(1 + d)° " + ¢*m)).

Proof. As aforementioned, the first column in G’ contains n
original source nodes. Thus, the number of nodes in the
second column is no more than n +n x d. Then, the
number of edges crossing the first and the second col-
umn is no more than n(1 4 d). In general, the number of
edges crossing column ¢ and column ¢ + 1 is less than or
equal to n(1 4 d)". On the other hand, due to the destina-
tion nodes, the number of extra edges added between
column ¢t and ¢ + 1 is less than m x n. Therefore, the total
number of edges in |E'| is O(n((1+d)° —1)/d+
c'mn) ~ O(n[(1 4 d)° " + ¢*m)). O
Lemma 5 shows that |E'| is only determined by the num-

ber of source nodes and destination nodes, time constraints

and network density, which is independent with |E| in the
original graph. As we will show that HAS performs much
better when a proper X is selected instead of simply setting

A = 1. Based on Lemmas 4 and 5, we already have a perfor-

mance low bound:

Theorem 2. The number of tasks scheduled by HAS is

Q(\/ n[(14+d)” '+ ¢*m])) approximated compared to
|OPT).

5 DutYy CYCLE ADJUSTMENT

In previous two sections, we have studied the schedulability
problem in duty-cycling WSNs and proposed the HAS
problem to approximately maximize the total number of
tasks that can be scheduled successfully. However, in many
networks, especially in low-duty-cycling WSNs, sensor
nodes may not acquire adequate bandwidth to forward
packets in their short active time. As a direct consequence,
only a small number of tasks can be successfully managed
within deadlines even with the optimal scheduling policy,
which may fail to meet the stringent application require-
ments. Representative applications with stringent data
delivery requirements include the critical-mission data col-
lection [3], multi-objective real-time tracking [23], voice over
senor networks [24], network-wide localization [25], [26],
and so on. Tailored for supporting such a type of applica-
tions, in this section, we discuss how we can slightly aug-
ment the duty cycles of certain sensor nodes, such that most
tasks can be finished within their time constraints.

How to optimally perform duty-cycle augmentation,
ensuring that the total number of augmented time slots can
be minimized, meanwhile all the tasks can be finished
within their deadlines, can be proved to be NP-hard. In this
section, we demonstrate that how we can extend our HAS
algorithm to approximately maximize the number of tasks
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that can be scheduled in time via augmenting duty cycles of
certain sensor nodes. Since the duty-cycle augmenting oper-
ation increases the energy consumption of the network and
the costs of communications and computations, we provide
a switching variable is_Aug to control whether the duty-
cycle augmenting operation is enabled or not in Algorithm
1. If is_Aug is true, the augmenting operation will be per-
formed. The detail of the duty-cycle augmenting operation
is given in Algorithm 3, in which we introduce two new
sets: Ppsna and Leqy:

e Pyena is a sub-set of S,;. Compared with those ele-
ments in S, but not in Py,q, items (v,7) in Ppsna
should be transmitted in the current time slot, while
there is no receiver active. Therefore, they will be
scheduled via the duty-cycle augmenting operation.
How to determine P,,q will be introduced soon.

e Each element ((v,7),u) in £,4, indicates that node v
will send the data of task; to node u after the aug-
menting operation, where (v, i) € Ppgnd.

Algorithm 3: DutyCycleAd just( P psna, Lpedg:t)
1 ﬁpsnd <«— NULL; gpedg <—— NULL;
2 foreach element (v,i) in S, do

3 if [(c; —t) — (level, — 1)] < 6 and v is not active
then
4 select ((v,i),u) with the smallest |/, |, where
u is v’s neighbor;
5 ypsnd = t@psnd U {<V7 i>};
6 Lpedg = Lpedg UL ((v,i),u) };
7 foreach ((v,i),u) in Zpeqq do
8 activate the radio of node u at ;
9 update the 7-th entry in the scheduling vector of u
| as (+1,4,u, 1)

To determine which element (v,i) in S,; needs to be
scheduled through the duty-cycle augmenting operation,
we consider two aspects as follows: 1) the time urgency, i.e.,
¢; —t, which measures the available time left before the
deadline of the task; and 2) how many time slots are needed
at least for the data packet of the task to be received by the
destination, i.e., level, — 1, where level, is the hop count of
node v. Similar to Eq. (7), we define

Wi = (¢ —t) — (level, — 1). 9)

It is easy to verify that first, as time goes by, W
becomes smaller; second, when wy,;; is small, task; is
more unlikely to be accomplished in time. Therefore,
when w,;y becomes sufficiently small (e.g., smaller than
a threshold o), even all neighbors of node v are dormant,
we need to artificially augment one neighbor such that
the data of task; can be sent out immediately.

In Section 4, entries of each scheduling vector are
expressed by (a,i,u),. To support the duty-cycle augment-
ing operation, entries in a scheduling vector will be
extended to an quadruple (a, %, u, b);, where the meaning of
a,i,u, k is the same as before and b € {1,0}. If b = 1, sensor
node v will be enforced to be active at time k; otherwise, v
follows its original active/dormant pattern.



LI ET AL.: UNDERSTANDING MULTI-TASK SCHEDULABILITY IN DUTY-CYCLING SENSOR NETWORKS

The detailed algorithm execution can be found in
Algorithm 3. Note that, if the duty-cycle operating is dis-
abled, both P,,q and L,.q, are NULL, which do not dis-
turb the execution of the original HAS algorithm.

5.1 Protocol Design and Description

Based on the proposed algorithms, including Algorithms
1 to 3 in the HAS algorithm, we design a multi-task data
forwarding protocol for duty-cycling wireless sensor net-
works in this section. The MTDF protocol consists of
three phases: scheduling generation, scheduling dissemina-
tion and node working.

The schedule generation phase generates a scheduling vec-
tor for each sensor node v, in which the kth entry (a, 7, u,b),
indicates the time when node v should send (receive) the
data of task; to (from) node u. An organizer node (e.g., the
sink) is required to execute the HAS algorithm to obtain
the desired scheduling result. If the organizer is aware of
all the information of n tasks initially, it simply disseminates
the generated scheduling vector to each corresponding
node in the scheduling dissemination phase; otherwise, the
information of tasks needs to be sent to the organizer before
the algorithm execution. Note that a node only needs to
receive its own scheduling vector rather than the scheduling
vectors of all predecessors. In addition, the scheduling dis-
semination phase does not cover the nodes that are involved
in none of n tasks. Therefore, the communication cost can be
largely restricted. When all the sensor nodes involved in the
data forwarding of n tasks obtain their scheduling vectors,
they start to forward data according to the harvested sched-
ules. The behavior of a sensor node u can be described as
follows: at the beginning of each time slot ¢, node v checks
whether the last item b {a, i, u, b), is 1. If so, node v activates
its radio; otherwise, it follows its original active/dormant
pattern. Once the radio is activated at time ¢ and the first
item @ in (a,?,u,b), is —1, node v sends the data of task; to
node u. If the transmission is successful, node v deletes the
data from its buffer. In addition, if the first item a in
(a,i,u,b), is +1, node v receives the data of task; from node
u; otherwise, node v keeps dormant.

5.2 Protocol Practical Issues

To make the proposed the MTDF protocol available in a
variety of practical applications, we still need to address fol-
lowing two practical issues:

Local time synchronization: In Sections 4 and 5, we assume
that sensor nodes in the network are synchronized. As a
matter of fact, it is sufficient for sensor nodes to know the
active/dormant patterns of its neighbors, thus the global
synchronization is not a compulsory. According to [27], an
accuracy of 2.24 us local synchronization can be achieved
by simple and low-cost techniques with the cost of exchange
several bytes among neighbors every 15 minutes. Since one
time slot is typically longer than 10,000 us [28], the achieved
2.24 ps accuracy is far more than sufficiency. In addition, a
transmission in the network is not required to start at the
beginning of an active slot, this further relaxes the require-
ment for accuracy of time synchronization. If initial clock
offset is corrected, nodes can also be synchronized via [29].
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Fig. 3. Harvested networking topology from GreenOrbs.

Unreliable wireless links: For a typical TinyOS packet
with a normal packet size, e.g., 50 bytes, a sensor node
with CC2420 radio can transmit the same packet more
than 10 times within one active time slot. It implies that,
even though wireless links are usually unreliable, as
long as the link quality between two nodes are
not extremely low (e.g., larger than 30 percent), at least
99 percent of packets can be successfully transmitted
within an active time slot. As existing link estimation
protocols can filter links with low link qualities [2], [30],
the requirement of at least 30 percent link quality is rea-
sonable in current WSNs.

6 PERFORMANCE EVALUATION

In this section, we evaluate the scheduling performance
of MTDF in comparison with the recent proposed SAG'
[12] and the best effort algorithm (BEA). Given predeter-
mined routing paths for each task, SAG derives schedul-
ing results by a load balancing technique to fully utilize
the network bandwidths, and each sensor node in BEA
greedily transmits packets to the receiver waking up ear-
lier than other receivers. To test a realistic network set-
ting, the simulations are conducted with a real trace
harvested from GreenOrbs [1]. GreenOrbs is a long-term
and large-scale wireless sensor network deployed in the
forest, which contains 433 nodes and has continuously
worked over one year. From the harvested trace over six
months, we observe that the dynamics of wireless links
result in fluctuating of the network topology. To mimic
the link estimation for real data transmissions, we filter
out lossy links with small RSSI values. In particular,
links with the packet reception ratio (PRR) lower than 30
percent or RSSI smaller than —80 dB are excluded by the
filter. By doing so, we obtain a stable network topology
for simulations in Fig. 3. The topology includes 433

1. Since SAG requires that routing path for each task should be
given in advance, we perform a BFS search and assign the shortest path
for each source-destination pair before the algorithm execution.
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nodes and 6,567 links with relatively good quality. The
simulation results show that there is an urgent need to
introduce an efficient strategy for multi-task scheduling
in duty-cycling WSNs, especially with high data rates
and low duty cycles. Our proposed MTDF approach dra-
matically improves the system performance.

6.1 Experimental Setting
In the trace, sensor nodes are deployed in a 700 mx
200 m rectangle field with the default transmission
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power, and the interference range is set as twice as the
transmission range [22]. The buffer size is set based on
the Telosb mote [31] and link qualities are quantified
according to the long-term pair-wise link measurements.
Buffer occupancy and link losses are recorded in the
simulations. One time slot is set to 10,000 us [21], [28].
We investigate the impact of the duty cycle by varying
the duty cycle from 10 to 100 percent and the default
duty cycle is 30 percent. In addition, impacts of the num-
ber of tasks, delay constraints, data rates and system
parameters are also examined. We use packet reception
ratio to qualify various scheduling algorithms, which is

PRR =
No. of pkts received by destinations within deadlines

No. of pkts sent by source nodes

6.2 Experimental Results

From Figs. 4,5,6,7,8,9,10, and 11, we investigate the multi-
task scheduling without duty-cycling augmentation. The
duty-cycling augmenting operation is examined by Figs. 12,
13,14, and 15.
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6.2.1 Impact of the System Parameter A

In Fig. 4, we vary A from 0 to 1 and depict corresponding
PRRs. Fig. 4 reveals that if we merely focus on the time
urgency of tasks (A =1) or the interference influence of
wireless links (A = 0) during scheduling, the system perfor-
mance deteriorates. In particular, when A =1, the perfor-
mance of MIDF is much worse compared with other
proper settings that we have mentioned in Section 4.2
already. From Fig. 4, we can notice that the best perfor-
mance is achieved with the consideration of both the time
urgency and the interference influence, which is much bet-
ter above the performance lower bound we derive with
A = 1lin Section 4.

6.2.2 Impact of the Number of Tasks

In this set of simulations, the number of tasks varies from 20
to 100, and each source node has 20 data packets to deliver.
The duty cycle is set to be 30 percent and the average time
constraint is 450. As the number of tasks increases, we
examine a series of performance metrics, illustrated from
Figs.5,6,and 7.
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Fig. 5 depicts how PRR is impacted by the number of
tasks. With a growing number of tasks that are supported in
the network, PRR decreases with all three approaches.
However, among all three algorithms, MTDF experiences
the slowest performance degradation. The PRR of MTDF
achieves around 0.8 or above in all cases, while PRRs of
SAG and BEA drop below 0.4 when n = 100. Compared
with SAG and BEA, the performance improvement achieved
by MTDF is as high as 50.2 and 58.8 percent, respectively.
The rapid performance drop of SAG is mainly because SAG
has subtle different optimization objectives, where SAG
focuses more on alleviating the routing congestions for load
balance. In Fig. 6, we further investigate the average delay
of each successfully scheduled task in different systems.
Due to limited network resources, the average delay is
expected to become longer as the number of tasks increases.
From Fig. 6, we observe that both SAG and MTDF have
much shorter delay than BEA, while MTDF outperforms
SAG with all settings of task numbers. Figs. 5 and 6 jointly
demonstrate that MTDF not only schedules the largest num-
ber of tasks within desired deadlines, but also achieves the
shortest average delay to schedule those tasks.

As the number of tasks becomes larger, the average
buffer usage also increases. BEA leads to the lowest buffer
occupancy as depicted in Fig. 7. When the number of tasks
is small in the network, SAG and MTDF have similar buffer
occupancy performance. Nevertheless, SAG might have
slightly smaller buffer usage since its routing path is longer
than MTDF on average. When the task number is large (i.e.,
>80), the buffer usage of MTDF is apparently larger than
SAG mainly because SAG approaches its network capacity
earlier than MTDF. The scheduling assignment might get
dropped at some intermediate nodes due to buffer over-
flow. Those missing assignments in SAG are not included
into the “buffer occupancy” in Fig. 7.
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6.2.3 Impact of Duty Cycle

As the duty cycle increases, the bandwidth inside the net-
work will increase as well. As a direct consequence, more
tasks have the opportunity to be scheduled before their time
constraints. As shown in Fig. 8, compared with BEA, PRRs
of both SAG and MTDF grow up rapidly with the increased
duty cycle. The improvements achieved by SAG and MTDF
are up to 53.3 and 61.7 percent, respectively. Meanwhile,
MTDF outperforms SAG 16.4 percent on average. Due to
the link loss, the PRR of MTDF fails to achieve 1 even when
duty cycle is close to 100 percent. Fig. 8 explicitly suggests
the need of developing such an efficient multi-task schedul-
ing algorithm for low-duty-cycling WSNs.

6.2.4 Impact of Data Generation Rate

The data generation rate can be adjusted by changing the
number of data packets generated for each task. As data
generation rate increases, the available network resources
to support multiple tasks become lean. In addition, due
to more serious channel contention and interference,
RPP is expected to significantly decrease. In Fig. 9, the
decreasing of PRR for BEA, SAG, and MTDF is 53.6,
48.1, 35.9 percent, respectively. MTDF experiences the
slowest performance degradation. Fig. 9 further implies
that when the data rate is high, the need for an efficiency
multi-task scheduling is also urgent.

Fig. 10 reveals that there is no significant delay variance
when data generation rate increases in the network. Both
SAG and MTDF outperform BEA in all settings. In addition,
MTDF can achieve a shorter average delay compared with
SAG. According to statistics, the average delay performance
improvement of MTDF is 12 percent.

6.2.5 Impact of Average Time Constraint of Each Task

In Fig. 11, we vary the average time constraint of each
task from 300 to 500 and illustrate the results. Fig. 11
shows that MTDF achieves the best PRR performance
compared with SAG and BEA, and the performance
improvements are up to 59.1 and 66.9 percent, respec-
tively. In addition, we can observe that both SAG and
BEA are more sensitive to the time constraint than
MTDF. Statistics show that the PRR reduction of MTDF,
SAG, and BEA is 28.8, 63, and 65 percent, respectively.
MTDF experiences the smallest PRR reduction.

6.2.6 Impact of System Parameter o

From Figs. 12, 13, 14, and 15, we investigate the schedul-
ing performance in low-duty-cycling networks with the
duty cycle augmenting approach discussed in Section 5.
Average Number of Augmentation in Figs. 12, 13, and 14 is
defined as the ratio of the extra active time slots in one
working period and the original working period 7.
Essentially, Average Number of Augmentation character-
izes the energy cost that the network pays for achieving
a high PRR in low-duty-cycling WSNs. In Fig. 12, the
duty cycle of each sensor node is set to be 10 percent.
There are 40 tasks in the network and the data rate of
each source node is 20. From Fig. 8, we know that the
PRR of MTDF is around 40 percent in such a network,
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and in this simulation, we require that at least 95 percent
data should be received by destination nodes within
their deadlines (we do not require a 100 percent PRR as
it may not be feasible due to link loss). Fig. 12 shows
that to achieve a high PRR, involved sensor nodes need
to augment a substantial number of extra time slots. In
this simulation, this number is around 60 percent. There-
fore, Fig. 12 implies that the desired PRR in applications
should be determined with the consideration of both the
importance of the harvested data and the energy con-
sumption of the network. The tradeoff between these
two aspects will serve as a promising future work of this
paper. On the other hand, the threshold o for Eq. (9)
should be chosen carefully. In the rest of this section, o
is set to be 7, as suggested in Fig. 12.

6.2.7 Impact of Duty Cycle Augmentation

Since the original SAG does not consider the duty cycle
augmentation, we transplant our duty cycle adjustment
module into SAG for a fair comparison. On the other
hand, as SAG cannot achieve an adequately high PRR,
we relax the requirement of PRR from 95 to 75 percent
in this section. BEA is not included in the comparison
since its PRR fails to be above 75 percent even with 100
percent duty cycles of sensor nodes.

As the number of tasks increases, more time slots should
be activated in the network. Fig. 13 indicates that to achieve
the same PRR, MTDF can augment less number of time
slots than SAG. From statistics, the energy saved by MTDF
is up to 31.2 percent compared with SAG. On the other
hand, if the initial duty cycle of each sensor node becomes
larger, the number of time slots to be augmented should
become smaller accordingly. As expected, MTDF augments
less number of time slots than SAG in Fig. 14. On average,
MTDF outperforms SAG 45.3 percent.

Another advantage of the duty cycle augmentation is to
reduce the end-to-end data forwarding delay. As sensors
become active more frequently, the one-hop sleep latency
will decrease. As a result, the overall E2E delay decreases as
well. In Fig. 15, we indeed observe such a phenomena for
both MTDF and SAG, while MTDF can reduce more E2E
delay compared with SAG.

7 CONCLUSION AND FUTURE WORK

In this paper, we investigate the multi-task schedulability
problem in duty-cycling WSNs. We mathematically formu-
late the schedulability problem, prove its NP-Hardness [32],
and propose an approximate algorithm with the analysis on
performance bound and complexity. We further extend our
algorithm by augmenting duty cycles of certain sensor
nodes to support the applications that stringently require to
collect approximately all data from the network within
deadlines. Proposed algorithms are incorporated in a practi-
cal protocol named MTDF for operating over actual sensor
networks. We conduct extensive trace-driven experiments
to evaluate the performance of our proposed protocol and
algorithms. In the future, we plan to fully implement
MTDF with a prototype system and examine the system
performance in practical networking environments. We are
particularly interested in addressing the uncertainty of the
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node-connectivity and link-interference information used in
the scheduling due to network dynamics.
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