136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1,

JANUARY 2014

IMGPU: GPU-Accelerated Influence
Maximization in Large-Scale Social Networks

Xiaodong Liu, Mo Li, Member, IEEE, Shanshan Li, Member, IEEE,
Shaoliang Peng, Member, IEEE, Xiangke Liao, Member, IEEE, and
Xiaopei Lu, Student Member, IEEE

Abstract—Influence Maximization aims to find the top-K influential individuals to maximize the influence spread within a social
network, which remains an important yet challenging problem. Proven to be NP-hard, the influence maximization problem attracts
tremendous studies. Though there exist basic greedy algorithms which may provide good approximation to optimal result, they mainly
suffer from low computational efficiency and excessively long execution time, limiting the application to large-scale social networks. In
this paper, we present IMGPU, a novel framework to accelerate the influence maximization by leveraging the parallel processing
capability of graphics processing unit (GPU). We first improve the existing greedy algorithms and design a bottom-up traversal
algorithm with GPU implementation, which contains inherent parallelism. To best fit the proposed influence maximization algorithm
with the GPU architecture, we further develop an adaptive K-level combination method to maximize the parallelism and reorganize the
influence graph to minimize the potential divergence. We carry out comprehensive experiments with both real-world and sythetic social
network traces and demonstrate that with IMGPU framework, we are able to outperform the state-of-the-art influence maximization
algorithm up to a factor of 60, and show potential to scale up to extraordinarily large-scale networks.

Index Terms—Influence maximization, GPU, large-scale social networks, IMGPU, bottom-up traversal algorithm

1 INTRODUCTION

SOCIAL networks such as Facebook and Twitter play an
important role as efficient media for fast spreading
information, ideas, and influence among huge population
[12], and such effect has been greatly magnified with the
rapid increase of online users. The immense popularity of
social networks presents great opportunities for large-scale
viral marketing, a marketing strategy that promotes products
through “word-of-mouth” effects. While the power of social
networks has been explored more and more to maximize the
benefit of viral marketing, it becomes vital to understand how
we can maximize the influence over the social network. This
problem, referred to as influence maximization, is to select
within a given social network a small set of influential
individuals as initial users such that the expected number of
influenced users, called influence spread, is maximized.
The influence maximization problem is interesting yet
challenging. Kempe et al. [12] proved this problem to be
NP-hard and proposed a basic greedy algorithm that
provides good approximation to the optimal result.
However, their approach is seriously limited in efficiency
because it needs to run Monte-Carlo simulation for

e X. Liu,S. Li, S. Peng, X. Liao, and X. Lu are with the School of Computer,
National University of Defense Technology, No. 147 Yanwachi Main
Street, Changsha, Hunan 410073, China. E-mail: {liuxiaodong, shanshanli,
shaoliangpeng, xkliao, xiaopeilu}@nudt.edu.cn.

e M. Li is with School of Computer Engineering, Nanyang Technological
University, N4-02c-108, 50 Nanyang Avenue, 639798 Singapore.
E-mail: limo@ntu.edu.sg.

Manuscript received 7 June 2012 ; revised 26 Nov. 2012; accepted 8 Jan. 2013;
published online 14 Feb. 2013.

Recommended for acceptance by S. Papavassiliou.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-06-0539.
Digital Object Identifier No. 10.1109/TPDS.2013.41.

1045-9219/14/$31.00 © 2014 IEEE

considerably long time period to guarantee an accurate
estimate. Although a number of successive efforts have
been made to improve the efficiency, state-of-the-art
approaches still suffer from excessively long execution
time due to the high-computational complexity for large-
scale social networks.

On the other hand, graphics processing unit (GPU) has
recently been widely used as a popular general-purpose
computing device and shown promising potential in
accelerating computation of graph problems such as
breadth first search [9] and minimum spanning tree [20],
due to its parallel processing capacity and ample memory
bandwidth. Therefore, in this paper, we explore the use
of GPU to accelerate the computation of the influence
maximization problem.

However, the parallel processing capability of GPU can
be fully exploited in handling tasks with regular data access
pattern. Unfortunately, the graph structures of most real-
world social networks are highly irregular, making GPU
acceleration a nontrivial task. For example, Barack Obama,
the U.S. president, has more than 11 million followers in
Twitter, while more than 90 percent Twitter users’ follower
number is under 100 [13]. Such irregularities may lead to
severe performance degradation. The main challenges of full
GPU acceleration lie in the following aspects. First, the
parallelism of influence-spread computation for each possi-
ble seed set is limited by the number of nodes at each level.
Therefore, the computational power of GPU cannot be fully
exploited if we directly map the problem to GPU for
acceleration. Second, as the degree of nodes in most social
networks mainly follow a power-law distribution, severe
divergence between GPU threads will occur during influ-
ence-spread computation, seriously degrading the overall
performance. Third, due to the irregular nature of real-world

Published by the IEEE Computer Society

LIU ET AL.: IMGPU: GPU-ACCELERATED INFLUENCE MAXIMIZATION IN LARGE-SCALE SOCIAL NETWORKS 137

social networks, the memory accesses show poor spatial
locality, making it hard to fit the GPU computational model.

To address the above challenges, we propose a GPU-
accelerated influence maximization framework, IMGPU,
which aims at fully leveraging the parallel processing
capability of GPU. We first convert the social graph into a
directed acyclic graph (DAG) to avoid redundant calcula-
tion. Then a Bottom-up traversal algorithm (BUTA) is
designed and mapped to GPU with CUDA programming
model. Our approach provides substantial improvement to
the existing sequential approaches by taking advantage of
the inherent parallelism in processing nodes within a
social network. Based on the feature of the influence
maximization problem, we propose a set of adaptive
mechanisms to explore the maximum capacity of GPU and
optimize the performance of IMGPU. In particular, we
develop an adaptive K-level combination method to
maximize the parallelism among GPU threads. Meanwhile,
we reorganize the graph by level and degree distribution
to minimize the potential divergence and coalesce the
memory access to the utmost extent. We conduct extensive
experiments with both real-world and synthetic social
network traces. Compared with the state-of-the-art algo-
rithm MixGreedy, IMGPU achieves up to 60x speedup in
the execution time and is able to scale up to extraordina-
rily large-scale networks which were never expected with
the existing sequential approaches.

As a summary, the contributions of this paper are mainly
twofold. First, we present BUTA, an efficient bottom-up
traversal algorithm which contains inherent parallelism for
the influence maximization problem. We further map
BUTA to GPU architecture to exploit the parallel processing
capability of GPU. Second, to best fit the GPU computa-
tional model, we propose several effective optimization
techniques to maximize the parallelism, avoid potential
divergence, and coalesce memory access.

The remainder of this paper is organized as follows:
Section 2 provides preliminaries on influence maximization
and reviews related work. The IMGPU framework and
corresponding GPU optimizations are presented in Section 3
and Section 4, respectively. We evaluate the IMGPU design
by extensive experiments and report the experimental
results in Section 5. We conclude this work in Section 6.

2 PRELIMINARIES AND RELATED WORK

In this section, we present preliminary introduction to
influence maximization, and review related work.

In influence maximization, an online social network is
modeled as a directed graph G = (V,E, W), where V =
{v1,v2,...,v,} represents the set of nodes in the graph, each
of which corresponds to an individual user. Each node can
be either active or inactive, and will switch from being
inactive to being active if it is influenced by others nodes.
ECVxV is a set of directed edges representing the
relationship between different users. Take Twitter as an
example. A directed edge (v;,v;) will be established from
node v; to vj, if v; is followed by v;, which indicates that v; is
open to receive tweets from v;, and thus may be influenced
by v;. W = {wy, ws, ..., w,} is the weight of each node which
indicates its contribution to the influence spread. The weight

is initialized as 1 for each node, meaning that if this node is
influenced by other nodes, its contribution to the influence
spread is 1. The size of node set is n, and the number of edges
is m. Node v; is called a sink if its outdegree is 0, and called a
source if its indegree is 0.

The independent cascade (IC) model [12] is one of the
most well-studied diffusion models. Given an initial set S,
the diffusion process of IC model unfolds as follows: At step
0, only nodes in S are active, while other nodes stay in the
inactive state. At step t, for each node v; which has just
switched from being inactive to being active, it has a single
chance to activate each currently inactive neighbor v,,, and
succeeds with a probability p; ,,. If v; succeeds, v,, will become
active at step ¢+ 1. If v, has multiple newly activated
neighbors, their attempts in activating v,, are sequenced in an
arbitrary order. Such a process runs until no more activations
are possible [12]. We use o(.5) to denote the influence spread
of the initial set S, which is defined as the expected number of
active nodes at the end of influence propagation.

Given a graph G = (V,E,W) and a parameter K, the
influence maximization problem in the IC model is to select
a subset of influential nodes S C V' of size K such that the
influence spread o(S) is maximized at the end of influence
diffusion process.

The influence maximization problem is first introduced
by Domingos and Richardson in [7] and [19]. In 2003,
Kempe et al. [12] proved that the influence maximization
problem is NP-hard and proposed a basic greedy algorithm
as shown in Algorithm 1. Their approach works in K
iterations, starting with an empty set S (line 1). In each
iteration, a node v; which brings the maximum marginal
influence spread og(v;) = o(SUw;) — o(S) is selected to be
included in S (lines 3 and 4). The process ends when the
size of S reaches K. However, computing the influence
spread o(S) of an arbitrary set S is proved to be #P-Hard in
[5]. To guarantee computation accuracy, Kempe et al.
suggest running Monte-Carlo simulation for a long time
to obtain a close estimate, resulting in low computation
efficiency of the greedy algorithm.

Algorithm 1. Basic Greedy.
1: Initialize S = 0)
2: fori=1to K do
3: Select v = arg max,e(y\s)(0(S Uu) — a(S))
4 S=SU{v}
5: end for

Wei Chen et al. proposed MixGreedy [4] that reduces the
computational complexity by computing the marginal
influence spread for each node v; € (V\S) in one single
simulation. MixGreedy first determines whether an edge
would be selected for propagation or not with a given
probability. Then all the edges not selected are removed to
form a new graph G' = (V, E', W), where E' C E. With this
treatment, the marginal gain og(v;) from adding node v; to
S is the number of nodes that are reachable from v;, but
unreachable from all the nodes in S. To compute the
influence spread for each node, a basic implementation
is doing BFS for all vertices which takes O(mn) time.
Therefore, MixGreedy incorporates Cohen’s randomized
algorithm [6] for estimating the marginal influence spread

138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

Fig. 1. Bottom-up traversal.

for every node, and then selects the node that offers the
maximal influence spread. Adopting the above optimiza-
tion methods, MixGreedy can run much faster. However,
the improvement is not effective enough to reduce execu-
tion time to an acceptable range especially for large-scale
social networks. Moreover, Cohen’s randomized algorithm
provides no accuracy guarantee.

In [17], Liu et al. propose ESMCE, a power-law exponent
supervised Monte-Carlo method that efficiently estimates
the influence spread by randomly sampling only a portion
of the child nodes. In particular, ESMCE roughly predicts
the number of child nodes needed to be sampled according
to the power-law exponent of the given social network.
Afterward, multiple iterative steps are employed to
randomly sample more nodes until the precision require-
ment is finally achieved. Although ESMCE can consider-
ably accelerate the influence maximization problem, it is
obvious that the cost of its acceleration is the accuracy.

There have been also many other algorithms and
heuristics proposed for improving the efficiency issue, such
as [5], [8], [10], [11], [16], [21]. More details about these
works can be found in Appendix A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2013.41. Different
from all existing studies, in this work we demonstrate that
by exploiting the parallel processing capability of GPU, we
can greatly accelerate the influence maximization problem
while performing consistently among the best algorithms in
terms of accuracy.

3 IMGPU FRAMEWORK

In this section, we describe the IMGPU framework that
enables GPU-accelerated processing of influence maximiza-
tion. First, we develop BUTA that can exploit inherent
parallelism and effectively reduce the complexity with
ensured accuracy. Then we map the algorithm implementa-
tion to GPU environment under CUDA programming model.

3.1 Bottom-Up Traversal Algorithm

As mentioned in Section 2, we can get a new graph G’ =
(V,E',W) from the original graph after randomly selecting
edges from G. Afterward, we need to compute the marginal
gain for each node to find the best candidate. Instead of
doing BFS for each node which is rather inefficient, we find
that the marginal influence computation of each node only
relies on its child nodes; thereby, we could get the influence
spreads for all the nodes by traversing the graph only once in
a bottom-up way. Moreover, as there is no dependence
relationship among nodes at the same level in a DAG, their

VOL. 25, NO. 1, JANUARY 2014

Fig. 2. Relation of nodes.

computation can be done in parallel. Here, the level of anode
v;, denoted as level(v;), is defined by the following equation:

max level(v;) + 1, if |out[v]| > 0,

level(vi) = ’L’Jeout['u,]
0, if Jout[v;]] =0

where out[v;] denotes the set of child nodes of v;,. As a
motivating example shown in Fig. 1, the influence-spread
computation for nodes q, b, ¢, and d at level 1 can be done
concurrently. Therefore, their computation can be mapped
to different GPU threads and processed in parallel to
overlap the execution time. To this end, we proposed BUTA
to explore the inherent parallelism. We first convert the
graph to a DAG to avoid redundant computation and
potential deadlock. Then, the DAG is traversed by level in a
bottom-up way to compute the marginal influence for all
nodes in parallel on GPU.

To start with, we first prove a theorem that the marginal
gains for nodes belonging to one strongly connected
component (SCC) are identical. The detailed proof can be
found in Appendix B, which is available in the online
supplemental material. From such a theorem, we know that
influence spreads of nodes in an SCC are equal in quantity;
thus, it is unnecessary to do repeated computation for all
of those nodes. Therefore, we merge all nodes belonging to
the same SCC into one node with a weight being the size
of the SCC. By doing so, first, we can avoid a large number
of unnecessary computations. Second, the graph G’ can be
converted into a DAG G* = (V*, E*,W*), and the following
BUTA algorithm can be applied to compute the influence
spread in parallel.

Note that influence spread of a node has close relation to
its child nodes. As illustrated in Fig. 2a, node ¢ has two
child nodes, a and b. Every node reachable from a and b can
also be reached from c. As the subgraph of node a has no
overlap with that of b, influence spread of c can be easily
calculated by the sum of influence spread of a, b as well as
the weight of node c. Fig. 2b shows a special example where
the influence spread of a and b overlaps at node d. When
computing the influence spread of ¢, we need to subtract
the overlap part (node d) from the sum. To summarize, the
influence spread of source node v; can thus be obtained by

Z o5(vj) + w,, — overlap(out[v;]), (1)

vj€out[v;]

0’5(’07;) =

where overlap(out[v;]) denotes the number of overlaps
among influence spreads of all the nodes in out[v;].
Computation of the overlap(-) function is based on the label
of nodes. Each node is assigned with a label recording

LIU ET AL.: IMGPU: GPU-ACCELERATED INFLUENCE MAXIMIZATION IN LARGE-SCALE SOCIAL NETWORKS 139

where this node may overlap with others. When computing
the overlap for a given node set, we check the label of each
node in the node set and compute the amount of redundant
among their labels. In Appendix C, which is available in the
online supplemental material, we give the details of label
assignment criteria and overlap computation algorithm.

Inspired by 1, we find it not necessary to do BFS for each
node. Instead, we can traverse the graph only once in a
bottom-up way and obtain influence spreads of all the nodes.
Moreover, as the influence spread of nodes at the same level
depends only on their child nodes, the computation can be
done in parallel by using GPU for acceleration.

Algorithm 2 presents the details of BUTA, where R
denotes the number of Monte-Carlo simulations. In each
round of simulation, the graph is first reconstructed by
selecting edges at a given probability (line 5) and
converting into a DAG (line 6). Then we start the bottom-
up traversal level by level (lines 7-13). We use the “in
parallel” construct (line 8) to indicate the codes that can be
executed in parallel by GPU. Influence spreads of all nodes
at the same level can be calculated in parallel (line 9) and
the label of each node is then determined for future overlap
computation (line 10). Such a process will iterate until all
nodes are computed. As G* is a DAG, there will be no
deadlock at run time. After R rounds of simulation, the
node providing the maximal marginal gain will be selected
and added to the set S (lines 15-16).

Algorithm 2. BUTA.
Input: Social network G = (V, E, W), parameter K
Output: The set S of K influential node
1: Initialize S = 0
2: fori=1to K do
3 Set Infl to zero for all nodes in G
4 for j=1to R do
5: G’ — randomly select edges under IC model
6: G* — convert G’ to DAG
7 for each level [from bottom up in G* do
8 for each node v at level [in parallel do
9: Compute the influence spread os(v)
10: Compute the label L(v)

11: Infljv] — Inflv] + os(v)
12: end for

13: end for

14: end for

15 vpe, = arg maXrE(V\S)Ian[U]/R
16: S =SU{vma}
17: end for

The total running time of Algorithm 2 is O(KX R(m + m*)),
where m and m* denote the number of edges in graphs G
and G*, respectively. The detailed complexity analysis can
be found in Appendix D, which is available in the online
supplemental material. Consequently, compared with
the basic greedy algorithm taking O(KRnm) time and
MixGreedy taking O(KXRT'm) time, BUTA can greatly
reduce the time complexity.

To summarize, the advantages of BUTA are as follows:
First, we can greatly reduce the time complexity to
O(KR(m + m")) through DAG conversion and bottom-up
traversal. Second, BUTA can guarantee better accuracy than

[1]2]3]4]9 5 6 [6]7]13[8]9 9]to[t0]t1]12]13]14]edgeOut

”

Fig. 3. Graph data representation.

MixGreedy as we accurately compute influence spread for
each node while MixGreedy approximates them from
Cohen’s algorithm. Last but not least, BUTA is designed
with inherent parallelism and can be mapped to GPU to
exploit the parallel processing capability of GPU, thus further
reducing the execution time, as we will show in Section 3.2.

3.2 Baseline GPU Implementation

In this section, we first describe the graph data structure
used in this work, and then present the baseline implemen-
tation of IMGPU in detail. In Appendix E, which is available
in the online supplemental material, we give a short
introduction to the internal architecture of GPU and briefly
describe the corresponding CUDA programming model.

3.2.1 Data Representation

To implement IMGPU over the GPU architecture, the
traditional adjacency-matrix representation is not a good
choice especially for large-scale social networks. The reasons
are twofold. First, it costs n x n memory space which
significantly restricts the size of social network that can be
handled by GPU. Second, the latency of data transfer from
host to device as well as global memory access is high,
degrading the overall performance. Therefore, we use the
compressed sparse row (CSR) format which is widely used
for sparse matrix representation [3]. As depicted by Fig. 3,
the graph is organized into arrays. The edgeOut array
consists of adjacency lists of all the nodes. Each element in
the nodeOut array stores the start index pointing to the edges
outgoing from that node in the edgeOut array. The CSR
representation requires n + 1 + m memory space in sum.

3.2.2 Baseline Implementation

In our CUDA implementation, the graph data is first
transferred to the global memory of GPU. Then, we assign
one thread for each node to run the influence-spread
computation kernel. All threads are divided into a set of
blocks and scheduled into GPU stream processors to
execute in parallel. The influence-spread computation
kernel works iteratively by level. In each iteration, the
influence spreads of nodes at the same level are calculated
in parallel by different stream processors. The iteration ends
when all the influence-spread computations are finished.
This process will run for R times to select the node that
provides the maximal average influence spread. In this
way, the parallel processing capability of GPU is exploited
for influence maximization acceleration. In Appendix E,

140 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1,

which is available in the online supplemental material, we
illustrate a figure that depicts the above CUDA implemen-
tation of BUTA on GPU architecture.

We adopt the fast random graph generation algorithm
PPreZER [18] to select edges in the random and CUDA-
based forward-backward algorithm [1] to find SCCs of the
selected graph in parallel in GPU. Afterward, the kernel
that computes the influence spread will run iteratively until
all nodes are visited. Algorithm 3 shows the influence-
spread kernel written in CUDA. visited is a Boolean array
identifying whether a node has been visited or not,
unfinished is an array recording the nodelD of the first child
node whose influence-spread computation is yet unfin-
ished, and Infl[tid] denotes the influence spread of node
tid. Lines 2-11 decide whether the thread is ready for
influence computation. This is done by checking the visited
variable of all its child nodes. We use the unfinished array to
record the first unfinished child nodes, and thus we can
avoid the repeated check on already finished child nodes. If
all the child nodes have been visited, then lines from 12 to
16 compute the influence spread for each qualified thread in
parallel according to (1). Finally, visited[tid] is set to true
denoting that the node has been visited (line 17).

Algorithm 3. Influence-Spread Computation Kernel.
1: int tid = Thread_ID;
2: if(visited[tid] == false){
3: int index = un finished[tid);
4: int num_out = nodeOut[tid + 1] — nodeOut[tid);
5: intxoutpoint = &edgeOut[nodeOut[tid]];
6: for(; index < num_out;index + +){
7
8

if(visited[outpointlindex]] == false){
: un finished[tid] = index;
9: break;
10: }}
11: if(index == num_out) {

12: Infl[tid] = weight[tid];

13: for(int ¢ = 0; ¢ < num_out; i + +) {
14: Inflltid]+ = Inflloutpoint[i]];}

15: int overlapNo = overlap(Infl, label);
16: Infltid]— = overlapNo;

17: wisited[tid] = true;

18: }}

In short, the influence-spread kernel works iteratively by
level, and nodes at the same level take part in execution in
parallel during each iteration. The parallelism depends on
the number of nodes at each level. The worst case happens
when the graph is extremely linear which will result in one
node being processed at each iteration. According to tests
over real-world social networks, however, such a case never
happens. As modern social networks are typically of large
scale and the interconnections are rich, much parallelism
can be exploited to reduce execution time.

Note that, the baseline implementation is far from optimal.
The actual parallelism is limited by the number of nodes at
each level. Moreover, execution path divergence will occur
when threads in a warp process nodes belonging to different
levels and nodes with different degrees. All these elements
can directly affect the performance. In Section 4, we describe
how we tackle these challenges to pursue better performance.

JANUARY 2014

4 GPU-ORIENTED OPTIMIZATION

In this section, we analyze factors that affect the
performance of baseline GPU implementation and provide
three effective optimizations to achieve better perfor-
mance. First, we reorganize the graph data by levels and
degrees to minimize potential divergence. Second, we
combine the influence-spread computation for nodes of
multiple levels together for better parallelism. Third, we
unroll the memory access loop to coalesce accesses to
consecutive memory addresses.

4.1 Data Reorganization

As previously mentioned, execution path divergence may
lead to serious performance degradation. In this paper,
BUTA executes level by level in a bottom-up way. Threads
in a warp are responsible for processing different nodes.
However, due to the SIMT feature of GPU, threads in a
warp execute the same instruction at each clock cycle.
Consequently, if threads in a warp are assigned to process
nodes at different levels (lines 2 and 11 in Algorithm 3),
divergence will occur and induce different execution paths,
which will significantly degrade the performance.

In addition, during BUTA execution, threads have to
obtain the visit information and the influence spreads of
their child nodes (lines 6 and 13 in Algorithm 3). As the
degrees of nodes in real-world social networks mainly
follow a power-law distribution, there may exist great
disparity between the degree of different nodes. Therefore,
the workloads of influence-spread computation for differ-
ent nodes may vary widely, and thus a thread that
processes a node with large degree will usually block the
other threads in the same warp from successive running.

Such divergence will severely reduce the utilization of
GPU cores and degrade the performance. To address these
issues, we reorganize the graph by presorting the graph by
level and degree, with the purpose of making threads in a
warp process nodes that are at the same level and with
similar degree as much as possible. In such a way, we hope
that threads in the same warp would mostly follow the
same execution path, minimizing the possible divergence.

However, since edges are selected in random during
each Monte-Carlo simulation, a node may have different
degrees and belong to different levels during various
simulations. Therefore, a naive solution is that we sort the
selected graph after each simulation to assure the least
divergence. Obviously, such a method is extremely time-
consuming and unrealistic to implement. Fortunately, we
observe from experiments on real-world data sets that the
probability that nodes with the same degree (resp. level) in
the original graph still have the same degree (resp. level) in
the randomly selected graph is as much as 95 percent (resp.
88 percent). Therefore, we can achieve the objective of
making threads in the same warp processing nodes with the
same level and similar degree by presorting the original
graph, even though the level and degree of node in the
randomly selected graph may be inconsistent with that in
the original graph. To this end, we reorganize the original
graph data through presorting the nodes by their levels and
degrees, where level is the primary key, and outdegree is
the secondary key. Experimental results shown in Section 5
validate the effectiveness of such an optimization approach.

LIU ET AL.: IMGPU: GPU-ACCELERATED INFLUENCE MAXIMIZATION IN LARGE-SCALE SOCIAL NETWORKS 141

8000

o NetPHY
7000 * NetHEPT
6000
5000

4000

of nodes

3000

2000

1000

20 30 40
level number

Fig. 4. Node number at different levels.

4.2 Adaptive K-Level Combination

Baseline IMGPU implementation computes influence
spreads of nodes from bottom up by level, and thereby its
parallelism is limited by the number of nodes at each level.
We can benefit more if there are sufficient nodes belonging
to the same level to be processed, otherwise the parallel
processing capability of GPU would be underexploited. For
most cases, there is adequate parallelism to exploit since the
real-world social network is typically of large scale.
However, there do exist some particular levels which only
contain a small number of nodes due to the inherent graph
irregularity of social networks. Fig. 4 depicts the statistics of
number of nodes at different levels of two real-world data
sets, NetHEPT and NetPHY. We can clearly see that the
number of nodes varies seriously between different levels.
More than 60 percent of levels just have less than 100 nodes.
Apparently, the parallel computation capability of GPU
cannot be fully utilized for these levels.

To exploit more parallelism and make full use of GPU
cores, we propose an adaptive K-level combination
optimization. We logically combine K-adjacent levels with
small number of nodes into a virtual level, and compute
their influence spread concurrently. Fig. 5 exemplifies such
an approach. There are seven nodes at level 0, while the
number of nodes at levels 1, 2, and 3 is relatively small.
Consequently, we logically combine level 1, 2, and 3 into a
virtual level 1’. After the combination, we can compute the
influence spreads for nodes 0,1,...,7 concurrently to
pursue higher parallelism.

The K-level combination, though providing a good way
to explore better parallelism, introduces another problem.
That is, we cannot directly compute the influence spread for
node at upper level (e.g., node 0 in Fig. 5) according to (1)
because the influence spreads of its child nodes (node 1, 2,
and 3 in this example) may be yet unknown. To address this
problem, we divide the influence spread for nodes at upper
levels into two parts. The first part is the number of nodes
under the critical level. Here the critical level represents the
level which is going to be visited next (e.g., level 1 in Fig. 5).
Since the influence spread of nodes under the critical level
have already been computed, this part can be easily
computed according to (1). While the second part is the
number of nodes above the critical level. For this part, we
propose to do BFS from the target node till the critical level
and count the number of reachable nodes. The influence
spread of node at upper levels is thus the sum of these two

Fig. 5. K-level combination.

parts. In Fig. 5, since levels 1, 2, and 3 are logically combined
into level 1/, when computing the influence spread of node 0,
we first perform BFS from node 0, and we get eight nodes
above level 1. Then based on (1), we compute the number of
nodes under level 1 and obtain seven nodes. Thus, the
influence spread of node 0 is 15 in total.

It is important to notice that through such an optimiza-
tion, we can obtain better parallelism because nodes at
adjacent K levels can be processed concurrently. However,
this is gained at the cost of additional time spent on BFS
counting. The parameter K stands as a tradeoff between
parallelism and extra counting time. If K is too small, there
may still be room for mining parallelism. On the other
hand, if K is too large, although more parallelism can still
be exploited, the extra time cost for BFS will finally
overwhelm the gained efficiency. To achieve the best
performance, the parameter K is adaptively set for different
graphs according to (2):

ly+ K
= 1) <
K {arg max Z nodeNO(i) < 256}, (2)

i=ly

where [y denotes the critical level and node NO(7) denotes the
number of nodes at level i. In other words, K is adaptively
set to be the maximal number of adjacent levels so that
the total number of nodes at these K levels is less than 256
which is half of the stream processor number of GPU used in
this work. As tested in the experiments, the K-level
combination optimization can significantly improve the
parallelism, especially for large-scale social network.

4.3 Memory Access Coalescence

As described in lines 13-14 of Algorithm 3, when we
compute the influence spread of a node, the thread needs to
access the influence spreads of all the child nodes. There-
fore, for nodes with large degree, this will result in a large
number of memory accesses which will take very long
execution time. Such nodes, though accounting for a small
percentage of the entire graph, substantially exist in many
real-world social networks. As depicted in Fig. 6, the degree
distribution of Twitter users is highly skewed. Although the
degree of 90.24 percent Twitter user is under 10, there do
exist 1,089 nodes with a degree larger than 10K, producing
an enormous quantity of memory accesses.

Fortunately, these memory accesses, though large in
amount, show good spatial locality after data reorganiza-
tion. Fig. 7 depicts the child node distribution of five extra-
large nodes in Twitter. We find a large percentage of target
memory addresses are relatively consecutive so that we can
unroll the memory access loop to coalesce these memory
accesses. The loop is unrolled by a predefined step length.

142 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1,

of nodes

Degree

Fig. 6. Degree distribution of Twitter data set.

We tested the performance of loop unrolling under different
step lengths (4, 8, 16, 32, 64, and 128), and 16 was finally
selected for its best result. In such a way, first, 16 memory
accesses are requested in each loop. Due to the spatial
locality of child nodes distribution, these memory accesses
could be coalesced to reduce the execution time. Second, we
can reduce the execution of conditional statement (line 13 in
Algorithm 3) by loop unrolling. This optimization, though
simple in principle, can significantly improve the perfor-
mance, especially on large-scale data sets. Our experimental
results show that such a method significantly reduces the
execution time.

5 EXPERIMENTS

5.1 Experimental Setup
In our experiments, we use traces of four real-world social
networks of different scales and different types, i.e.,
NetHEPT [14], NetPHY [14], Amazon [15], and Twitter
[22]. Table 1 summarizes the statistical information of the
data sets. We compare IMGPU and its optimization version
IMGPU_O with the two existing greedy algorithms and two
heuristic algorithms, i.e., MixGreedy [4], ESMCE [17], PMIA
[5], and Random. Moreover, we also implement a CPU-
based version of BUTA, referred to as BUTA_CPU, to
evaluate the performance of BUTA and the effect of
parallelization. The detailed description of the data sets
and algorithms can be found in Appendix F, which is
available in the online supplemental material.

We examine two metrics, influence spread and running
time in the experiments for evaluating the accuracy and

Node 5

Node 4

Node 3 fF—————- —— -

Node 2F—+ = = « =« -t .

Node 1

4 6 8 10
Child Node ID <10°

Fig. 7. Child node distribution of five large nodes of Twitter data set.

JANUARY 2014

TABLE 1
Statistics of Real-world Data Sets

Datasets ‘ Types ‘ Nodes ‘ Edges ‘ Avg. Degree
NetHEPT | Real-world 15,233 32,235 4.23
NetPHY | Real-world 37,154 180,826 9.73
Amazon Real-world 262,111 1,234,877 9.42
Twitter Real-world | 11,316,811 | 85,331,846 15.08

efficiency of different algorithms. These experiments are
carried out on a PC equipped with a NVIDIA GTX 580 GPU
and an Intel Core i7 CPU 920.

5.2 Performance Analysis

We first evaluate the performance of different algorithms in
terms of influence spread and running time on real-world
social networks. Then we examine the effectiveness of
different optimization methods. To study the generality and
scalability of different algorithms, we also test their
performance on synthetic networks generated by GTgraph
[2] following Random and Power-law distribution. The
detail can be found in Appendix G, which is available in the
online supplemental material.

5.2.1 Influence Spread on Real-World Data Sets

Influence spread directly indicates how large the portion of
the network is finally influenced. A larger influence spread
represents a better approximation to influence maximiza-
tion, i.e., better accuracy. We test the influence spreads of
different algorithms and heuristics under the IC model with
propagation probability p =0.01. To obtain an accurate
estimate of o(5), we execute 20,000 runs for each possible
seed set S. The number of seed sets K varies from 1 to 50.
Such an experiment is carried out over four real-world data
sets and the results are shown in Fig. 8.

Fig. 8a depicts the experimental result of influence
spread on NetHEPT. Note that NetHEPT has only 15K
nodes, which is the smallest among all data sets. In
accordance with expectation, the BUTA-series algorithms,
IMGPU, IMGPU_O, and BUTA_CPU, perform well and
their accuracies match that of MixGreedy, producing the
best results at all values of K. Such a result validates the
proposed BUTA algorithm. The performance of ESMCE is
slightly lower than IMGPU in terms of influence spread; the
influence spread of ESMCE is 4.53 percent less than that of
IMGPU when K is 50. This is mainly because ESMCE
estimates the influence spread by supervised sampling,
thus, affecting the accuracy. Meanwhile, Random performs
the worst among all test algorithms (as much as 42.83
percent less than IMGPU), because it contains no con-
sideration of influence spread when selecting seeds.
Compared with Random, PMIA performs much better.
However, the influence spread of PMIA is still 3.2 percent
lower than that of IMGPU on average.

Fig. 8b depicts the influence spread on NetPHY. In this
case, IMGPU, IMGPU_O, and BUTA_CPU slightly outper-
form MixGreedy by 1.5 percent on average. The reason is
that MixGreedy estimates the influence spread which
inevitably induces errors, while IMGPU accurately calcu-
lates the influence spread. Compared with IMGPU, ESMCE

LIU ET AL.: IMGPU: GPU-ACCELERATED INFLUENCE MAXIMIZATION IN LARGE-SCALE SOCIAL NETWORKS 143

+ MixGreedy + MixGreedy

© IMGPU\BUTA_CPU| © IMGPU\BUTA_CPU|
IMGPU_O 5 300 INGPU_O

© ESMCE 2 © ESMCE

*« PMA % * PMA

Random s 250

Influence spread
8
pread

Influence s|

+ MixGreedy

180}/ © IMGPU\BUTA CPU|
IMGPU_O

© ESMCE

« PMIA

Random

e spread
S
s s

Influence s
Influence spread

[S

50 0 10

10 20 30 40 20 30 40
of seeds (NetHEPT) # of seeds (NetPHY)

(a) (b)

0 10 30 40 50

20 20 30
of seeds (Amazon) # of seeds (Twitter)

(c) (d)

Fig. 8. Influence spread of different algorithms on four real-world data sets.

is 3.35 percent lower on average for K from 1 to 50. Similar
to NetHEPT, Random still produces the worst influence
spread which is only 15.90 percent of IMGPU. This clearly
demonstrates that it is important to carefully select the
influential nodes so as to obtain the largest influence
spread. The gap between PMIA and IMGPU becomes larger
(3.2 percent and 5.4 percent on NetHEPT and NetPHY,
respectively) with the growth of social network size,
showing that heuristics perform poorly particularly on
large-scale networks.

For the case of Amazon (262K nodes and 1.23M edges), as
shown in Fig. 8¢, the accuracies of BUTA-series algorithms
are slightly better than that of MixGreedy. As expected, the
BUTA-series algorithms perform much better than ESMCE,
PMIA, and Random (4.18, 20.82, and 256.38 percent on
average, respectively). We can see that ESMCE clearly
outperforms the MIA heuristic in this case; this is due to
the reason that ESMCE controls the estimation error with a
specified error threshold and iteratively samples more needs
until the specified accuracy is finally achieved.

Finally we carry out experiments on Twitter. This data
set, containing more than 11 nodes and 850 edges, is so
far the largest data set tested in influence maximization
experiments. The result is presented in Fig. 8d. MixGreedy
and BUTA_CPU becomes infeasible to execute due to the
unbearably long running time. The disparity between
IMGPU and ESMCE is stably kept around 4 percent when
the number of seed K is large than 10. On the other hand,
IMGPU performs substantially better than the PMIA and
Random as much as 42.25 and 368.21 percent, respectively
when K is 50. This evidently demonstrates the effectiveness
of IMGPU in terms of influence spread.

5.2.2 Running Time on Real-World Data Sets

Fig. 9 reports the execution time of different approaches for
selecting 50 seeds on four data sets, by which we examine
the efficiency. Note that the overhead of DAG conversion
is relatively low, and takes only 1.74 and 3.7 percent of
the execution time of IMGPU on NetHEPT and Amazon.
The execution time of IMGPU and IMGPU_O includes
such a preprocessing time. The y-axis of Fig. 9 is in
logarithmic scale.

As we pointed out, MixGreedy and BUTA_CPU can only
run on NetHEPT, NetPHY, and Amazon. Furthermore,
MixGreedy costs the longest running time; it takes as much
as 1.93 x 103 seconds for NetHEPT and 2.02 x 10* seconds for
NetPHY. Compared with MixGreedy, BUTA_CPU performs

much better;, BUTA_CPU could accelerate the influence
computation by 2.58%, 6.49x, and 8.07x, respectively. These
results are in accordance with the complexity analysis and
demonstrate the efficiency of BUTA.

ESMCE utilize supervised sampling to estimate the
influence spread, thus greatly reducing its running time
when compared with MixGreedy. As shown in Fig. 9, the
execution time of ESMCE is only 10.21 and 3.73 percent of
MixGreedy on NetHEPT and Amazon.

IMGPU and IMGPU_O perform significantly better in
comparison with MixGreedy. IMGPU achieves 9.69x,
15.61%, and 46.87x speedups on NetHEPT, NetPHY, and
Amazon, respectively. The optimizations of IMGPU_O
work effectively and produce as much as 13.39x, 19.00x,
and 60.14x speedups, respectively. Moreover, IMGPU and
IMGPU_O show better scalability; IMGPU and IMGPU_O
is able to handle larger data sets, such as Twitter, which is
definitely beyond the capability of MixGreedy. When
compared with ESMCE, the efficiency of IMGPU is slightly
lower on NetHEPT and NetPHY. However, IMGPU
completely outperforms ESMCE when they are applied to
large-scale data sets such as Amazon and Twitter. The
reason is that large-scale networks contain more inherent
parallelism; thus, the parallel processing capability of GPU
can be fully exploited for acceleration.

The two heuristics approaches, Random and PMIA run
much faster. However, according to our previous accuracy
evaluation, they show poor performance in terms of
influence spread. This drawback severely limits their
application to real-world social networks.

I VixGreedy
[BUTA_CPU
[CJESMCE

M [CIMGPU
[IIMGPU_O
[PMIA

I il I Random

100000 m

10000 -

__ 1000f

100+

execution time (sec,
>

0.001

0.0001

NetHEPT NetPHY Amazon Twitter

Fig. 9. Running time on four real-world data sets.

144 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1,

- MGPU

[IMGPU_K
=1 MGPU_R
[IMGPU_U
. MGPU_O

1.57]

NetHEPT NetPHY Amazon Twitter

Fig. 10. Effects on different optimizations.

5.2.3 Evaluation of Optimization Methods

To evaluate the effect of proposed optimization methods,
we separately test the proposed three optimization meth-
ods. We denote them as follows:

e IMGPU_K: IMGPU with K-level combination.

e IMGPU_R: IMGPU with data reorganization.

o IMGPU_U: IMGPU with memory access coalescence

optimization.

The experiments are performed on four real-world social
networks. All the speedups are based on the running time
of baseline IMGPU. Fig. 10 presents the experimental
results. IMGPU_K performs much better on large-scale
networks, such as Amazon (1.12x) and Twitter (1.21x), for
the reason that the number of levels in small networks is
relatively small and there is little room to combine the
computation. On the contrary, IMGPU_R achieves much
performance gain for networks of small scale. The speedup
on Twitter is 1.08x while that on other three data sets is
1.15x on average. This is because, although we can
minimize possible divergence by reorganizing the graph,
such a gain is obtained at the cost of presorting nodes,
which will consume much time on large-scale networks.
IMGPU_U shows substantial improvement on Twitter
(1.33x) due to the fact that there are many nodes with
large amount of child nodes in Twitter. Threads processing
these “hub” nodes need frequent memory accesses and thus
degrade the overall performance. IMGPU_U thereby sig-
nificantly reduces the cost by coalescing memory access to
consecutive memory addresses. As those optimization
methods are orthogonal in nature, by integrating them
together, IMGPU_O achieves accumulative speedup and
thus significantly outperforms the baseline IMGPU.

6 CONCLUSIONS

In this paper, we present IMGPU, a novel framework that
accelerates influence maximization by taking advantage of
GPU. In particular, we design a bottom-up traversal
algorithm, BUTA, which greatly reduces the computational
complexity and contains inherent parallelism. To adap-
tively fit BUTA with the GPU architecture, we also explore
three effective optimizations. Extensive experiments de-
monstrate that IMGPU significantly reduces the execution
time of the existing sequential influence maximization
algorithm while maintaining satisfying influence spread.
Moreover, IMGPU shows better scalability and is able to
scale up to large-scale social networks.

JANUARY 2014

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments. This research was supported
partly by KJ-12-06, NSFC under grant no. 61272483,
61272056, 61272482, and 61170285, as well as NAP grant
of Nanyang Technological University under M4080738.020.

REFERENCES

[1] J. Barnat, P. Bauch, L. Brim, and M. Ceska, “Computing
Strongly Connected Components in Parallel on CUDA,” Proc.
IEEE 25th Int’l Parallel Distributed Processing Symp. (IPDPS), pp.
544-555, 2011.

[2] D. Bader and K. Madduri, “GTgraph: A Suite of Synthetic Graph
Generators,” http://www.cse.psu.edu/madduri/software/
GTgraph/, Nov. 2012.

[3] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multi-
plication on CUDA,” Technical Report NVR-2008-04, NVIDIA,
Dec. 2008.

[4] W.Chen, Y. Wang, and S. Yang, “Efficient Influence Maximization
in Social Networks,” Proc. ACM Int’l Conf. Knowledge Discovery and
Data Mining (SIGKDD), pp. 199-208, 2009.

[5] W. Chen, C. Wang, and Y. Wang, “Scalable Influence Maximiza-
tion for Prevalent Viral Marketing in Large-Scale Social Net-
works,” Proc. ACM Int’l Conf. Knowledge Discovery and Data Mining
(SIGKDD), pp. 1029-1038, 2010.

[6] E. Cohen, “Size-Estimation Framework with Applications to
Transitive Closure and Reachability,” |. Computer and System
Sciences, vol. 55, no. 3, pp. 441-453, 1997.

[7]1 P. Domingos and M. Richardson, “Mining the Network Value of
Customers,” Proc. ACM Int’l Conf. Knowledge Discovery and Data
Mining (SIGKDD), pp. 57-66, 2001.

[8] A. Goyal, W. Lu, and L.V.S. Lakshmanan, “CELF++: Optimiz-
ing the Greedy Algorithm for Influence Maximization in Social
Networks,” Proc. Int’l Conf. World Wide Web (WWW), pp. 47-
48, 2011.

[9] P. Harish and P.J. Narayanan, “Accelerating Large Graph
Algorithms on the GPU Using CUDA,” Proc. High Performance
Computing (HiPC), pp. 197-208, 2007.

[10] Q.]Jiang, G.Song, G. Cong, Y. Wang, W. Si, and K. Xie, “Simulated
Annealing Based Influence Maximization in Social Networks,”
Proc. 25th AAAI Int’l Conf. Artificial Intelligence (AAAI), pp. 127-
132, 2011.

[11] K. Jung, W. Heo, and W. Chen, “IRIE: A Scalable Influence
Maximization Algorithm for Independent Cascade Model and Its
Extensions,” CoRR arXiv rapid post arXiv:1111.4795, pp. 1-20,
http:/ /arxiv.org/abs/1111.4795/, 2011.

[12] D. Kempe,]J. Kleinberg, and E. Tardos, “Maximizing the
Spread of Influence through a Social Network,” Proc. ACM Int’l
Conf. Knowledge Discovery and Data Mining (SIGKDD), pp. 137-
146, 2003.

[13] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a Social
Network or a News Media?” Proc. Int'l Conf. World Wide Web
(WWW), pp. 591-600, 2010.

[14] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over Time:
Densification Laws, Shrinking Diameters and Possible Explana-
tions,” Proc. ACM Int’l Conf. Knowledge Discovery and Data Mining
(SIGKDD), pp. 177-187, 2005.

[15] J. Leskovec, L. Adamic, and B. Huberman, “The Dynamics of
Viral Marketing,” ACM Trans. Web, vol. 1, no. 1, p. 5, May
2007.

[16] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. Glance, “Cost-effective Outbreak Detection in Networks,”
Proc. 13th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data
Mining, 2007.

[17] X. Liu, S. Li, X. Liao, L. Wang, and Q. Wu, “In-Time Estimation
for Influence Maximization in Large-Scale Social Networks,”
Proc. ACM EuroSys Workshop Social Network Systems, pp. 1-6,
2012.

[18] S.H. Nobari, X. Lu, P. Karras, and S. Bressan, “Fast Random Graph
Generation,” Proc. 14th Int’l Conf. Extending Database Technology
(EDBT), pp. 331-342, 2011.

[19] M. Richardson and P. Domingos, “Mining Knowledge-Sharing
Sites for Viral Marketing,” Proc. ACM Int’'l Conf. Knowledge
Discovery and Data Mining (SIGKDD), pp. 61-70, 2002.

LIU ET AL.: IMGPU: GPU-ACCELERATED INFLUENCE MAXIMIZATION IN LARGE-SCALE SOCIAL NETWORKS 145

[20] V. Vineet, P. Harish, S. Patidar, and P.J. Narayanan, “Fast
Minimum Spanning Tree for Large Graphs on the GPU,” Proc.
High Performance Graphics Conf. (HPG), pp. 167-171, 2010.

[21] Y. Wang, G. Cong, G. Song, and K. Xie, “Community-Based
Greedy Algorithm for Mining Top-K Influential Nodes in Mobile
Social Networks,” Proc. ACM Int’l Conf. Knowledge Discovery and
Data Mining (SIGKDD), pp. 1039-1048, 2010.

[22] R. Zafarani and H. Liu, “Social Computing Data Repository at
ASU,” http://socialcomputing.asu.edu/, Nov. 2012.

Shaoliang Peng received the PhD degree from
the School of Computer Science, National
University of Defense Technology, Changsha,
China, in 2008. Currently, he is an assistant
professor at National University of Defense
Technology. His research interests include dis-
tributed system, high performance computing,
cloud computing, and wireless networks. He is a
member of the IEEE and the ACM.

Xiaodong Liu received the BS and MS degrees
from the School of Computer Science, National
University of Defense Technology, Changsha,
China, in 2007 and 2009, respectively. He is
currently working toward the PhD degree at
National University of Defense Technology. His
main research interests include parallel comput-
ing, social network analysis and large-scale
data mining and so on. He is a student member
of the ACM.

Mo Li received the BS degree in the Department
of Computer Science and Technology from
Tsinghua University, Beijing, China, in 2004
and the PhD degree in the Department of
Computer Science and Engineering from Hong
Kong University of Science and Technology.
Currently, he is working as an assistant profes-
sor in the School of Computer Engineering of
Nanyang Technological University of Singapore.
He won ACM Hong Kong Chapter Professor

FranC|s Chin Research Award in 2009 and Hong Kong ICT Award Best
Innovation and Research Grand Award in 2007. His research interests
include sensor networking, pervasive computing, mobile and wireless
computing and so on. He is a member of the IEEE and the ACM.

Shanshan Li received the MS and PhD degrees
from the School of Computer Science, National
University of Defense Technology, Changsha,
China, in 2003 and 2007, respectively. She was
a visiting scholar at Hong Kong University of
Science and Technology in 2007. She is
currently an assistant professor in the School
of Computer, National University of Defense
Technology. Her main research interests include
distributed computing, social network, and data

center network. She is a member of the IEEE and the ACM.

Xiangke Liao received the BS degree in the
Department of Computer Science and Technol-
ogy from Tsinghua University, Beijing, China, in
1985, and the MS degree from National Uni-
versity of Defense Technology, Changsha,
China, in 1985. He is currently a full professor
and the dean of School of Computer, National
University of Defense Technology. His research
interests include parallel and distributed comput-
ing, high-performance computer systems, oper-

ating systems, cloud computing, and networked embedded systems. He
is a member of the IEEE and the ACM.

Xiaopei Lu received the BS degree from
Tsinghua University, Beijing, China, in 20086,
and the MS degree from National University of
Defense Technology, Changsha, China, in 2008.
He is currently working toward the PhD degree
at the School of Computer Science, National
University of Defense Technology. His research
interests include distributed systems, wireless
networks, and high-performance computer sys-
tems. He is a student member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

