
Exploiting Ubiquitous Data Collection for Mobile
Users in Wireless Sensor Networks

Zhenjiang Li, Member, IEEE, Yunhao Liu, Senior Member, IEEE, Mo Li, Member, IEEE,

Jiliang Wang, Member, IEEE, and Zhichao Cao, Member, IEEE

Abstract—We study the ubiquitous data collection for mobile users in wireless sensor networks. People with handheld devices can

easily interact with the network and collect data. We propose a novel approach for mobile users to collect the network-wide data. The

routing structure of data collection is additively updated with the movement of the mobile user. With this approach, we only perform a

limited modification to update the routing structure while the routing performance is bounded and controlled compared to the optimal

performance. The proposed protocol is easy to implement. Our analysis shows that the proposed approach is scalable in maintenance

overheads, performs efficiently in the routing performance, and provides continuous data delivery during the user movement. We

implement the proposed protocol in a prototype system and test its feasibility and applicability by a 49-node testbed. We further

conduct extensive simulations to examine the efficiency and scalability of our protocol with varied network settings.

Index Terms—Wireless sensor networks, data collection, mobile user

Ç

1 INTRODUCTION

PAST several years have witnessed a great success of
Wireless Sensor Networks (WSNs). Recent advances in

Wireless Sensor Network technologies provide people the
ability to better understand the physical world. With the
data collected from the entire network, the sensor network
supports a variety of applications, including security
surveillance [1], [2], [3], localization [4], information
enquiry, and transmission [5], [6], [7], [8], etc. In this paper,
we consider the ubiquitous data collection by mobile users
in the wireless sensor network. Mobile users are equipped
with handheld devices that communicate with sensor nodes
and instantly access the network through nearby sensors.
Such a pervasive usage of sensor networks explores in-situ
interactions with human beings, provides people facilitated
means of data collection, and thus significantly expands the
capability of wireless sensor networks.

A typical application that we have envisioned is the
forest surveillance. In the GreenOrbs project [9], more than
300 sensor nodes are deployed in Tianmu Mountain to
collect scientific data of the forest, such as temperature,

humidity, concentration of carbon dioxide and so on. On
the other hand, there are a number of forest rangers
patrolling around the mountain to detect any accidents in
the forest, like the fire indication, the vegetation damage,
etc. Equipping the rangers with communicational devices
and enabling them collect the field data of interest from the
sensor network anywhere and anytime would largely benefit
their work (as illustrated in Fig. 1).

The ubiquitous data collection problem considered in this
paper essentially differs from traditional data collection
problems in static settings. In a static sensor network, an
optimal data collection tree is usually built to collect the
network-wide data. The data collection tree is fixed and
suffices to efficiently deliver data to the static sink [10], [11],
[12], [13], [14], [15]. In the presence of user mobility and the
requirement of ubiquitous data access, however, the data
collection tree constructed at one point is normally not
enough as the mobile user moves. To efficiently deliver
network-wide data to the mobile user, the data collection tree
needs to be constructed or updated from time to time according
to the mobile user’s movement. Directly adopting traditional
data collection paradigm results in building a series of
independent data collection trees when the mobile user is at
different positions. Unveiled by Kusy et al. [16], building the
data collection tree introduces a large volume of commu-
nication overheads. Besides, the routing transitions between
different data collection trees contain a nonnegligible
time delay and may lead to discontinuity or even loss of
the data delivered to the mobile user, which significantly
decreases the QoS of ubiquitous data collection.

There have been attempts made to efficiently deliver
data to mobile users in wireless sensor networks. Most
existing works, however, assume that the mobile user has a
planned mobility path or the path can be accurately
predicted, such that a variety of schemes can be applied
to compensate the time cost of the data collection transitions
[16], [17]. None of those works focus on essentially
optimizing the routing transitions, with reduced transition

312 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2013

. Z. Li is with the School of Computer Engineering, Nanyang Technological
University, N4-B2A-03, 50 Nanyang Avenue, 639798 Singapore.
E-mail: lzjiang@ntu.edu.sg.

. Y. Liu is with the School of Software and TNLIST, Tsinghua University,
and Department of Computer Science and Engineering, Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon, Hong
Kong. E-mail:yunhao@greenorbs.com.

. M. Li is with the School of Computer Engineering, Nanyang Technological
University, N4-02C-108, 50 Nanyang Avenue, 639798 Singapore.
E-mail: limo@ntu.edu.sg.

. J. Wang is with the School of Software, Tsinghua University, Beijing,
China, 100084. E-mail: jiliang@greenorbs.com.

. Z. Cao is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong. E-mail: caozc@cse.ust.hk.

Manuscript received 1 May 2011; revised 18 Dec. 2011; accepted 24 Feb.
2012; published online 9 Mar. 2012.
Recommended for acceptance by W. Jia.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-05-0264.
Digital Object Identifier no. 10.1109/TPDS.2012.92.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

overhead, continuous data delivery, and facilitated data
collection for mobile users with unlimited mobility paths.

In this paper, we observe that there exist strong spatial
correlations among routing structures at different positions,
and take advantage of such an observation to additively
update the routing structure with the user’s movement. The
contributions of this work are as follows: First, we propose
an additive approach that updates the data collection tree.
In particular, through a limited modification of existing
data collection tree in the network, a new collection tree can
be constructed in a lightweight manner in terms of time
efficiency and overheads. Moreover, the proposed approach
is easy to implement and the resulting routing performance
on the new collection tree is bounded and controlled with
regard to the optimal value. Second, the proposed approach
in this work supports delivering continuous data streams
even with routing transitions. When the mobile user moves
within the sensor network, the data collection tree keeps
updated to stream the unreceived data toward the mobile
user. Such a property ensures a low data collection delay,
providing a real-time data acquisition for the mobile user.
Third, we implement a prototype system in a 49 Telos Mote
testbed. The experiment results validate the feasibility and
applicability of the proposed approach in practice. We
further conduct extensive and large scale simulations to
examine the efficiency and scalability of our protocol.
Compared to existing approaches, we achieve efficient data
collection with highly reduced network overheads.

The rest of this paper is organized as follows: the
preliminary is presented in Section 2. We introduce our
ubiquitous data collection protocol and related properties in
Section 3. In Section 5, we implement the proposed protocol
in a 49-node testbed and further examine its performance
by simulation in Section 6. In the end, we conclude this
paper in Section 8.

2 PRELIMINARY

In this section, we formally formulate the problem
considered in this paper. In addition, we present assump-
tions and requirements of the system performance in this
section as well.

2.1 Motivation

We consider the problem of ubiquitous data collection by
the mobile user in a wireless sensor network. The mobile
user uses a handheld device to communicate with sensor
nodes in the network. The mobile user roams within the
network and instantly accesses network-wide data on a
need basis. For instance, in the aforementioned GreenOrbs
project, the mobile user needs to collect data from the entire

network in many scenarios, such as the periodical measure-
ment of concentration of carbon dioxide for the scientific
analysis, the network abnormal event detection, etc.

We claim that the ubiquitous data collection problem
studied in this paper is essentially different from conven-
tional mobile sink-based data collection [18], [19]. In
previous works, the sink mobility has been introduced to
benefit the data collection operation, e.g., to improve the
network lifetime. The mobile sink is essentially cooperative
to the data collection. However, in this study we explore the
pervasive usage of sensor networks to support the in-situ
interactions with human beings. Although the data collec-
tion and the movement may still coexist in our problem,
they are two separate actions without cooperation. Refer-
ring to the aforementioned example, the data collection is
for the mobile user to understand the forest situation and
the movement is for the user to reach the destination. We do
not restrict the moving trajectory to facilitate the data
collection; meanwhile, we do not constrain the scope of the
data collection to fasten the movement either.

In this paper, we aim to develop an efficient routing
transition scheme such that the data collection tree can
be carefully maintained and updated as the movement
of the mobile user. We provide an example in Fig. 2 to
introduce our design principle. Suppose that at sensor node
u the mobile user collects data for the first time. After one of
existing data collection tree formation protocols, like CTP
[10], Information potential [12] or ICTP [11], is performed, a
routing structure (denoted as T u) will be constructed, based
on which the mobile user can collect the network-wide data
as shown by the bottom scenario in Fig. 2. Once accessing
enough data at node u, the mobile user will stop collecting
data and continue patrolling in the network. In the simplest
application scenario, each mobile user collects the data from
the entire network at each place. As we will further
elaborate in Section 4, benefiting from the data streaming
property, the data collection can be achieved during user
movement. Furthermore, we assume that the mobile user
accesses sensory data for the second time at sensor node v.
At this new data collection position, another routing
structure is needed. Parallel to the routing tree formation
process at node u, T v can be built as shown by the top
scenario in Fig. 2. Similarly, as the mobile user keeps
patrolling, plenty of routing trees need to be built at
different positions. As unveiled by recent literatures, the
data collection tree formation is a time and energy
consuming process. If traditional tree formation schemes
are applied for the mobile user to conduct ubiquitous data
collection, a series of independent routing trees must be
constructed. Actually, through our study, we find that it is
unnecessarily needed.

LI ET AL.: EXPLOITING UBIQUITOUS DATA COLLECTION FOR MOBILE USERS IN WIRELESS SENSOR NETWORKS 313

Fig. 1. Ubiquitous data collection in Tianmu mountain.

Fig. 2. Spatial correlation between T u and T v.

Revisiting Fig. 2, we can observe that T u and T v are not
completely independent. On contrary, they share certain
number of common edges. In other words, there exists a
spatial correlation between them. Through our study, we find
that T v can be quickly formed based on T u by taking
advantage of their spatial correlation. As shown in Fig. 2, by
conducting a local updating on T u, T v can be formed.
Clearly, such an updating operation influences only a local
area. Hopefully, 1) lightweight communication and energy
costs, 2) short routing tree formation delay, and 3) the
overall data collection delay can be achieved. In the rest of
this paper, we will specify how to utilize such a design
principle to approach an efficient ubiquitous data collection
for the mobile user in WSNs.

2.2 Assumptions

To facilitate our discussion, we make the following
assumptions in this paper:

. The mobile user carries a handheld device like
802.15.4 compatible PDA that communicates with
sensor nodes.

. One sensor node within the communication radius
of the mobile user is designated as a virtual sink. The
network-wide data are first delivered to the virtual
sink and then sent to the mobile user via a direct
communication.

. Throughout this paper, we use the network hop
distance as an indication of the routing path quality
for simplicity of presentation. The proposed protocol
in this paper, however, is still valid if we use other
routing metrics, like the expected transmissions
(ETX) [10], to build the data collection tree.

2.3 Performance Requirements

The objective of this work is to build the data collection tree
and additively update it for the mobile user to access the
network data ubiquitously. In addition, several require-
ments need to be satisfied:

. We require that the maintenance of the routing
structure is scalable, i.e., the update of the data
collection tree for the routing transition should be
limited and distributed.

. We require that the resulting data collection process
is efficient, i.e., in the data collection tree, the data
delivery path from an arbitrary sensor node to the
virtual sink should not be excessively long. Com-
pared with the optimal routing path, the data
delivery path length in our approach should be
bounded and controlled.

. We require that the data collection process is fluent,
i.e., the routing structure should fluently deliver
data toward the mobile user even though there exist
routing transitions due to the user’s mobility.

. We require that the system is compatible with
mobility prediction mechanisms, i.e., existing mobi-
lity prediction techniques can be seamlessly inte-
grated in our approach to further improve the
performance.

From the next section, we will introduce our proposed
protocol to satisfy such performance requirements.

3 SYSTEM DESIGN

We elaborate the design of our protocol. The main idea of
our protocol is utilizing the spatial correlation to efficiently
build and update the data collection tree. Whenever the
mobile user moves and changes the virtual sink to access
the network, a new data collection tree can be efficiently
formed by locally modifying the previously constructed
data collection tree in the network. Based on such an
observation, in the following section, we present the design
details of three components in our protocol: 1) Data
Collection Tree Initialization, 2) Data Collection Tree Updating,
and 3) Data Routing.

3.1 Data Collection Tree Initialization

We consider the entire wireless sensor network as a graph
G ¼ fV ;Eg, where the vertex set V represents the static
sensors and the edge set E represents the communicational
links. Without loss of generality, the initial virtual sink is
denoted as u 2 V , through which the mobile user accesses
the network-wide data at the beginning.

There have been many research studies proposed for
constructing a global data collection tree for a given sink
node [10], [11], [13], [14], [15]. Similar to these existing
schemes, Data Collection Tree Initialization in our protocol is
realized by the flooding control in an iterative manner, like
[10]. More precisely, an optimal routing tree can be formed
as follows: The sink node launches the routing tree
construction by broadcasting a control message and the
initial value of the communication cost1 to the sink node at
each sensor side is set to be infinity. In general, by
exchanging information, sensor i configures Hi to be the
neighbor with the minimum cost to the sink compared with
all other neighbors, where Hi is the child node of sensor i in
the routing tree, i.e., sensor i only transmits or relays
packets to sensor Hi. Once Hi is updated, sensor i will
inform its neighbors and the neighbors can update their
own configurations accordingly.

To facilitate the presentation, the data collection tree
formed in the initialization phase is denoted as T u. After T u
has been formed, the mobile user can collect data through the
virtual sink u. In addition, each sensor (e.g., sensor i) is
required to record its distance to the virtual sink u in T u,
denoted as dT uði; uÞ. dT uði; uÞ can be obtained during the
construction of T u. After T u has been formed, the distance
between any two sensors, e.g., sensors i and jwill be defined
in two ways. dði; jÞ denotes the minimum distance between i
and j, while dT uði; jÞ indicates the distance between i and j
constrained by T u. We define dT uði; jÞ ¼

4
dT uði; uÞ þ dT uðj; uÞ,

as shown in Figs. 3 and 4. One point we want to emphasize is
that such a distance definition between any two nodes i and j

314 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2013

Fig. 3. Illustration of dði; jÞ and dT u ði; jÞ (Scenario one).

1. The communication cost can be the hop-count distance, the path ETX
aggregates [10], the information potential [12], the ICTP [11], etc.

is an estimation of their real distance constrained by T u. We
prefer such an estimation due to its simplicity and efficiency.
As shown in the next section, sensor nodes i and j can
efficiently estimate their mutual distance on T u without
extra communication overhead. Note that the protocol
proposed in this paper is not limited to the distance
definition given in this section. It is generally compatible to
any feasible distance metrics.

3.2 Data Collection Tree Updating

The mobile user keeps moving around and the virtual sink
that connects the user to the sensor network changes
accordingly. When the mobile user moves away from the
original virtual sink u and designate a new virtual sink v, a
new data collection tree at virtual sink vmust be constructed,
namely T v. A natural solution is to reconstruct T v with the
same process of building T u, i.e., Data Collection Tree
Initialization can be relaunched to form T v. Some alternative
updating methods are proposed as well [12]. Nevertheless,
most existing works presume that the new collection tree
shall preserve the optimality and they take a long time delay
and heavy communication overheads to achieve such a goal.
As a result, a series of optimal routing trees are built as the
mobile user moves around in the network.

In this study, however, we find that it is not necessary
to form an optimal routing tree at every data collection
point. The basic idea of our approach is that, when we
build a new data collection tree from the new virtual sink
v, we do not update the routing paths for all the sensors
over the network. As a matter of fact, once we reverse the
path direction between u and v in T u, all the sensor nodes
can reach the new virtual sink through the routing paths
on the original data collection tree, and a large portion of
those paths are of reasonable lengths compared with the
optimal paths. We use a threshold � to quantify such an
effect and only update certain sensor nodes whose original
routing paths are excessively longer than the optimal ones.
In such a way, we are able to flood a small limited area to
update part of the data collection tree and guarantee the
routing performance. Later, we will show that although the
routing paths on the new data collection tree are sub-
optimal, their length distortions are bounded and con-
trolled compared to the optimal ones. By doing so, the time
and communication costs of building a data collection tree
can be significantly reduced. The lightweight communica-
tion cost results in less energy consumption of sensors and
the rapid updating process leads to a fluent routing
transition. To formally describe our protocol, we introduce
several notations at the first:

. � is the user defined threshold in Algorithm 1, where
� > 1.

. u is the first virtual sink selected by the mobile user.

. T i is the routing tree formed at virtual sink i.

. Hi is the child node of sensor i in the routing tree,
i.e., sensor i always transmits or relays packets to
sensor Hi.

. dði; jÞ is the minimum distance between sensors i
and j.

. dT kði; jÞ is the distance between sensors i and j in T k.

. ESTT kði; jÞ is the minimum distance from i to j in T k
known so far, which will be used in the routing tree
updating process.

An instrumental explanation of our proposed protocol is
as follows: The protocol is generally triggered by a serials of
flooding messages. One flooding message contains two
types of information: 1) dT uðv; uÞ and 2) ESTT vðj; vÞ, where j
is the sender of this message. Such a message is denoted as
MjðdT uðv; uÞ; ESTT vðj; vÞÞ. If sensor i receives it, dT uðv; uÞ
can be used to calculate the distance from i to v in T u, i.e.,
dT uði; uÞ þ dT uðv; uÞ, and ESTT vðj; vÞ can be used to update
ESTT vði; vÞ ESTT vðj; vÞ þ dði; jÞ.

Algorithm 1. Limited Updating Algorithm at Sensor i

1: while Receiving a flooding message from sensor j do

2: if ESTT vðj; vÞ þ dði; jÞ < ESTT vði; vÞ then

3: if
dT u ðv;uÞþdT u ði;uÞ
ESTT v ðj;vÞþdði;jÞ

> � then

4: ESTT vði; vÞ ESTT vðj; vÞ þ dði; jÞ
5: Hi j

6: Flood MiðdT uðv; uÞ; ESTT vði; vÞÞ to its neighbors

7: else

8: Discard MjðdT uðv; uÞ; ESTT vðj; vÞÞ
9: end if

10: else

11: Discard MjðdT uðv; uÞ; ESTT vðj; vÞÞ
12: end if

13: end while

Virtual sink v reverses the path v) u (in T u) to u) v
first, and then launches the Data Collection Tree Updating
process by broadcasting MvðdT uðv; uÞ; ESTT vðv; vÞÞ to all its
neighbors. Note that ESTT vðv; vÞ ¼ 0 and the initial value of
ESTT vði; vÞ for any i 6¼ v equals þ1. In general, after sensor
i receives MjðdT uðv; uÞ; ESTT vðj; vÞÞ, sensor i calculates

dT uðv; uÞ þ dT uði; uÞ
ESTT vðj; vÞ þ dði; jÞ

:

If ESTT vðj; vÞ þ dði; jÞ < ESTT vði; vÞ and

dT uðv; uÞ þ dT uði; uÞ
ESTT vðj; vÞ þ dði; jÞ

> �;

sensor i updates the value of ESTT vði; vÞ as ESTT vðj; vÞ þ
dði; jÞ, changes Hi to j and broadcasts MiðdT uðv; uÞ;
ESTT vði; vÞÞ to its neighbors; otherwise, sensor i simply
discards the flooding message from neighbor j.

The rationale behind operations in Algorithm 1 can be
interpreted as follows: dT u ðv;uÞþdT u ði;uÞ

ESTT v ðj;vÞþdði;jÞ
> � implies the dis-

tance of the routing path in the original routing tree from i

to v is excessively long, i.e., the delay distortion is � times
greater than that of the optimal distance to v. In such a case,
Hi is changed to j and sensor i will send data to j if there is
any. As we will prove, all the sensors performing such an
operation form a cluster U, where

LI ET AL.: EXPLOITING UBIQUITOUS DATA COLLECTION FOR MOBILE USERS IN WIRELESS SENSOR NETWORKS 315

Fig. 4. Illustration of dði; jÞ and dT u ði; jÞ (Scenario two).

1. U is a limited region and the size of U is reverse
proportional to �;

2. following Hiði 2 UÞ, each sensor in U can reach2

virtual sink v;
3. the routing path formed via Algorithm 1 within U

provides excellent routing delay performance;
4. following the portion of T u not modified by

Algorithm 1, all the sensors outside U can reach
virtual sink v through U; and

5. the routing efficiency of each sensor outside U is
bounded and controllable (i.e., the routing delay
distortion is controlled by �).

With above five properties, we can achieve a good
balance between the cost of updating the data collection tree
and the routing efficiency. In this section, we focus on the
first four properties and the last one will be discussed in the
next section.

Theorem 1. The region U formed by Algorithm 1 is a bounded
area, i.e., the influence of Algorithm 1 is limited.

Proof. Suppose that a two-dimension coordinate system is
embedded in the network and the previous virtual sink u
sits at the point ð0; 0Þ. We can always rotate the coordinate
system such that the y-coordinate of the new virtual sink v
is zero. We denote the coordinate of virtual sink v as ðl; 0Þ,
where l � c� dT uðv; uÞ and c is the average physical
distance between two neighboring nodes in the system.
Now, we examine a sensor i (the coordinate is assumed to
be ðx; yÞ) whose Hi has been modified via Algorithm 1.
According to line 3 in Algorithm 1, the boundary of region
U is captured by the following:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ l ¼ �

ffi
ðx� lÞ2 þ y2

q
: ð1Þ

By substituting r cos � and r sin � for x and y, respectively,
where r � 0 and � 2 ½0; 2�Þ, we can rephrase (1) as

rþ l ¼ �
ffi
ðr cos �� lÞ2 þ ðr sin �Þ2

q
: ð2Þ

After solving (2), we get

x ¼ l�
ð�2 cos �þ 1Þ �

ffi
ð�2 cos �þ 1Þ2 � ð�2 � 1Þ2

q
�2 � 1

� cos �;

y ¼ l�
ð�2 cos �þ 1Þ �

ffi
ð�2 cos �þ 1Þ2 � ð�2 � 1Þ2

q
�2 � 1

� sin �:

8>>>><
>>>>:

Based on the obtained expressions of x and y, it is not
difficult to verify that both x and y are bounded.
Therefore, the region U is a bounded area and the
influence of Algorithm 1 is limited. tu
In Fig. 5a, we provide some numerical results to facilitate

understanding the bounded nature of both x and y derived
in Theorem 1. Through our study, we find that various
settings of � produce a consistent conclusion. Without loss
of generality, it is enough for us to check one setting of � in
this section, and how different � settings impact other
system performance will be discussed in detail later. In

Fig. 5a, � and l are set to be 1.45 and 10, respectively. The
maximum value of x can be achieved when � is equal to 0.
After some mathematical manipulation, we can obtain
x � l� �þ1

��1 . The upper figure in Fig. 5a demonstrates that x
is at most 5:4ð¼ 1:45þ1

1:45�1Þ times longer than l indeed. On the
other hand, although we hardly derive the exact expression
for the maximum value of y, the lower figure in Fig. 5a
reveals that the variance of y is small as well when �
changes from 0 to 2�, i.e., the ratio between y and l is no
more than 4 in the experiment.

To further verify the conclusion made in Theorem 1, we
also conduct a set of simulations and illustrate the results
in Fig. 5b. Four thousand sensor nodes are uniformly
deployed in the field at random. The first data collection
tree is built at the left-bottom sensor node and the mobile
user performs Data Collection Tree Updating at the center of
the network. We vary � from 1.25 to 2.0. For each �, we
run the simulation 50 times and demonstrate the average.
Fig. 5b shows that there are 51 percent sensor nodes
updated at most when � is 1.25. When � becomes larger,
the updated area shrinks rapidly. Only less than 200 nodes
are updated when � is chosen to be 2. In Section 6, we will
demonstrate the limited influence of our protocol by
testbed as well. Another direct indication from the proof
of Theorem 1 is that the size of region U is proportional to
the distance between two virtual sinks. According to
Theorem 1, the limited influence of Algorithm 1 ensures a
rapid routing structure formation and light communication
overheads. Due to the rapid transition of the mobile user,
such a property is even more valuable and we will further
verify this claim in Section 6.

Now, we will analyze the routing path length of each
sensor node in the updating area U. To facilitate our
analysis, we introduce the following lemma first.

Lemma 1. For any pair of sensors, i; j 2 U and j ¼ Hi,
dT u ðv;uÞþdT u ði;uÞ
ESTT v ðHi;vÞþdði;jÞ <

dT u ðv;uÞþdT u ðj;uÞ
ESTT v ðHj;vÞþdðj;HjÞ .

316 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2013

Fig. 5. Limited data collection tree updating.

2. Since ESTT v ði; vÞ is iteratively updated, Hi may switch multiple times
during the execution of Algorithm 1. Nevertheless, we can prove that sensor
i can always reach v through sensors in U.

Proof. Since sensor Hj is the child of sensor j, according to
Algorithm 1, we obtain ESTT vðHi; vÞ ¼ ESTT vðj; vÞ ¼
ESTT vðHj; vÞ þ dðj;HjÞ. Thus, we have

dT uðv; uÞ þ dT uði; uÞ
ESTT vðHi; vÞ þ dði; jÞ

¼ dT uðv; uÞ þ dT uði; uÞ
ESTT vðHj; vÞ þ dðj;HjÞ þ dði; jÞ

� dT uðv; uÞ þ dT uðj; uÞ þ dði; jÞ
ESTT vðHj; vÞ þ dðj;HjÞ þ dði; jÞ

<
dT uðv; uÞ þ dT uðj; uÞ

ESTT vðHj; vÞ þ dðj;HjÞ
:

The last inequality is based on the fact that if a; b; c > 0
and a=b > 1, aþcbþc <

a
b . tu

To analyze the routing path length in U , we need to
check two types of sensors: 1) the entire optimal routing
path to v is in U as shown by Fig. 6, and 2) the optimal
routing path to v contains some sensors outside U as shown
by Fig. 7.

We examine type-one sensors first. As shown in Fig. 6,
we focus on sensor a in U . In Fig. 6, the routing path formed
by Algorithm 1 is a) b) c) v. In order to demonstrate
this routing path being optimal, we can assume that the
optimal path from a to v is a) b) e) v instead of
a) b) c) v. It is clear that minimum distance from b to v
via e should be smaller than the minimum distance from b
to v via c. In other words, we have

dðb; eÞ þ dðe; vÞ < dðb; cÞ þ dðc; vÞ: ð3Þ

During the updating procedure of Algorithm 1, both nodes
c and e will send flooding messages to node b to trigger its
routing table updating (maybe multiple times). We have
assumed that the optimal path from node b to v is
completely within U. The optimal path from node e to v
should be in U as well since e is on the optimal path from b
to v. ESTT vðe; vÞ will be identical to dðe; vÞ after sufficient
updating. Therefore, eventually, after Hb points to node e,
ESTT vðb; vÞ is equal to the sum of dðb; eÞ and ESTT vðe; vÞ.
Afterwards, based on (3), the condition in line 2 of
Algorithm 1 cannot be satisfied, i.e., ESTT vðc; vÞ þ dðc; bÞ �
dðc; vÞ þ dðc; bÞ > dðb; eÞ þ dðe; vÞ ¼ ESTT vðb; vÞ. Thus, Hb

should point to e instead of c, which is a contradiction to
that the routing path formed by Algorithm 1 is
a) b) c) v. Hence, the original routing path is optimal.

Now, we examine type-two sensors. Note that type-two
sensors are close to the boundary of region U. The optimal
path from one type-two sensor to the virtual sink v may
pass through the boundary of U multiple times. It is
sufficient for us to discuss a typical structure on the optimal
path as shown in Fig. 7 where the neighbor c of a is outside
U . In Fig. 7, Ha is b but we assume that the optimal routing
path to v passes a) c (instead of a) b) and eventually

reaches v. In this scenario, since sensor node a has been
updated by Algorithm 1 (this is why node a is in U), we
denote condition one to be I ¼4 dT u ðv;uÞþdT u ða;uÞ

ESTT v ðb;vÞþdða;bÞ
> �. On the

other hand, as sensor node c has not been updated by
Algorithm 1, we can similarly denote condition two as

II ¼4 dT uðv; uÞ þ dT uðc; uÞ
ESTT vða; vÞ þ dðc; aÞ

� �:

However as we will show soon, only certain sensors in U
may satisfy those two conditions simultaneously. If condi-
tion II really happens, then we check condition I:

I � dT uðv; uÞ þ dT uðb; uÞ þ dða; bÞ
ESTT vða; vÞ þ dðc; aÞ

ESTT vða; vÞ þ dðc; aÞ
ESTT vða; vÞ

� �þ dða; bÞ
ESTT vða; vÞ þ dðc; aÞ

� �
ESTT vða; vÞ þ dðc; aÞ

ESTT vða; vÞ

� 3

2
�þ 1

2
:

ð4Þ

Equation (4) follows the fact that ESTT vða; vÞ is greater or

equal to 2. This is because the optimal path from a to c to v is at

least 2. Thus, ESTT vða; vÞ cannot be smaller than 2. Equation

(4) implies that the necessary condition for both conditions I

and II simultaneously happening is dT u ðv;uÞþdT u ða;uÞ
ESTT v ðb;vÞþdða;bÞ

2 ð�; 3
2� þ

1
2�. As a result, for a sensor node i, whose distance ratio is

greater than 3
2�þ 1

2 , its routing path will be completely in U,

i.e., it is a type-one sensor node. Thus, its routing path is

optimal. Moreover, based on Lemma 1, sensors along the

routing path constructed inU from such a node i to the virtual

sink v guarantees to be optimal as well. Thus, all the sensors

withinUwith the optimal routing path form another regionV.

On the other hand, for a sensor node iwhose dT u ðv;uÞþdT u ði;uÞ
ESTT v ðHi;vÞþdði;HiÞ

is within ð�; 3
2�þ 1

2�, the routing path formed by Algorithm 1 is

not optimal. However, as we will show soon, the total amount

of such nodes counts for only a small portion in U .

Theorem 2. For any sensor i 2 V in U , the routing path from

sensor i to the virtual sink v formed by Algorithm 1 is optimal.

Since only those sensors, whose locations are close to
the boundary of U and performance ratios are between �
and 3

2�þ 1
2 , are excluded from region V, the size of region

V will be close to region U. To check region V in practice,
we further separate the sensor nodes with or without
optimal routing paths in the experiment conducted in
Fig. 5b and illustrate the results in Fig. 8. Consistent with
our analysis, the majority of sensors in U is of the optimal
routing path. According to the statistics, the portion of
sensors with the optimal routing path length is no less than
88 percent when � varies.

LI ET AL.: EXPLOITING UBIQUITOUS DATA COLLECTION FOR MOBILE USERS IN WIRELESS SENSOR NETWORKS 317

Fig. 6. Type-one sensor node in region U. Fig. 7. Type-two sensor node in region U.

So far, we have demonstrated that an efficient local
routing tree has been formed in region U by Algorithm 1, in
which most sensors can reach virtual sink v through an
optimal routing path and we will postpone discussing the
routing path length for sensors outside V in the next section.
As shown in Theorem 3 then, the unchanged portion in the
original collection tree T u together with U jointly and
seamlessly form a complete routing tree rooted at virtual
sink v.

Theorem 3. The region U formed by Algorithm 1 and the
nonmodified portion in T u jointly form T v.

Proof. After T u has been constructed, each sensor i 2 V sets
Hi as the neighbor to transmit or relay packets. During
the execution of Algorithm 1, if Hi is ever changed,
sensor i belongs to U. We immediately know that sensor
i can reach virtual sink v. On the other hand, it is also
possible that Hi never changes. Following Hi, sensor i
can reach another sensor, namely j. j shares two similar
possibilities as sensor i: inside U or outside U. In general,
following the unchanged routing directions specified by
T u, any sensor outside U can reach the original virtual
sink u or some sensor within U eventually. According to
our protocol, no matter which possibility occurs, virtual
sink v is always reachable from this sensor. tu

3.3 Data Routing

After Data Collection Tree Updating completes, a new
routing structure is built. If sensor i has data to send or
helps other sensors to relay data, it simply transmits data
to the neighbor indicated by Hi. Data are guaranteed to be
delivered toward the mobile user by Theorem 3. In this
section, we examine the routing efficiency for the sensors
outside V. Theorem 4 will show that the routing delays of
those sensors are bounded and controllable, and the mobile
user can easily adjust the routing efficiency according to
his requirement.

Theorem 4. In the routing tree formed by Algorithm 1, the
routing delay distortion from one sensor outside V to the
virtual sink v is bounded and controlled by � compared to its
optimal routing delay.

Proof. We first define the accessing point of one sensor
outside U . The accessing point of sensor i is defined as
the first encountered sensor in V if we trace the routing
path from sensor i to v in T v. Then, to show the
correctness of Theorem 4, we need to check the following
two different cases.

Case 1 captures the scenario in which a sensor ck
reaches the virtual sink v without passing the original

virtual sink u as shown in Fig. 9, where sensor ck means

that this sensor isk � 1 hop(s) away from its accessing point.

At a result, the routing path length distortion at sensor ck
can be defined as kþESTT v ða;vÞ

dðck;vÞ . Then, we have

kþ ESTT vða; vÞ
dðck; vÞ

� kþ ESTT vða; vÞ
dT uða; uÞ þ k� dT uðv; uÞ

� kþ ESTT vða; vÞ
�ESTT vða; vÞ þ k� 2dT uðv; uÞ

:

ð5Þ

After a simplification of (5), we can further derive

ð5Þ � 1þ ðk� 1Þ þ 2dT uðv; uÞ
dða; vÞ þ k� 2dT uðv; uÞ

: ð6Þ

In (6), dT uðv; uÞ is a constant. Additionally, as we have

shown, U (together with V) expands as � decreases. As a

result, sensor ck will encounter an accessing point with a

longer distance to the virtual sink v when � decreases.

Therefore, the delay distortion for sensor ck is bounded

and controllable through the user defined threshold �.
Case 2 captures the scenario in which sensors reach

the virtual sink v passing the original virtual sink u as
shown in Fig. 10. To examine Case 2, we first logically
reorganize all the sensors outside V by levels. All level k0

sensors form a cluster, denoted as Lk0 , satisfying

Lk0 ¼ fiji 62 V ^ di;V ¼ k0g; ð7Þ

where k0 � 1. Lk0 contains all the sensors whose minimum

distance to V is k0. In this scenario, the delay distortion at

sensor ck0 can be expressed as dT u ðck0 ;uÞþdT u ðv;uÞdðck0 ;vÞ
. To prove the

correctness of Case 2, we apply the constructive mathe-

matical induction on the level of each sensor outside

region V.
Hypothesis: dT u ðck0 ;uÞþdT u ðv;uÞ

dðck0 ;vÞ
� � þ

Pdða;vÞþk0
l¼dða;vÞþ1

1
l � 1,

where a indicates the accessing point of sensor ck0 .
Basis: when k0 ¼ 1. According to line 3 in Algorithm 1,

318 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2013

Fig. 8. Region V as suggested by simulations.

Fig. 9. Case one in Theorem 4.

Fig. 10. Case two in Theorem 4.

dT uðc1; uÞ þ dT uðv; uÞ
dðc1; vÞ

� �:

Equivalently, dT u ðc1;uÞþdT u ðv;uÞ
dðc1;vÞ � �þ 1� 1.

Induction: suppose that the hypothesis holds for all
levels up to k0. We now check the case k0 þ 1.

dT uðck0þ1; uÞ þ dT uðv; uÞ
dðck0þ1; vÞ

� dT uðck
0 ; uÞ þ 1þ dT uðv; uÞ
dðck0 ; vÞ þ 1

� �þ
Xdða;vÞþk0

l¼dða;vÞþ1

1

l
� 1

0
@

1
Aþ 1

dðck0 ; vÞ þ 1

¼ �þ
Xdða;vÞþk0þ1

l¼dða;vÞþ1

1

l
� 1:

ð8Þ

Equation (8) implies that at sensor ck0 :

dT uðck0 ; uÞ þ dT uðv; uÞ
dðck0 ; vÞ

� �þ ln
dða; vÞ þ k0
dða; vÞ : ð9Þ

Similar to Case 1, the delay distortion of sensor ck0 is
bounded and controllable through the user defined
threshold �. By setting a smaller �, the routing efficiency
in T v gets close to the optimal result while it suffers a
longer delay to construct the data collection tree. tu

According to Theorem 4, the routing path length
distortion from any sensor outside region V formed by
Algorithm 1 is bounded, which means although the routing
structure formed by the proposed algorithm is suboptimal,
the routing delay is not excessively long. More importantly,
the delay distortion is under the control of � (e.g.,
proportional to �) and the size of region V (as well as region
U) is reverse proportional to �. As a result, the mobile user
is able to achieve a balance between the routing efficiency
and the cost of building the routing structure.

4 SYSTEM PROPERTIES

In Section 3, we have described the design details of the
proposed approach. In this section, we discuss the system
properties tailored for the mobility of the user.

4.1 System Dynamics

As stated previously, the mobile user keeps moving around
in the network and may acquire data at arbitrary places. At
the initial data collection point u, Data Collection Tree
Initialization is launched to construct the first routing tree
T u in the system. Afterwards, Data Collection Tree Updating
is launched at each vk to efficiently form T vk , where k ¼
1; 2; 3; . . .

Theorem 1 has proven that region U formed by our
protocol is a bounded area. In this section, we further reveal
some properties of region U related to the mobility of the
mobile user. The size of U is determined by both � and the
distance3 between the original virtual sink u and the current

virtual sink vk. Fig. 11 depicts the size of region U according
to varied � values, showing that the size of U is reverse
proportional to �. On the other hand, the size of U is
proportional to the distance between u and vk. As the mobile
user moves a distance from u, if � is fixed, Algorithm 1
approaches updating the entire network, i.e., our protocol
migrates to form a globally optimal data collection tree in
the network.

In order to achieve the balance between the routing
efficiency and the cost of the routing tree construction, we
dynamically adjust �. In Section 6, we use a simple linear
adjustment policy to update �, which is shown effective in
our experiments. We observe that in a network with 5,000
sensors, at most 30 percent sensors are updated while the
delay distortion can be maintained smaller than 1.5 in the
worst case.

4.2 Data Streaming Property

As mentioned before, the entire ubiquitous data collection
process may comprise multiple rounds due to the mobility
of the mobile user. In such a system, the data streaming
property measures how smoothly data flow during the
transition between two consecutive places of data access.
During the movement, if the data to be collected can always
flow toward the mobile user, those data can be rapidly
collected once the mobile user accesses the network. The
quality of the data streaming property depends on how the
underlying data collection tree migrates during transitions.
In this section, we examine the data streaming property of
the approach proposed in this paper.

Lemma 2. If sensors vk�1 and vk are any two consecutive virtual
sinks (vk is after vk�1), during the routing tree construction at vk
by Algorithm 1, uncollected data in the system flow toward vk.

Proof. Before the execution of our protocol, following Hi of
each sensor i, uncollected data flow toward vk�1. During
the execution of Algorithm 1, the modification of Hi will
change the routing destination of sensor i from vk�1 to
vk. As a result, the routing destinations of all the
ancestors of sensor i are changed to vk automatically.
Through the discussions in Section 3, we know that there
is no other possibility. Therefore, we finish the proof of
Lemma 2. tu

Lemma 2 reveals one critical feature of our proposed
protocol. By executing Algorithm 1, region U behaves like a
potential source that attracts data. The data flows always
move toward the mobile user. As the mobile user passes by
the sensor nodes and updates the data collection tree along
the moving trajectory, the data flows will be seamlessly
guided toward the user without being stuck at any local

LI ET AL.: EXPLOITING UBIQUITOUS DATA COLLECTION FOR MOBILE USERS IN WIRELESS SENSOR NETWORKS 319

Fig. 11. Impact of � on region U.

3. At virtual sink v1, T v1
can be constructed by taking advantages of the

existing T u as stated in Section 3. However, for each vk; k ¼ 2; 3; . . . , there
are two typical choices to form T vk . T vk can be formed based on either T u or
T vk�1

. Since T vk�1
is not optimal already in terms of the routing efficiency,

the routing performance of T vk will be difficulty to guarantee if T vk�1
is used

as the basis. Therefore, in this paper, T vk is formed based on T u.

maximum points. Therefore, we have the following
proposition.

Proposition 1. Launching Algorithm 1 during the movement of
the mobile user, a good data streaming property can be
achieved such that the data flows are attracted by the user and
will not be stuck at any intermediate nodes.

4.3 Prediction Compatibility

Existing literatures [16], [17], [20] have explored the
possibility of predicting the movement of mobile users.
In some scenario, such as the in-door environment, the
trajectory of the mobile user is highly constrained and its
future movement can be accurately predicted. In such a
case, the prediction mechanism can make the construction
of the data collection tree to the predicted data access
points such that data can be delivered to the predicted
location. In some other scenarios, however, it is not easy to
accurately predict the future location of the mobile user,
e.g., some outdoor environments. The low prediction
accuracy may significantly deteriorate the system perfor-
mance due to two possible reasons: the improperly formed
routing tree will 1) waste the energy of the system and
2) route data to undesired destinations. Therefore, whether
the prediction mechanism should be adopted or not
depends on the networking conditions.

The approach proposed in this work is compatible to
existing prediction mechanisms. If the mobile user enables
the prediction mechanism, the prediction module works as a
black box such that whenever the mobile user moves to the
next data collection point, the prediction module predicts
such a location and the data collection tree will be formed in
advance. Even the prediction is incorrect, the rapid formation
of the data collection tree can largely compensate the
prediction failure.

4.4 Support to Multiple Mobile Users

So far, we have taken the single user as a vehicle to introduce
the basic design principle and curial properties of our

proposed protocol. However, our solution is not limited to
the single-user data collection case, and it can be further
extended to support multiple users for collecting data
simultaneously. To this end, in the system, multiple
independent data collection trees will be formed and
different collection trees are distinguished based on user
IDs. Flooding messages and sensory data for different mobile
users are labeled with user IDs as well. For each formed
routing tree (denoted as T), the sensor (e.g., sensor i)
maintains a corresponding HiðT Þ. Once a packet on the
routing tree T needs to be transmitted, sensor i simply relays
the packet to the neighbor indicated by HiðT Þ.

5 EXPERIMENTAL EVALUATION

In previous sections, we elaborate the design principles and
important properties of our ubiquitous data collection
approach. In this section, we validate the feasibility and
applicability of the proposed protocol in practice.

5.1 Experiment Setting

We implement our protocol on TelosB motes and use a 49-
node testbed to examine its performance, as shown in
Fig. 12a. Forty nine nodes are organized as a 7� 7 grid. Due
to the experimental space limitation, the power of each
Telosb mote is set to be the minimum level and the
communication range is about 10 centimeters. The average
degree of each sensor node is around six. Starting from the
left-top conner, sensors are placed following the left-to-right
and top-to-bottom order based on their IDs.

The software on the experimental sensor nodes is
developed based on TinyOS 2.1. Fig. 13 depicts the design
diagram of the software modules in detail. The Data
Collector module and the Configurator module provide
the received flooding packet and the system parameter �,
respectively. Note that a virtual received flooding packet
will be offered to the sink node at the initial stage of Data
Collection Tree Updating. Based on the input information, the
Analyzer module figures out whether the updating needs to
be performed or not. If the answer is positive, the Flooding
Control module conducts several necessary local informa-
tion updatings and prepares the flooding message for the
Routing Tree Construction module. The Logger module is
in charge of data access (read and write) to the measure-
ment serial flash. The Statistics Analyzer module merges
and encapsulates the data from sensors, network, and flash,
based on the preconfigured message formats.

We conduct two trails of experiments. During the
experiment, the mobile user enters the sensor network

320 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2013

Fig. 12. Testbed-based experiments.

Fig. 13. The diagram of software module.

and builds the first routing tree at node 43, i.e., the left-
bottom node. The resulting data collection tree is depicted
in Fig. 12b.

5.2 First Trail of Experiments

In the first trail of our experiment, we investigate the system
parameter � when the mobile user moves to node 49 and
accesses the network for data collection.

Investigation on system parameter �. Fig. 14 depicts the
number of sensor nodes that are updated during updating
the data collection tree. We vary � from 4 to 1.5. Consistent
with our previous analysis, the number of updated sensors
is reverse proportional to �. A small number of sensors
updated during the routing transition indicates 1) a fast
routing tree formation and 2) the small communication
overhead. From Fig. 14, we can observe that when � is
sufficiently large (e.g., � ¼ 4), only a small number of nodes
are updated (e.g., less than 20 percent).

Investigation on the CDF of routing path lengths. In Fig. 15,
we depict the cumulative distribution function (CDF) of the
routing path lengths of the sensor nodes in the network
when we build the data collection trees with the different
values of �. Fig. 15 reveals that though the routing path
becomes shorter when we use a smaller �, there is no
significant performance difference with different �s. Such a
result further demonstrates the benefit of our protocol, i.e., a
small routing efficiency distortion can trade a significant
reduction of the construction cost.

Investigation on individual routing path length. In Fig. 16,4

the x-axis indicates the ID number of each sensor node in
this experiment and the y-axis measures its corresponding
routing path length by our protocol at node 49. We present

the routing path length of each sensor with an instance
when � ¼ 4. The average routing path length of the sensors
is 6.8. The average length of the routing path in the global
optimal routing tree is 5.9. Fig. 16 demonstrates that even
only a small number of sensors are updated, the network
can achieve a comparable routing efficiency compared to
the optimal performance.

5.3 Second Trail of Experiments

In the second trail of experiment, we examine the system
performance with regard to the movement of the user. The
moving path of the user is: node 43) node 46) node
49) node 28) node 7. During the process, � is set to be 3.

Investigation on updated areas at different positions. Fig. 17
shows that during the movement of the mobile user, more
sensors will be updated as the user moves further away from
his original places. There are at most 21 sensor nodes updated
when the user moves to node 7, which is 9 hops from the
original start point node 43. Fig. 17 provides another good
indication that the influence of our protocol is only limited.

Investigation on the CDF of routing path lengths. In Fig. 18,
we depict the CDF of the routing path lengths of the sensor
nodes in the data collection trees built at different places

LI ET AL.: EXPLOITING UBIQUITOUS DATA COLLECTION FOR MOBILE USERS IN WIRELESS SENSOR NETWORKS 321

Fig. 14. Updated nodes versus �.

Fig. 15. CDF of routing path lengths (at node 49).

Fig. 16. Routing path length versus Node ID.

Fig. 17. Updated nodes versus moving position.

4. Due to the hardware issue, sensor 19 fails to send back its information
after the user moves in the experiments.

Fig. 18. CDF of routing path lengths (at different positions).

(from node 43 to node 7). Consistent with our analysis,

when the mobile user moves further away from the start

point at node 43, the routing paths would be shifted longer.

Such a routing efficiency distortion, however, is not

significant as shown in the figure. According to statistics,

the worst routing path length distortion is only 20 percent.

Nevertheless, the cost in building the routing tree can be

reduced up to 54 percent.
Investigation on individual routing path length: similar to

Fig. 16, the x-axis and the y-axis in Fig. 19 indicate the ID

number of each sensor node in this experiment and its

corresponding routing path length by our protocol at node

7, respectively. In Fig. 19, we present the routing path

length of each sensor with an instance when the mobile user

is at node 7. The average routing path length in this case is

7.1. Most of sensors have short routing paths.

6 SIMULATION EVALUATION

We conduct comprehensive and large-scale simulations to

further examine the efficiency and scalability of our

protocol. We compare the performance of our �-Flooding

based protocol with the approach directly using CTP

protocol [10] at each data collection point and the move-

ment prediction approach proposed in [16].

6.1 Simulation Setting

We simulate randomly deployed sensor nodes in a

rectangular area with an average node degree ranging from

5 to 10. The mobile user enters the field from the boundary

of the network. The velocity of the movement is set to 1 m=s.

At each data collection point, the sojourn time of the mobile

user is chosen from 20 to 60 seconds uniformly at random.

For each movement, the mobile user stochastically roams

15 � 30 seconds. More detailed simulation settings will be

specified in following sections. For each network setting, we

perform 20 runs and demonstrate the average performance.

6.2 Simulation Results

Investigation on system parameter �. We first examine the

effect of parameter � of our �-Flooding approach in a 4,000-

node network. At one data collection point (15 meters away

from the original virtual sink in our experiment), we collect

statistics of the system with different settings of � and

present the results in Fig. 20. We examine three perfor-

mance metrics:

. Node-count ratio: the ratio of the number of updated
sensor nodes over the total number of sensor nodes
in the network.

. Hop-count ratio: the ratio of the average hop
distance of region U over the average hop distance
of the entire network.

. Formation-time ratio: the ratio of the formation time
of region U over the formation time of a global
optimal routing tree.

All three metrics measure the area and cost of the data
collection tree updating in our approach. Fig. 20 demon-
strates that region U formed by our approach is under
control of �. As � increases, both node-count ratio and
hop-count ratio decrease accordingly, i.e., the size of
region U is reverse proportional to �. The mobile user
can thus control the system overhead through adjusting �
instantly. From Fig. 20, we also observe that our approach
can efficiently update the routing tree, which is clearly
indicated by the formation-time ratio. Rapid routing tree
formation largely accelerates the data collection process as
we will demonstrate later.

System performance as the mobile user’s movement. In Fig. 21,
we simulate the movement of a mobile user. The mobile
user moves from the left-bottom conner of the network,
roughly following three-quarter of an ellipse inscribed in the
field, to the middle point of the bottom line of the network.
There are 5,000 sensors deployed in the network and � is 2.6.
Fig. 21 presents the system performance in two aspects. The
metrics of node-count ratio, hop-count ratio, and formation-
time ratio are depicted in the upper figure to show the
affected area in updating the collection tree. The lower
figure depicts the sensors’ path lengths in the data collection
tree during the movement of the mobile user. According to
Fig. 21, the affected area in updating the data collection tree

322 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2013

Fig. 19. Routing path length versus Node ID. Fig. 20. Updating overhead versus �.

Fig. 21. System performance versus Distance (Fixed �).

gradually approaches the entire network during the user’s
movement, i.e., our protocol migrates to build an optimal
routing tree when the mobile user moves sufficiently far
away from the original virtual sink, say 100 meters as
depicted in the upper figure in Fig. 21. As the lower figure
depicts, the routing efficiency is approximately optimal as
both average path length and longest path length ratios get
close to 1. The derived theoretical bound is also shown in
Fig. 21. which is loose in this scenario. The information
delivered in Fig. 21 is that with fixed �, the routing efficiency
and the updating cost of our approach cannot be well
balanced in a large scale network. As we will show soon, an
adjusted � can break such a barrier.

System performance with adjusted �. Fig. 20 reveals that the
size of U decreases as � increases and Fig. 21 shows that U
expands as the mobile user moves far away from the
original sink. To further balance the system performance,
we explore an adjusted � during the movement of the
mobile user. There can be a variety of schemes to
implement such an idea. In our protocol, we apply a linear
updating policy for �:

�vk �vk�1
þ SNG� c� dT uðvk;uÞ; ð10Þ

where SNG ¼ þ1, if dT uðvk;uÞ � dT uðvk�1;uÞ; SNG ¼ �1, other-
wise. c is chosen from ½0:1; 0:3� uniformly at random and vk
is the current virtual sink.

Fig. 22 presents the same metrics as those shown in
Fig. 21, but with a dynamically adjusted � during the user
movement. From the upper figure in Fig. 22, we observe
that the updated region U is maintained below 30 percent of
the network scale, which ensures a low routing tree
formation cost and a short construction time. On the other
hand, according to the lower figure, the delay distortion
introduced by our approach is not excessively long. More
precisely, the distortion of the average path length is no
more than 1.6 and the distortion of the longest path length is
less than 2.5, which indicates a low delay distortion to the
optimal value. The derived distortion bound matches the
simulation result and bounds the longest path, i.e., smaller
than 3.5 in the worst case. Fig. 22 shows that by dynamically
adjusting �, the mobile user can achieve an excellent
tradeoff between the cost of the routing tree formation
and the routing efficiency.

CDF of delay performance. We take a snapshot at the
middle point of the mobile user’s movement according to
the simulation setting in Fig. 21. We illustrate the CDF of
sensors’ routing path lengths in Fig. 23. With the fixed �
setting, as most sensors have been updated by our

approach, the CDF of sensors’ routing path lengths is
similar to that in the optimal routing tree. On the other
hand, Fig. 23 also indicates that with the adjusted � setting,
most of sensors still have short routing paths and only a
small number of sensors suffer a relatively long routing
delay. The routing efficiency distortion with adjusted � is
not excessively large while the cost of updating the routing
tree formation is significantly reduced.

System performance versus network size. To examine the
scalability of our approach, we vary the network size from
1,000 to 10,000 and use the adjusted � policy. We
demonstrate the average performance for all data collection
processes at each network size. Fig. 24 depicts the results,
which shows that our protocol has a good scalability with
regard to the variation of the network size. The influence of
our approach is guaranteed to be limited, such that the time
cost of the routing tree formation is always much less than
that of building the optimal tree. Meanwhile, the routing
efficiency distortion keeps low.

Comparison with other protocols. We examine the data
collection efficiencies of different protocols. In the network,
each sensor is set to possess one sensory data that is desired
by the mobile user. After the mobile user finishes accessing
all those data, the data collection process completes. The
finish time is defined as the time difference from the time
when the mobile user builds the first collection tree to the
time when the data collection completes. A short finish time
indicates a better system performance.

With the same sojourn time at each data collection point,
the mobile user can access more data in�-Flooding compared
to CTP due to its rapid routing tree formation. The streaming
property can further reduce the routing delay by “absorbing”
the data flow nearby the mobile user instead of letting them
flow to the previous virtual sink during the movement of the
user. Fig. 25 demonstrates the performance of different
protocols with different network sizes. According to the

LI ET AL.: EXPLOITING UBIQUITOUS DATA COLLECTION FOR MOBILE USERS IN WIRELESS SENSOR NETWORKS 323

Fig. 22. System performance versus Distance (Adjusted �). Fig. 23. CDF of routing path lengths.

Fig. 24. System performance versus Network size.

result, both two �-Flooding schemes can largely reduce the
finish time compared to CTP. As a matter of fact, the
streaming property and the rapid tree formation attribute
jointly help shorten the finish time of the data collection, thus,
Adjusted �-Flooding approach outperforms Fixed �-Flood-
ing approach. To conduct a comprehensive comparison, we
examine the performance of our protocol combined with the
prediction mechanism in [16], denoted as �-Flooding+Pre-
diction. With a high prediction accuracy (e.g., 80 percent in
this section), the prediction mechanism indeed reduces the
finish time compared to CTP. However, as mentioned before,
the prediction mechanism is highly constrained by the
network context. On contrast, our protocol achieves a
comparable performance but is much less subjected to the
network environment.

7 RELATED WORK

As a basic operation, the data collection in WSNs has been
extensively studied. A surge of works study the data
gathering but with static settings. In addition, according to
how does each packet transmitted, the data collection can
be further divided into two categories: with aggregation or
without aggregation. In the former category, in-network
aggregating data results in a reduction in the amount of bits
transmitted, and hence, saves energy. Typical examples
include [15], [21]. Michael et al. [15] propose the first such
protocol. In [21], authors study the construction of a data
gathering tree to maximize the network lifetime. In the
latter category, Rangwal et al. [14] propose to collect data
through a tree structure with fair rate control. [12] proposes
to form an information potential-based routing structure. In
[11], Challen et al. present IDEA, a sensor network service
enabling effective network-wide data collection framework.
Even WSNs are capable to support large volume data
accessing, while recent works [16], [17], [22] indicate that
existing data collection schemes under the static setting
incur a poor performance if they are used in the network
with mobile users directly. The problem will become even
worse if the transmission loss and interference are serious
in the network [23].

In the network context with mobile users, most existing
works explore how to plan the moving trajectory for the
mobile user or sink to achieve an efficient data collection.
[18] exploits reactive mobility to improve the target
detection performance. Mobile sensors collaborate with
static sensors and move reactively in [18]. Tan et al. [19]
further jointly optimizes data routing paths and the data

collection tour. In [24], the authors investigate the approach
that makes use of a mobile sink for balancing the traffic load
and in turn improving network lifetime. SinkTrail is
proposed in [25] as a proactive data reporting protocol,
and the SHDGP problem is studied in [26]. Moreover, on
the application level, Gao et al. [27] propose to adopt HST
tree to distributed manage resources in WSNs and [28]
introduces a method to collect event data using mobile
sinks. On the other hand, some recent works do not assume
the fixed trajectory of mobile users or sinks. In [20], authors
propose to use data traffic to probe the future position of the
mobile user. The mobile user probing process does not
introduce extra communication costs; nevertheless, [20] is
not tailored for the optimization of routing tree transitions.
In [16], authors propose to use mobility graphs to predict
the future data collection position of the mobile user. Lee
et al. [17] utilize linear programming to optimize the
prediction accuracy. Those works mainly focus on predict-
ing the movement of mobile users to improve routing
efficiency. So far as we know, however, no works for
directly optimizing the ubiquitous data collection process of
mobile users have been proposed.

8 CONCLUSION

In this work, we study the ubiquitous data collection for
mobile users in wireless sensor networks. Essentially
different from existing works, we utilize the spatial
correlation to efficiently build and update the data collec-
tion tree in the system. Whenever the mobile user moves
and changes the virtual sink to access the sensor network, a
new data collection tree can be efficiently formed by locally
modifying the previously constructed data collection tree.
With such an approach, the routing performance is
bounded and controlled compared to the optimal perfor-
mance while the overhead in updating the routing structure
is significantly reduced. Such a property ensures low data
collection delay, providing real-time data acquisition for the
mobile user. In addition, our proposed protocol is compa-
tible to existing mobility prediction mechanisms and easy to
implement. We implement the proposed protocol in a 49-
node testbed and test its feasibility and applicability in
practice. We further conduct extensive simulations, which
prove the efficiency and scalability of our approach.

ACKNOWLEDGMENTS

This study is supported in part by the NSFC Major Program
61190110, NSFC Grant No. 60970123, National High-Tech
R&D Program of China (863) under grant No.
2011AA010100, Singapore MOE AcRF Tier 2 grant
MOE2012-T2-1-070, and NAP M4080738.020. A preliminary
version of this study has been presented in IEEE INFOCOM
2011 [29].

REFERENCES

[1] T. He, J. Stankovic, T. Abdelzaher, and C. Lu, “A Spatiotemporal
Communication Protocol for Wireless Sensor Networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 16, no. 10, pp. 995-1006,
Oct. 2005.

324 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2013

Fig. 25. Finish time of different protocols.

[2] L. Wang and W. Liu, “Navigability and Reachability Index for
Emergency Navigation Systems Using Wireless Sensor Net-
works,” Tsinghua Science and Technology, vol. 16, no. 6, pp. 657-
668, 2011.

[3] Y. Zhu and L. Ni, “Probabilistic Approach to Provisioning
Guaranteed Qos for Distributed Event Detection,” Proc. IEEE
INFOCOM, pp. 592-600, 2008.

[4] I. Stojmenovic, “Localized Network Layer Protocols in Wireless
Sensor Networks Based on Optimizing Cost over Progress Ratio,”
IEEE Network, vol. 20, no. 1, pp. 21-27, Jan./Feb. 2006.

[5] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The Dynamic
Bloom Filters,” IEEE Trans. Knowledge and Data Eng., vol. 22, no. 1,
pp. 120-133, Jan. 2010.

[6] Y. Liu, Y. Zhu, and L.M. Ni, “A Reliability-Oriented
Transmission Service in Wireless Sensor Networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 22, no. 12,
pp. 2100-2107, Dec. 2011.

[7] S. Tang, X. Mao, and X. Li, “Efficient and Fast Distributed Top-K
Query Protocol in Wireless Sensor Networks,” Proc. IEEE 19th Int’l
Conf. Network Protocols (ICNP), pp. 99-108, 2011.

[8] I. Stojmenovic and X. Lin, “Loop-Free Hybrid Single-Path/
Flooding Routing Algorithms with Guaranteed Delivery for
Wireless Networks,” IEEE Trans. Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1023-1032, Oct. 2001.

[9] Y. Liu, Y. He, M. Li, J. Wang, K. Liu, L. Mo, W. Dong, Z. Yang, M.
Xi, J. Zhao, and X. Li, “Does Wireless Sensor Network Scale? A
Measurement Study on Greenorbs,” Proc. IEEE INFOCOM,
pp. 873-881, 2011.

[10] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis,
“Collection Tree Protocol,” Proc. ACM Seventh Conf. Embedded
Networked Sensor Systems, pp. 1-14, 2009.

[11] G. Challen, J. Waterman, and M. Welsh, “IDEA: Integrated
Distributed Energy Awareness for Sensor Networks,” Proc. Eighth
Ann. Int’l Conf. Mobile Systems, Applications and Services (Mobisys),
pp. 35-48, 2010.

[12] H. Lin, M. Lu, N. Milosavljevic, J. Gao, and L.J. Guibas,
“Composable Information Gradients in Wireless Sensor Net-
works,” Proc. ACM Seventh Int’l Conf. Information Processing in
Sensor Networks (IPSN), pp. 121-132, 2008.

[13] Y. Mao, F. Wang, L. Qiu, S. Lam, and J. Smith, “S4: Small State and
Small Stretch Compact Routing Protocol for Large Static Wireless
Networks,” IEEE/ACM Trans. Networking, vol. 18, no. 3, pp. 761-
774, June 2010.

[14] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis,
“Interference-Aware Fairerate Control in Wireless Sensor Ne-
towrks,” Proc. ACM SIGCOMM, pp. 63-74, 2006.

[15] S. Michael, M. Franklin, J. Hellerstein, and W. Hong, “TAG: A
Tiny AGgregation Service for Ad-Hoc Sensor Networks,” Proc.
Fifth Usenix Symp. Operating Systems Design and Implementation
(OSDI), pp. 131-146, 2002.

[16] B. Kusy, H. Lee, M. Wicke, N. Milosavljevic, and L. Guibas,
“Predictive QoS Routing to Mobile Sinks in Wireless Sensor
Networks,” Proc. ACM Int’l Conf. Information Processing in Sensor
Networks (IPSN), pp. 109-120, 2009.

[17] H. Lee, M. Wicke, B. Kusy, O. Gnawali, and L. Guibas, “Data
Stashing: Energy-Efficient Information Delivery to Mobile Sinks
through Trajectory Prediction,” Proc. ACM/IEEE Ninth Int’l Conf.
Information Processing in Sensor Networks (IPSN), pp. 291-302, 2010.

[18] R. Tan, G. Xing, J. Wang, and H. So, “Exploiting Reactive Mobility
for Collaborative Target Detection in Wireless Sensor Networks,”
IEEE Trans. Mobile Computing, vol. 9, no. 3, pp. 317-332, Mar. 2010.

[19] G. Xing, T. Wang, Z. Xie, and W. Jia, “Rendezvous Planning in
Wireless Sensor Networks with Mobile Elements,” IEEE Trans.
Mobile Computing, vol. 7, no. 12, pp. 1430-1443, Dec. 2008.

[20] J.W. Lee, B. Kusy, T. Azim, B. Shihada, and P. Levis, “Whirlpool
Routing for Mobility,” Proc. ACM Mobihoc, pp. 131-140, 2010.

[21] Y. Wu, Z. Mao, S. Fahmy, and N. Shroff, “Constructing
Maximum-Lifetime Data Gathering Forests in Sensor Networks,”
IEEE/ACM Trans. Networking, vol. 18, no. 5, pp. 1571-1584, Oct.
2010.

[22] O. Durmaz, A. Ghosh, B. Krishnamachari, and K. Chintalapudi,
“Fast Data Collection in Tree-Based Wireless Sensor Networks,”
IEEE Trans. Mobile Computing, vol. 11, no. 1, pp. 86-99, Jan. 2012.

[23] K. Wu, H. Tan, Y. Liu, J. Zhang, Q. Zhang, and L. Ni, “Side
Channel: Bits over Interference,” IEEE Trans. Mobile Computing,
vol. 11, no. 8, pp. 1317-1330, Aug. 2012.

[24] J. Luo, J. Panchard, M. Piorkowski, M. Grossglauser, and J.
Hubaux, “Mobiroute: Routing Towards a Mobile Sink for
Improving Lifetime in Sensor Networks,” Proc. IEEE Int’l Conf.
Distributed Computing in Sensor Systems (DCOSS), pp. 480-497,
2006.

[25] X. Liu, H. Zhao, X. Yang, X. Li, and N. Wang, “Trailing Mobile
Sinks: A Proactive Data Reporting Protocols for Wireless Sensor
Networks,” Proc. IEEE Seventh Int’l Conf. Mobile Ad Hoc and Sensor
Systems (MASS), pp. 214-223, 2010.

[26] K. Tian, B. Zhang, K. Huang, and J. Ma, “Data Gathernig Protocols
for Wireless Ensor Networks with Mobile Sinks,” Proc. IEEE
GLOBECOM, pp. 1-6, 2010.

[27] J. Gao, L. Guibas, N. Milosavljevic, and D. Zhou, “Distributed
Resource Management and Matching in Sensor Networks,” Proc.
IEEE Int’l Conf. Information Processing in Sensor Networks (IPSN),
pp. 97-108, 2009.

[28] J. Luo, D. Wang, and Q. Zhang, “On the Double Mobility Problem
for Water Surface Coverage with Mobile Sensor Networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 23, no. 1, pp. 146-159,
Jan. 2012.

[29] Z. Li, M. Li, J. Wang, and Z. Cao, “Ubiquitous Data Collection for
Mobile Users in Wireless Sensor Networks,” Proc. IEEE INFO-
COM, pp. 2246-2254, 2011.

Zhenjiang Li (M’12) received the BE degree
from the Department of Computer Science and
Technology at Xi’an Jiaotong University, China,
in 2007, the Mphil degree from the Department
of Electronic and Computer Engineering at Hong
Kong University of Science and Technology, in
2009, and the PhD degree from the Department
of Computer Science and Engineering at Hong
Kong University of Science and Technology, in
2012. His research interests include distributed

systems, wireless sensor networks, and wireless and mobile systems.
He is a member of IEEE.

Yunhao Liu (M’02-SM’06) received the BS
degree from the Automation Department, Tsin-
ghua University, Beijing, China, in 1995, and the
MS and PhD degrees in computer science and
engineering from Michigan State University, in
2003 and 2004, respectively. He is a member of
the Tsinghua National Lab for Information
Science and Technology and the director of
the Tsinghua National MOE Key Lab for
Information Security. He is also a member of

the faculty with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology. His research
interests include Distributed Systems and Wireless Sensor Networks/
RFID, Cyber Physical Systems and IoT, P2P, Network Management
and Diagnosis. He is a senior member of the IEEE.

Mo Li (M’06) received the BS degree in the
Department of Computer Science and Technol-
ogy from Tsinghua University, China, in 2004
and the PhD degree in the Department of
Computer Science and Engineering from Hong
Kong University of Science and Technology in
2009. He is currently an assistant professor in
School of Computer Engineering of Nanyang
Technological University, Singapore. His re-
search interest includes wireless sensor net-

working, pervasive computing, mobile and wireless computing. He won
ACM Hong Kong Chapter Prof. Francis Chin Research Award in 2009
and Hong Kong ICT Award C Best Innovation and Research Grand
Award in 2007. He is a member of the IEEE and ACM.

LI ET AL.: EXPLOITING UBIQUITOUS DATA COLLECTION FOR MOBILE USERS IN WIRELESS SENSOR NETWORKS 325

Jiliang Wang (M’12) received the BE degree in
the Department of Computer Science from
University of Science and Technology of China,
in 2007 and the PhD degree in the Department of
Computer Science and Engineering from Hong
Kong University of Science and Technology. His
research interest includes wireless sensor net-
works, network measurement, and pervasive
computing. He is a member of the IEEE.

Zhichao Cao (M’12) received the BE degree in
the Department of Computer Science and
Technology from Tsinghua University, Beijing,
China, 2009. He is currently a Third year PhD
student of Hong Kong University of Science and
Technology. His current research interest is
wireless sensor networks. He is a member of
the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

326 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

