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Due to the increasing popularity of mobile devices, the usage of lifelogging has dramatically expanded. Peo-

ple collect their daily memorial moments and share with friends on the social network, which is an emerging

lifestyle. We see great potential of lifelogging applications along with rapid recent growth of the wearables

market, where more sensors are introduced to wearables, i.e., electroencephalogram (EEG) sensors, that can

further sense the user’s mental activities, e.g., emotions. In this article, we present the design and implemen-

tation of Memento, an emotion-driven lifelogging system on wearables. Memento integrates EEG sensors

with smart glasses. Since memorable moments usually coincides with the user’s emotional changes, Me-

mento leverages the knowledge from the brain-computer-interface domain to analyze the EEG signals to

infer emotions and automatically launch lifelogging based on that. Towards building Memento on Commer-

cial off-the-shelf wearable devices, we study EEG signals in mobility cases and propose a multiple sensor

fusion based approach to estimate signal quality. We present a customized two-phase emotion recognition

architecture, considering both the affordability and efficiency of wearable-class devices. We also discuss the

optimization framework to automatically choose and configure the suitable lifelogging method (video, audio,

or image) by analyzing the environment and system context. Finally, our experimental evaluation shows that

Memento is responsive, efficient, and user-friendly on wearables.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and
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1 INTRODUCTION

Lifelogging is a technique to digitize human daily lives, which was widely adopted in the therapy
for a series of neurodegenerative diseases using dedicated devices [21, 22, 34]. Later, due to the
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Fig. 1. Illustrataion of an emotion-driven lifelogging system.

increasing number of smartphones, the use of lifelogging has been dramatically expanded. It has
further became an emerging lifestyle for people to collect their memorial moments and share with
friends. Lifelogging applications or services [3, 4] on smartphones are able to log users’ lives in
various forms, e.g., texts, images, audio clips, videos, and so on. Recently, the wearables market
has been rapidly growing in terms of both technology advances and penetration. Wearable devices,
especially smart glasses, are equipped with the first-person camera, microphone, and rich on-board
sensors. They are always carried by the users and exposed to the ambient environment, which can
thus serve as a more suitable platform for the lifelogging service. Although prior attempts have
been made for designing lifelogging systems, the proposed solutions have two major limitations:

(1) Dependence on human intervention. Most existing lifelogging designs either conduct the
lifelogging continuously over the time or reply on manual operations [3, 4]. The limita-
tions are twofold. First, it is energy inefficient and wastes the device’s storage, because
usually not everything needs to be logged. Second, due to the lag off manual operations,
many brief but valuable moments could be easily missed. Though various user interac-
tion methods are introduced on wearables, like gesture, voice, and even wink controls,
the intervention overhead causes non-negligible burdens and may impair users’ willing-
ness to conduct lifelogging. Thus, an automatic lifelogging service without requiring user
intervention is expected.

(2) The affordability of wearables. Many prior lifelogging service designs rely on dedicated de-
vices [2, 5], which, however, are not appropriate for most Commercial off-the-shelf (COTS)
mobile or wearables devices. On one hand, due to the limited size, the energy resources
of devices are bounded, which cannot afford extensive and continuous sensing. On the
other hand, even intelligent lifelogging could lead to massive irrelevant lifelogs, which
can rapidly occupy device’s memory. Therefore device’s affordability should be carefully
considered.

To overcome above limitations, the key motivation of this article is to automatically trigger the
lifelogging service with an efficient and lightweight design. To this end, we propose Memento,
a lifelogging system on COST wearable devices to automatically log memorial moments by un-
derstanding the user’s mental state changes—lifelogging is triggered automatically by the user’s
emotions. As shown in Figure 1, Memento integrates electroencephalography (EEG) [7] electrodes
with smart glasses, where EEG measures brain waves. By leveraging the Brain-Computer-Interface
(BCI) domain knowledge, Memento derives emotions from EEG signals and launches the lifelog-
ging process automatically based on that. The development of such a service, however, entails
several crucial challenges.
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First, the signals collected from wearable EEG sensors are not always reliable—EEG signals are
usually mixed with various external interference signals from electric appliances and interfering
signals from the muscle activities such as blinks, the jaw, or the heart beat. However, the electrodes
of wearable EEG are not fixed on the scalp (see Figure 1 as a reference). The movements of the user
could thus cause a drift of the electrodes, which will in turn lead to a unpredicted change of the
harvested EEG signals. It is non-trivial to distinguish that the observed EEG signal changes are due
to such drift-caused “noises” or the user’s actual emotions. In this article, we carefully study the
frequency features of major interference signals and apply an efficient filter to remove the signals
due to non-brain activities. Meanwhile, we propose a sensor fusion–based approach with the help
of IMU readings to detect electrodes drifting and assist estimating signal quality.

Second, the high computational complexity of existing emotion recognition algorithms prohibits
them to be adopted directly on wearable devices. To address such an issue, we split the emotion
recognition into two phases and install them on smart glasses and private clouds (personal PC or
smartphone). Instead of extracting emotions in real time, we trigger lifelogging by analyzing the
emotional changes. The exact emotion information are obtained offline and tagged to the lifelogs.

Third, the environment impacts the lifelogging qualities. For instance, poor light conditions
and high noise levels might influence the qualities of image lifelogs and audio lifelogs, respec-
tively. Meanwhile lifelogging methods, image, audio, and video with various configurations (e.g.
resolution and frame rate) have different energy profiles. To best balance the logging quality and
the energy consumption, we propose the optimization framework, which picks and configures the
suitable lifelogging method with the analysis of both the environment and system context.

In summary, this article makes the following contributions:

• The proposal of a new and natural way to automatically trigger lifelogging. We introduce
the use of EEG for the lifelogging service design on wearable devices.

• A series of techniques to integrate EEG electrodes with wearables. We present our signal
processing and two-phase emotion recognition design, to meet the computation and energy
constraints of wearable-class hardware. We also discuss the optimization framework that
selects and configures the suitable lifelogging method to balance lifelog qualities and energy
consumptions.

• The full design and implementation of Memento—an emotion-driven lifelogging service on
smart glasses. We show Memento is efficient in support of emotion tagging and lifelogging
workload. The experimental evaluation indicates that Memento is able to provide satisfac-
tory battery life and user experience.

The rest of this article is organized as follows. Section 2 presents the background of lifelogging
and emotion recognition as well as the motivation of our system. Section 3 describes our system
design. In Section 4, we introduce the implementation of our prototype system. Section 5 presents
the experimental evaluation results. Section 6 discusses the related work, and Section 7 concludes
this article.

2 LIFELOGGING AND EMOTIONS

Before we detail the Memento system design, we first elaborate on some preliminary information
related to Memento in the following.

Lifelogging. Lifelogging is a form of the digitalization of people’s daily, personal experiences.
In past decades, several dedicated passive lifelogging devices are proposed for various purposes,
e.g., augmenting lives [44], memory aid [22], and health care [34]. With the rapid growth of mobile
devices, lifelogging services are gradually migrated to smartphones. Multiple on-board sensors and
various sensing techniques enrich the contents of lifelogs, including geo-location information [27],
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inferred user activities [49], and so on. Social Network Services (SNS) further turns the lifelogging
into an emerging lifestyle, and smartphone users love to collect memorial moments and share with
friends.

Recently, wearables gain their popularity and show great potential benefits for lifelogging. How-
ever, rather than a continuous logging with manual interventions, we believe that lifelogging could
be improved by capturing the user’s emotions—the system should be able to automatically log
memorial moments by understanding the user’s mental state changes. For example, when the user
gets very happy or sad, the happiness or sadness could be recorded in the forms of audios, images
or videos automatically. Some unexpected situations or accidents could be logged as well when the
user suffers strong emotional disturbances. We also believe that the lifelogs with emotion infor-
mation could not only improve the lifelogging system itself, but also enhance many other existing
services such SNS, health care, memory aid, and so on. For instance, lifelogging services are used to
provide memory cues for the people who struggle with Alzheimer’s disease. However lifelogging
technologies usually collect an overwhelmingly large amount of lifelogs to review. With the help
of intelligent emotion sensing, better memory cues could be selected and recorded automatically,
which accord with the people’s mental states.

Emotion. Generally speaking, the bodily changes follow directly the perception of the exciting
fact, and that our feeling of the changes when they occur is the emotion [25]. Although there are
some arguments to explain how emotions occur, the consensus is that emotions are physiological
and measurable. Some basic emotions can be found across individuals when certain stimulation is
given. For instance, prior studies have classified six [18, 53] or eight [47] basic emotions. It is further
improved by the bipolar model, in which the arousal dimension (how energized the experience feels)
and the valence dimension (how negative or positive the experience feels) are considered.

The emotion changes can be observed via physiological effects such as heart beats, facial ex-
pressions, voices, and brain activity. EEG is a measure of brain activity via the brain’s electric
signals. To harvest signals, EEG electrodes are attached on the scalp. The emotion changes lead to
distinguished patterns in EEG signals from the certain positions. There is an increasing number
of EEG-based emotion recognition techniques [23, 41, 43]. However, most of EEG-based emotion
recognition algorithms are not designed for the wearable-class platform. To adapt them, the prob-
lem we are faced with is algorithm complexity. The influence of the high complexity is twofold:
time constraint and energy overhead. On one hand, most of the algorithms are proposed for the
off-line recognition, even on powerful platforms such as PC and workstations. On the other hand,
the energy issue rarely has been considered in previous designs.

3 MEMENTO SYSTEM DESIGN

Figure 2 illustrates the architecture of the Memento design with three key modules: the signal pro-
cessing module, the lifelog collector, and the emotion recognition module. The signal processing
module takes EEG readings as input to detect users’ emotional changes, e.g., emotion events. When
an emotion event is detected, the lifelog collector starts to conduct the lifelogging procedure. The
camera and microphone on smart glasses serve as the major medias to capture the daily life mo-
ments in the form of videos, audios or pictures, according to both the environment conditions and
the system states. Finally the recognized emotions are tagged on the respective lifelogs.

The EEG electrodes often loosely contact on user’s scalp and the sensed EEG signals can be
easily polluted by interfering activities, e.g., eye blink, head movement, and so on. To address this
issue, in the signal processing module we propose an effective band-pass filter to remove ambient
noises, utilize the kernel-based correlation to exclude non-brain activities, and further leverage mo-
tion sensors and the rigid feature of the wearable to score the quality of the perceived EEG signals
(Section 3.1). With all high-score EEG signals, the lifelog collector performs lifelogging according
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Fig. 2. Architecture of the Memento design.

to user’s emotions. However, recognizing emotions from EEG signals is computational intensive,
not affordable by wearable platforms directly. To address this issue, we propose a two-phase emo-
tion recognition solution and install them on the smart glasses and the cloud, respectively. On the
smart glasses side, without specifying the exact emotion type, Memento merely detects emotion
changes by leveraging the intermediate results (Section 3.2). Once a significant change is detected,
the lifelogging is launched. To best balance the lifelogging qualities and the energy consumption,
we propose the lifelogging engine to automatically select and configure the suitable lifelogging
methods, according to the environment contexts and the system states (Section 3.3). Then lifel-
ogging engine would also determine the lifelogging duration dynamically. Finally, the collected
lifelogs and sensed data will be uploaded to the cloud later when the smart glasses are recharging
or on the user’s request. On the cloud, a sophisticated recognition algorithm asynchronously runs
to recognize the exact emotion type, which serves as the emotion tag for the subsequent recorded
lifelogs.

3.1 Signal Processing

In this section, we first describe the EEG signal processing module in Memento. Although it has
been extensively investigated by the studies in the brain-computer-interface domain, they mainly
focus on the signals from the EEG electrodes that are firmed attached to the users. However, in
the mobile and dynamic scenarios with loosely contacted EEG electrodes in Memento, we need to
process the signals with the following steps:

Band-pass filter design. For the collected EEG signals from the headband, we first apply a
band-pass filter due to the following reason. The frequency of EEG signals is in the range from
1 to 100Hz, which can be further divided into multiple bands: Alpha (8–14Hz), Beta (12–30Hz),
Gamma (>30Hz) and Delta (<4Hz), and so on. As the Alpha and Beta two bands are considered to
most related to human’s emotion states [12], we thus introduce a 7- to 31Hz band-pass filter (with
a 1Hz margin) to extract the EEG signals from these two bands only. With this band-pass filter, we
can also filter out two typical interference signals: (1) the heart beat, which is usually from 1 to
6Hz [40], and (2) the electronic interference from nearby appliances, which is at 50Hz (as they are
powered by the alternative current whose frequency is 50Hz), as shown in Figure 3. We note that
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Fig. 3. Frequency distribution of raw EEG signals.

it is possible that there exists some noises that we may not identify yet. However, the bandwidth
of our band-pass filter is very small, i.e., 7–31Hz. As long as they are not within this range, they
will not affect the Memento’s performance.

Non-brain activity removal. Non-brain activities, including chews, blinks, and other muscle
activities, produce additional electric signals and can be harvested by EEG electrodes as well. Fre-
quent non-brain activities involve lots of interference to EEG signals. In EEG study, electrodes are
usually attached on certain positions such as TP9, TP10, AF7, and AF8 (see Figure 8(c) as a refer-
ence) based on the 10-20 system [6]. In this setting, the most significant non-brain activity left is
blinks.

As the blink signals have an overlap with the Alpha and Beta bands, which thus cannot be re-
moved by the band-pass filter. To detect and further remove its impact, we notice that the eye blink
can be easily detected from the time domain on AF7 and AF8 two channels, as shown in Figure 4.
Therefore, once we detect the signals with the user’s eye blink, we can apply existing algorithm
[36] to remove its impact. To this end, we adopt a time window with length 400ms (corresponding
to the common duration of the eye blink) and apply the template matching [52] by using the kernel
correlation—a template is correlated with the incoming signals. Once the eye blink is encountered,
we can observe a high correlation value and apply the algorithm from Reference [36] in this time
window to remove the impact of the eye blink.

Against loosely contacted EEG electrodes. Finally, we consider the signal quality impacted by
electrodes’ drift. The electrodes of the wearable EEG are not fixed on the scalp. Instead, they are
only loosely contacting. However, in the context of lifelogging, the user may move. In this case,
because of the loose contact, the electrodes could drift on the scalp. Such a drift actually highlights
the design issue. In particular, when the electrode drift occurs, we can also observe the EEG signal
changes. We thus need to design an effective way to distinguish the observed EEG signal changes
are due to electrodes’ drift or user’s actual emotions.

To address this issue, our key observation is that when EEG electrodes drift, all the electrodes
should be influenced at the same time as the wearable device has a rigid body (i.e., all the electrodes
will drift at the same time). On the contrary, the user’s actual emotions may cause different EEG
signal changes on different electrodes. The cross-correlation mainly serves as a concrete way to
quantify the similarity of the signal changes from different electrodes.

• In Memento, we mainly use the AF7 and AF8 two electrodes, and Figure 5 illustrates an
example when the drift occurs. To quantify these similarity, we denote R and G as the
signal strength of each EEG sample collected from two electrodes, respectively, where
R = {r1, r2, . . . rn },G = {д1,д2, . . .дn } and the window size is n. The correlation c between R
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Fig. 4. Detecting blinks from

the EEG signals using the kernel

correlation.

Fig. 5. The EEG signals from elec-

trodes AF7 and AF8 when the drift

occurs.

Fig. 6. Resultant accelerometer

readings under different mobility

levels.

and G is calculated as

c =
1

n − 1
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ri − R
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�

дi −G
SG

�
�
,

where R and G indicate the average values of R and G, respectively, and SR and SG repre-
sent their deviations, respectively. The value of c is always between −1 and 1. The larger
c indicates two signals are more similar to each other, implying the drift is more likely to
occur.

• However, the user’s mobility itself will not directly cause the EEG signal changes. How-
ever, as the electrodes are not firmed attached to the user’s scalp, the mobility could impact
their contacting firmness, which in turn may degrade the signal quality (the electrodes may
not necessarily have an obvious drift, while a weaken contact could decrease the signal to
noise ratio of the signal. In the case where the electrodes indeed drift due to the mobility,
its impact will be captured by the correlation stated above). In Figure 6, we find that we can
further leverage the motion sensors from the wearable device to infer the mobility levels of
the user. For instance, when the user is static or only has the head movement, the variance of
the accelerometer readings is small. However, when the user starts to walk, the variance be-
comes much larger. Therefore, we utilize the variance of the motion sensor data as another
indicator of the contact quality v = Var(Acc ). Finally, we combine the power correlation c
and the acceleration variance v as the estimated signal quality score: s = 1

2(c+v ) .

We can then utilize s to select the good-quality EEG signals and drop the low-quality signals,
and the selected good-quality signals will be passed to other component for a further processing.

3.2 Two-phase Emotion Recognition

Emotion recognition algorithms are heavy to be adopted on wearables directly, especially when
we consider the stringent real-time requirement. To best our knowledge, most of algorithms are
designed for recognizing emotions off-line. For instance, according to our measurement, the algo-
rithm [41] costs about 2.8 × ts to perform the emotion recognition only once on the powerful LG
Nexus 5X (with the ts EEG signal as input), which clearly cannot satisfy the real-time requirement
on the wearable (Google Glass) directly.

Emotion recognition algorithms are based on different theories, but the procedures of these
algorithms share the similar principle: They can be decomposed into the feature extraction and
classification two phases. We observe that the classification phase is the major contributor to
slow down the execution time, while the feature extraction phase is relatively lightweight. This
is because most feature extraction approaches leverage near linear algorithms, but plenty of
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ALGORITHM 1: Segmentation Strategy

1 segmentation(data);

Input: The EEG data after preprocessing data
Output: Circular buffer

2 currentSeдment ← capture data from startLoc with windowSize ;

3 isValid ← valid (currentSeдment );

4 if isValid then

5 index = valid segment nums / bufferSize;

6 Buffer[index]← currentSegment;

7 end

8 startLoc ← advance (startLoc, isValid );

9 return Buffer ;

10

11 advance(startLoc, isValid );
Input: Last segment start index startLoc and whether it is valid isValid
Output: The start index for the next segment

12 if isValid then

13 consecutiveDrop ← 0;

14 else

15 consecutiveDrop ← consecutiveDrop + 1;

16 end

17 startLoc = startLoc +windowSize ∗ (1 −max (0,overlap − consecutiveDrop ∗ 0.1));

18 return startLoc;

19

20 valid(seдment );
Input: The current segment seдment
Output: If the current segment is accepted isValid

21 qualityScore ← the signal quality score;

22 if qualityScore >= threshold − tolerance then

23 threshold ← average score of all valid segment;

24 return True;

25 else

26 return False ;

27 end

iterations are involved in the classification phase. For instance, in Reference [43], the lifting-based
wavelet transformation is used to extract features, which is acceptable yet, but in the classification
phase, the Fuzzy C-Means clustering is applied, introducing a vast number of computation. Based
on this observation, we make an attempt to separate the emotion recognition algorithm into the
feature extraction phase and the classification phase, then install them on wearable and cloud,
respectively.

EEG segmentation. Before introducing the feature extraction phase on Memento, we first de-
scribe our data segmentation strategy. Algorithm 1 shows the pseudo-code of out segment strategy.
The design goal is to balance the data redundancy and the processing efficiency. We apply a sliding
window of 10s with 2200 samples initially and set 50% overlaps. With a larger window, the emotion
recognition algorithm could be feed by more comprehensive data and might provide more accurate
estimation, but consumes much more time to process and lead to the greater delay between the
certain event occurs and the lifelogging process is triggered. Since Memento is designed as a near
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Fig. 7. Using the arousal trend to trigger the lifelogging.

real-time lifelogging service, we initially set a relatively small window and dynamically adjust the
overlap size.

According to the signal quality score s stated above, we can determine whether to keep the
current segment or drop it. We use an adaptive threshold instead of a fixed one (line 23). However,
if the consecutive segments are invalid, it indicates the current situation gets worse. To avoid
the unnecessary processing overhead, We reduce the window overlap 10% for each consecutive
dropped segment. We always reset the overlap to 50% when a valid segment is found (line 11–18).
Finally, we store the valid segments in the circular buffer. The buffer follows the FIFO rule (line 4–
6). If there is no space for the coming segment, then the oldest existing one will be replaced.

Feature extraction. From the accepted segments, Memento fetches the EEG segments from
the buffer continuously and then extracts features. Since the exact emotions would not be recog-
nized at this phase yet, we consider to use the intermediate results from features to trigger lifel-
ogging. Although these features do not lead to the exact emotion, they can indicate that the user
already demonstrates remarkable emotional changes, which can confidently trigger the lifelog-
ging (the emotion tag can be supplemented later after the emotion recognition is completed on the
cloud).

In Memento, the selected feature is called fractal dimension (FD), which has been widely used
in prior emotion recognition designs [26, 41, 53]. FD is an index for characterizing fractal sets by
quantifying their complexity and it is considered to be positively correlated to how energized the
user is, hence the arousal level. In particular, we make use of Katz’s FD calculation [28] and apply
it directly on the waveforms. We obtain the FD of a signal sequence using:

D =
logn

log d
L
+ logn

, (1)

where L is the total length of the signal sequence and d is the diameter that can be estimated as
the farthest distance with the beginning point. The parameter n is the number of the steps in the
sequence, which is adjusted by the granularity. In particular, we define n = L/a, where a is the
average distance among the successive points.

Lager FD values are associated with higher arousal levels. To tolerate the absolute arousal dif-
ferences among individuals, we do not use the absolute arousal level as the threshold to trigger the
lifelogging procedure. We propose to use the trend of emotional changes, which is to calculate the
derivation of the FD values. The FD trends represents the mental change direction, positive or neg-
ative, and also the arousal level. Figure 7 shows the occurrence of a positive trend, and lifelogging
is thus triggered after the sample of index 60.
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Table 1. Power Consumption and Estimated Battery Life for

Different Lifelogging Methods on the Google Glass

Lifelogging Methods Power Draw Battery Life

Idle 18mW 116 hours
Audio recording 642mW 3.2 hours
Image capturing 2842mW 0.8 hours
Video capturing 3008mW 0.7 hours

Two-phase emotion classification. Finally, when Memento determines to launch lifelogging,
the lifelogs, the EEG features and related sensor readings, including motion sensor data and GPS,
will be compressed and saved in the storage of the smart glass. We notice that although the compu-
tation and energy resources are limited on wearables, the storage is sufficient. Then the stored data
can be uploaded to the private cloud (PC or smartphone) later when the smart glass is recharging
or on the user’s requests. On the cloud, we run the sophisticated emotion recognition algorithm
to recognize the emotions [41].

Memento currently can recognize six emotions, including fear, frustrated, sad, satisfied, pleasant
and happy. Such a division is based on References [41, 51]. However, this emotion classification
may not be universal. The classifications in different research studies could be slightly different.
For instance, Plutchik et al. [47] propose eight emotion classifications, which are anger, fear, an-
ticipation, surprise, joy, sadness, trust, and disgust. As there is no universal emotion classification
yet, our current design is mainly based on the emotion classification from References [41, 51, 53].

3.3 Lifelogging Engine

When the lifelogging is triggered, a suitable lifelogging format (by video, audio, or image) should
be selected and also properly configured by adjusting the settings such as FPS and resolution, ac-
cording to the environment conditions and the system states (Section 3.3). The lifelogging duration
for video and audio recording each time needs to be decided as well in the lifelogging engine.

Generally speaking, a camera and a microphone on wearables can serve as the major media and
lifelogs can be recorded in the forms of video, audio or pictures. In ideal cases, the video clips con-
tain almost all the details of audios and pictures. However, in practice, the environment usually
impacts lifelogging qualities. For instance, poor light conditions lead to low-quality videos. Vigor-
ous motion might make the camera go out of focus, in turn leading to blurred pictures. However,
each lifelogging formate with various settings, e.g., resolution, FPS, and sample rate, has different
energy profiles. Table 1 shows the power consumption and the estimated battery life for audio
recording, image capturing, and video capturing on Google Glass. Using expensive settings nat-
urally consumes more energy [38]. For instance, the energy consumption of video capturing is
almost 5 times that of audio recording. Therefore it is crucial to balance the lifelogging qualities
and the energy consumption.

To tackle this problem, we design the lifelogging engine, which automatically selects and con-
figures the suitable lifelogging method with the analysis of the environment conditions and the
system states. By sensing the current environment conditions, including light conditions, move-
ments, and noise levels, we infer the expected qualities of each lifelogging method and formulate
it as Utility. We then formulate the Cost of each lifelogging method in terms of the energy con-
sumption and the resource usage. We also consider the device surface temperature to ensure the
user-comfort on wearables. The lifelogging engine thus selects the proper lifelogging format by
minimizing the Cost and maximizing the Utility and then utilizes this selected format to conduct
the lifelogging.
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Utility. We design the utility function to represent the expected quality of a lifelog. The function
assess the utility based on two criteria: how poor the environment conditions are (ue ) and what
lifelogging configurations are used (uc ). We apply a linear combination of uc and the reciprocal of
ue :

um = wm
e (um

e )−1 +wm
c um

c , (2)

where m ∈ {video,audio,photo} represents each lifelogging format, respectively, and

wm
e +w

m
c = 1.

(1) Calculating um
e . To obtain um

e , we consider three types of environmental factors: the light
condition, the mobility level, and the noise level. We observe each lifelogging format is able to
tolerate one or few negative impacts from the environment. For instance, the light condition cannot
impact the audio quality, and the noise level cannot influence the photo quality. We thus formulate
um

e for each lifelogging format as follows:

uv
e = w

v
l θl +w

v
mθm +w

v
nθn ,

ua
e = w

a
nθn ,

u
p
e = w

p

l
θl +w

p
mθm ,

(3)

where θi , i ∈ {liдht ,movement ,noise} stands for current environment conditions and each wm
i is

the weight.
We sense the light condition θl via the on-board ambient light sensor, which provides the light

intensity in luminance. We extract the movement level θm from the accelerometer readings. We
borrow the results from the movement estimator in Section 3.1. Then we adapt and simplify the
algorithm from Reference [35] to identify the movement state into one of {stationary, walk, ride}.
To obtain the acoustic noise level, a one-second acoustic sample is collected. From the sample, we
extract the sound pressure level (SPL) as θn by using the built-in API.

(2) Calculating um
c . To obtain um

c , we consider four types of configurations: resolution, frame
rate, sampling rate and acoustic channel. From the technical specifications of the device, we can
get the “highest” configuration that can be supported by the device for each lifelogging formatm,
e.g., the highest video resolution of the camera, denoted as best_configm . Then we can compute
um

c as

um
c = current_configm/best_configm . (4)

For the weights used in the Utility above, we investigate their settings in Section 5.3.
Cost and system capacities. We assess Cost from three aspects: the energy consumption cm

e ,
the resource usage cm

r , and the temperature increment cm
t :

cm = wec
m
e +wrc

m
r +wtc

m
t , (5)

wherem ∈ {video,audio,photo} stands for the lifelogging format. we , wr , and wt is the particular

weights for each cost component. In the current implementation, we set three weights equal to
each other.

(1) Calculating cm
e . We model the energy consumption of each lifelogging format cm

e as a lin-
ear function of the lifelogging duration t , i.e., cm

e = p
mt , where pm is the power of lifelogging.

We experimentally obtain pm via the off-line tests on wearables. The results on Google Glass are
shown in Table 1. For the photo capturing, we set pp as the average power when taking photos
consecutively. The capturing interval is fixed and set to 5s.

(2) Calculating cm
r . We calculate the resource usage cm

r by considering CPU and memory uti-
lization of each lifelogging format. We set them as the constantsCcpu and Cmemory , which can be
obtained by one-time off-line training.
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Table 2. Pre-defined Lifelogging Configurations

Method Item Settings

Video Resolution 320*180 640*360 1280*720
Frame Rate 15 FPS 30 FPS 30 FPS

Audio Sampling Rate 16kHz 22kHz 44kHz
Channel Mono Stereo Stereo

Image Resolution 640*360 1280*720 1920*1080

(3) Calculating cm
t . Usually smart glass directly touches the skin of users. The high device tem-

perature leads to the degraded user-comfort. Thus we also consider the device temperature of
wearables and ensure it will not exceed the certain constraint. Since CPU is the major heat con-
tributor, we leverage the CPU load to predict the temperature increment over the duration t .

After we determineCost , theCapacity used in the optimization, in terms of battery budge cape ,
CPU and memory utilization capu and device temperature capt , are further set as follows:

capb = θbBudдet ,

capu = θuMemory + θuCPU ,

capt = Tmax ,

(6)

where we empirically set the energy budget constraint θb as 90% of the full battery life and resource
utilization constraint θu as 95% of the memory quota. We set the temperature constraint Tmax as
48◦C to ensure the user-comfort according to Reference [39]. We inquire the current battery life,
the available resource quota and CPU temperature by system APIs.

Optimization framework. We define Utility andCost , as well as Capacity. To select the suitable
lifelogging method, we aim to maximize the utility (Equation (2)) by controlling the cost (Equation
(5)) less than the capacity (Equation (6)). We regard it as a combinatorial optimization problem,
specifically, the 0-1 knapsack problem [50]. Each lifelogging format with certain settings has the
estimated utility and the costs in terms of the energy consumption, the resource usage and the
heat increment. The knapsacks represent the current capacities, which are the battery budget, the
available CPU and memory quota and the device temperature. After solving this optimization
problem, we get a suitable lifelogging format with the specific setting as well as the lifelogging
duration for video and audio capturing. To reduce the optimization search space for wearable
devices, we provide some predefined configurations to be used, as in Table 2. We also provide a set
of predefined lifelogging duration to speed up, which is t = 30 + i · 60s and for i , we set its range
from 0 to 9.

3.4 Computation Offloading

All Memento components described so far can be executed purely on wearables. In this section,
we introduce a design that can offload certain computations to user’s smart phone (if available)
for further improving the battery life of wearables.

In particular, we install the same programs and algorithms of the signal processing and emotion
event detection. Once the smartphone is available, all the sensed data, including EEG data and
motion sensor readings, are processed and analyzed on the phone until a certain emotion event is
detected. Then the smartphone in turn notifies the smart glass to trigger the lifelogging engine. We
switch the computation between the smart glasses and the smartphone according to three criteria
as follows:
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Fig. 8. The hardware and software implementation of the Memento prototype.

(1) When the smart phone CPU is awake for a period of time, we offload tasks to the smart-
phone due to the Piggyback effect [30]. We try to avoid waking the smartphone from the
idle state to perform tasks, because the tasks are simple though, the CPU and many related
subsystems must be activated, which consume can more energy. We piggyback the tasks
on the smartphone to maximize the CPU utilization and save the battery life.

(2) When the battery budget on the smart glasses is lower than a threshold, we offload tasks
to the smartphone, since we try to use to record as many lifelog as possible before the
battery dies. Memento allows the user to set the battery threshold, and by default we set
it as 15% of the full battery life.

(3) When the smartphone is busy, we return the offloaded tasks to the smart glasses to ensure
the responsiveness. We monitor the circular buffer mentioned in Section 3.2. The time
difference between the oldest and newest segments in the buffer indicates if the data are
processed in time. We check the time difference when fetching the segment and send tasks
back to the smart glasses if it is longer than 240s in our implementation.

4 IMPLEMENTATION

Based on the design in Section 3, we implement a Memento system prototype in this article.
Hardware. As illustrated in Figure 8(a), the current prototype is composed of two commercial

devices: a Muse EEG headband [8] and a Google Glass Explorer Edition.
The Muse headband is designed as a personal meditation assistant, which helps the user with

meditation exercises. Four channels are supported on the Muse headband, and they are illustrated
by the 10-20 system [6]. This headband has five touching spots on the user’s scalp, including
one reference point in the middle, as shown in Figure 8(c), and other four are EEG measurement
electrodes. The electrodes measure the voltage fluctuations resulting from the ionic current within
the neurons of the brain on the scalp. In addition to the electrodes, the Muse headband is also
equipped with an accelerometer. A PIC24 MCU is used to conduct simple processing operations,
e.g., low-pass filtering and band filtering. The headband has a separated battery of 250mAh.

We use a Google Glass as the main wearable platform with Android OS. The core component of
a Google Glass is the OMAP4430 system-on-chip (Soc), which owns a dual-core ARM Cortex-A9
CPU, 2BG RAM, and 16GB flash storage. Its rich sensors satisfy the requirements of lifelogging and
sensing, including microphone, camera, accelerometer, gyroscope, ambient light sensor, and so on.
The Google Glass has a 570mAh liPo battery. In addition, both Wi-Fi and Bluetooth are supported.
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In our prototype, the raw EEG reading are preprocessed by the band-pass filter on the Muse
headband. Since the headband is not programmable, the rest of the processing operations are per-
formed on Google Glass. EEG data are pushed from the headband to the glasses via Bluetooth. On
receiving the EEG data, Google Glass attaches a time stamp to the data. For all other types of data,
such as motion data, GPS, and recorded video, they are generated by Google Glass, and we attach
time stamp as well when they are generated. Therefore, all the data used in the Memento design
can be easily aligned. The resolution of this alignment is high, which is in the level of milliseconds.
Finally, the computation tasks of Google Glass can be offloaded to an LG Nexus 5. The back-end
service runs on a workstation with a Intel Xeon processor, 16GB RAM, and 1T disk.

Software. We implement the Memento modules in three software packages and deploy them
on the Google Glass, the smart phone, and the back-end server, respectively.

• We implement preprocessing and lifelogging two functions as an Android Wear application.
Most of the codes are written in Java. For the common utility algorithms used in the data
cleaning and feature extracting, e.g., Goertzel algorithm, Katz’s FD calculation, and so on,
we implement them as the executed libraries in native code.

• Memento service on the smartphone includes two major features. First, we build the offload-
ing host as a standard Android service. The service remains in sleep until certain offloading
requests are received through the notification mechanism. Since the smartphone runs An-
droid as well, the services share the same set of native libraries and the sub-set of Java
code with the Memento application on Google Glass. We use a Wi-Fi Ad hoc network to
set up the connection between the smartphone and the glasses. Second, we implement the
application with GUI to browse the lifelogs in the private cloud and the Google Glass. The
application is also used to share the lifelogs to the SNS easily. Figure 8(b) shows the current
user interface on Android.

• Back-end server. We implement the full version of the emotion recognition on the back-end
server in Java. We setup a web service on the server. Lifelogs along with related sensing
data uploaded through the encrypted links. The back-end sever also provides the features
of querying and browsing lifelogs.

Lifelog Store. Lifelogs are distributed both on wearables and the private cloud. On the Google
Glass, media lifelogs are stored in the raw format. Before storing the EEG features, we compress
them to reduce the size. We use SqLite database to maintain the index. An entry in the index
represents a lifelogging event, which contains the corresponding media lifelogs and EEG data.
Currently, we have four attributions in each entry, which are the timestamp, the location obtained
from GPS on the smartphone, the file pointers of the media lifelogs, and the EEG features. The
lifelogs on the Google Glass are uploaded to the private cloud when the glasses are in charge or
on the user’s request. On the private cloud, lifelogs are stored in the similar structure with on the
glasses, but the emotion tags are added. Each entry is further assigned one type of basic emotions,
along with its arousal and valence levels.

5 EVALUATION

In this section, we present our evaluation on Memento. We first introduce the experimental setting
and then report the detailed system performance of Memento.

5.1 Experimental Setup

(1) Related to emotion recognition. In this experiment, we adopt two datasets: a public dataset
DEAP [29] with 32 participants and our collected dataset with five participants (their informa-
tion is summarized in Table 3). We are given the access to the DEAP dataset, which is collected
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Table 3. The Information of Our Recruited Five Volunteers

ID Age Gender Handedness Vision Vision Aid Education Alcohol Coffee Tea Tobacco Hours of sleep

C01 28 Male Right Corrected to normal Glasses BA Never Regularly Never Never 8

C02 27 Male Right Normal No BA Never Never Regularly Never 6–8

C03 30 Male Right Correct to normal Glasses Ph.D Never Never Regularly Regularly 5–8

C04 26 Female Right Correct to normal Glasses BA Never Never Never Never 8

C05 24 Male Right Normal No BA Never Never Never Never 7–9

for the analysis of human affective states. In DEAP, the EEG signals of 32 participants are col-
lected by a dedicated EEG equipment with 32 electrode channels of a good signal quality, while
each participant watches 40 one-minute-long excerpts of videos. After they watch one video clip,
a self-assessment tool [13] is used to let participants rate their reflections for each video in terms
of the level (1 to 9) of arousal, valence, and dominance. The size of DEAP dataset is 2.7GB in total.
As the dataset DEAP has a clear labelling in the arousal and valence two-dimensional (2D) plane,
we have conducted the following comparison with the recent emotion recognition design [41] as
follows.

• DEAP-Manual: For each 1-minute video clip, as all the participants also manually label in
the arousal and valence two-dimensional plane, we can recognize their emotions based on
such labels using Reference [41].

• DEAP-EEG: For each 1-minute video clip, the high-quality EEG data provided by the DEAP
dataset (for each participant) can be used to derive a series of points in the arousal and
valence two-dimensional plane, based on which we can also recognize each participant’s
emotion when he/she watched the video using the algorithm proposed in [41].

• Memento: For each 1-minute video clip, we let each of our five participants watch the video
and record their EEG signals using MUSE headband (the EEG data quality is not as good as
that in the DEAP dataset as the EEG data in DEAP is collected by a dedicated equipment).
We then apply Memento on our collected data for the emotion recognition.

To compare the performance, we adopt the metric of Manhattan distance (please note that we
cannot directly compare the emotion recognition accuracy, because the dataset does not label
each participant’s emotion ground truth). For this metric, the smaller the Manhattan distance is,
the closer the compared two methods perform.

(2) Related to the overall lifelogging. We let five participants wear our Memento system, and we
collect their EEG readings, motion sensor readings and lifelogs under different scenarios, includ-
ing laboratory, office, street, and park. When the significant emotion changes occur, the lifelogging
collector is triggered. The selected lifelogging method along with the particular settings, the times-
tamp, and the duration are recorded as well. Totally, we get about 6 hours videos, sensor data traces,
and corresponding event timestamps. Finally, we also use the Monsoon power monitor to collect
the real-time energy consumption traces of the Google Glass and the smartphones to examine the
energy consumption of our design.

5.2 Emotion Recognition Performance

Overall performance. According to the Arousal-Valence emotion model, the user’s EEG signals
are first converted to a set of emotion samples (points) on the two-dimensional Arousal–Valence
plane, based on which we can recognize human’s general emotions: fear, frustrated, sad, satis-
fied, pleasant, and happy according to References [51, 53]. As stated above, we train the emotion
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Fig. 9. Overall emotion recognition performance of the five participants.

Fig. 10. Manhattan distance among DEAP-Maunal, DEAP-EEG, and Memento.

recognizer using the dataset DEAP. After the training, we test on these five participants (their data
are not used in the training). In particular, after watching one video clip, we let each volunteer se-
lect the emotion from the six emotion candidates. Then, based on their EEG data, we further use
Memento to recognize their emotions and compare with the volunteers’ manually labelled ground
truth.1 The result is as depicted in Figure 9. From the figure, we can see that the emotion recogni-
tion of Memento can achieve good performance. The accuracy is from 51% to 61%, and the average
accuracy is 57%, which is quite close to the accuracy about 60% using a dedicated EEG equipment
in Reference [53]. For the emotion recognition, we leverage existing algorithm from the neuro-
physiology domain. With the further advancing of this research field, we can update the emotion
recognition algorithm for achieving higher accuracy in the future. As an immediate remedy solu-
tion against the unreliable emotion recognition labels, the user could review the recognized motion
labels and perform a manual correction if needed.

Manhattan distance. To have a detailed understanding of the emotion recognition perfor-
mance achieved in Figure 9. In Figure 10(a), we directly compare the Manhattan distance of the
emotion samples on the Arousal–Valence plane with respect to DEAP-Manual. Figure 10(a) illus-
trates the distance distribution of all the 40 test cases between DEAP-EEG and DEAP-Manual. As
their data are both from the DEAP dataset, we adopt such a distribution as the baseline to under-
stand the performance of Memento. In each test case, we calculate the Root Mean Square (RMS)
between DEAP-EEG and DEAP-Manual. Overall the average RMS is 2.42 and the maximal and
minimal RMS is 4.25 and 0.90, respectively. Among them, 60% of cases is less than 2.5 and the RMS
of over 80% test cases are less than 3.29.

1Such an experimental methodology follows prior studies, but it could have the possibility with a prior likelihood of correct

guessing by the volunteers.
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Fig. 11. Manhattan distance distribution for Memento and DEAP-EEG compared with DEAP-Manual.

Table 4. Breakdown of the Emotion

Recognition Performance

Process Averaged RMS

Full design 2.76
Band pass filter (BPF) 3.63
BPF + Non-brain removal 2.92
BPF + Signal quality estimation 3.32

In Figure 10(b), we then compare Memento with DEAP-Manual. Overall, the average RMS is
2.76 and the maximal and minimal RMS are 4.22 and 1.5, respectively. In all the test cases, the RMS
of more than 80% cases is less than 3.66. The result indicates that the Manhattan distance increases
around 10% merely comparing with the baseline, which explains why Memento can achieve good
performance in Figure 9. In Figure 10(c), we also compare Memento with DEAP-EEG. We align
the converted emotion samples on the Arousal–Valence plane in the time domain and calculate
the distance between each pair of two samples (one from Memento and one from DEAP-EEG) that
are closest in time. The results show that the average RMS is 2.12 and RMS from more than 80%
cases is less than 2.7. This shows that Memento can perform comparably with DEAP-EEG, which
is another indicator that Memento achieves good performance.

Finally, Figure 11 summarizes the detailed Manhattan distance CDFs for both Memento and
DEAP-EEG compared with DEAP-Manual, which shows very comparable performance.

Performance gain from different modules. For the emotion recognition of Memento, we
propose three modules to improve the EEG signal quality on wearable devices, namely band pass
filter (BPF), non-brain activity removal and the countermeasure against the loosely contacted EEG
electrodes. In Table 4, we further examine the efficacy of these modules. The average RMS of
Memento with respect to DEAP-Manual is 2.76. If we purely adopt the band pass filter, then the
average RMS increases to 3.63. If we further add the non-brain activity removal module, then the
RMS is decreased to 2.92. The last module can further reduce the RMS value to 2.76. We note that
the reduction of the last module is less than the second module is mainly because the occurrence
of the wearable device shift is much less frequent than the non-brain activities.

5.3 Lifelogging Performance

We now evaluate the overall lifelogging performance of Memento. In particular, we examine how
our emotion-driven lifelogging design can meet the users’ expectations.
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Fig. 12. How the emotion-driven

lifelogs fit the users’ expecta-

tions.

Fig. 13. Coverage ratio of lifelogs

against the clips selected by users.

Fig. 14. Lifelog quality evaluation

based on the face count.

Fits of user’s expectations. In this experiment, we let participants wear our Memento system
and we collect their EEG readings, motion sensor readings and lifelogs. For the evaluation purpose,
we also store the whole first-person view video (about 6 hours) as the ground truth. After the
experiment, we ask each participant to watch its own first-person video and manually select all
the clips that they believe should be captured, i.e., by labeling the start and end time. Then we
compare the timestamps labeled by participants with the results obtained from Memento. In the
comparison, if the video lifelogs are selected by Memento, we define three categories:

• Fit: the overlap is more than 50%,
• Semi-fit: the overlap ranges from 30% to 50%, and
• Non-fit: the overlap is less than 30%.

For audio lifelogs, we define three similar categories but with more strict criteria due to less in-
formation contained in the audio lifelogs. We set fit. semi-fit, none-fit when the overlap rate more
than 65%, 45–65%, and less than 45%, respectively. If the picture lifelog is recorded by Memento,
then we regard it as fit if it appears in the selected videos by the manual labeling; otherwise, it is
none-fit. As Figure 12 shows, Memento achieves very good lifelogging performance, where nearly
80% of recorded lifelogs are within the Fit and Semi-Fit two categories.

However, we also evaluate the coverage of the lifelogs selected by participants against the lifel-
ogs collected by Memento. We define the participant selected video is not covered when the time
overlap with the Memento lifelogs in any forms is less than 30%; otherwise, it is covered. Figure 13
shows that more than 70% of lifelogs are covered for Memento in the experiment.

Performance of the vision task. To further understand the quality of the collected lifelogs,
we utilize one common vision-based task in Memento, i.e., fact detection, to evaluate the perfor-
mance. With the recorded first-person view videos for each participant, we apply an open-sourced
face detection library.2 We manual label the faces appeared as the ground truth. According to the
lifelogging timestamps, we get the corresponding video clips from the first-person video above.
We first run the fact detection algorithm on the continuous video as the reference, denoted as
Continuous in Figure 14. Then based on the lifelogging decisions that Memento makes (video, au-
dio or photo), we further obtain the number of heads detected from the lifelogs. Figure 14 shows
the performance over 10 randomly selected test cases, which shows that Memento achieves com-
parable performance as Continuous, where the average head counting errors are 58% and 49%,
respectively.

However, by using the detection results, we can further get the F1-score [11], which can be used
to train the Utility and the corresponding weights in Section 3.3.

2https://github.com/ageitgey/face_recognition.
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Fig. 15. Energy consumption of each component.

5.4 Energy Consumption

Currently, we implement our prototype via two separate commercial wearable devices: a MUSE
EEG headband and a Google Glass. We present their energy consumption in this subsection.

(1) EEG headband. By default the MUSE EEG headset continues to send out the raw EEG data
via Bluetooth. In addition, it uses a micro control unit to apply the pre-processing operations on
the EEG signals such as smoothing and band-pass filtering. Under this setting, we have measured
that the battery life of the EEG headset is about 4.2 hours with the battery size of 250mAh. In the
future, we plan to adopt the duty-cycle technique to reduce the sampling frequency, which can
further improve the lifetime of the headband.

(2) Google Glass. As Google Glass needs to work in different modes for processing different tasks,
we thus measure the detailed energy consumption under each mode in the following.

• Data collection: Memento continuously receives the EEG data from the headband. As shown
in Figure 15, data collection contributes to about 589mW energy consumption on average.

• EEG data processing: Memento cleans the data, extracts the FD values, and computes the
arousal changes. From the measurement, we find that in addition to the data collection,
after Memento processes the EEG data, 200mW more energy will be consumed, as shown
in Figure 15.

• Lifelogging: When the arousal changes are detected, the lifelogging is launched. Figure 15
also shows the energy consumption under three types of lifelogging methods. In particular,
when audio and image are used, the additional energies are about 403 and 153mW, respec-
tively. When video is adopted, the energy consumption could jump to 1200–1600mW.

Different from the headband, currently the co-processor or LPU cannot be utilized on Google
Glass, since Android does not release such APIs. According to the current setting, the lifetime of
Google Glass is about 4.6 hours. In the future, we envision that the communication cost could
be largely reduced or even removed if the EEG electrodes could be physically connected to (or
included by) the smart glass device.

6 RELATED WORK

We review existing works that are related to the Memento design from the following two aspects:
Emotion recognition and its applications. Emotion is one of the human natures and can be

inferred in several ways [54]. Existing work exploits the recognition of emotions by leveraging the
acoustic [32] or the visual signals [9, 16, 45], where the facial or spoken expressions are carefully
analyzed. Comparing to the voice and video, the physiological signals are more direct indicators
of how we are feeling. The heart beat, breath rates, and blood pressure are used to extract affective

3The measured 40mW is the average energy consumption to take the image once.
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states in References [20, 55]. Memento makes of EEG. There are a number of EEG-based emotion
recognition algorithms proposed in recent years. For example, to classify basic emotions, support
vector machine is used in Reference [23]. In Reference [43], wavelet-based methods are applied to
extract features, fuzzy k-means and fuzzy c-means clustering are considered to do the classifica-
tion. Besides the statistic-based methods and wavelet transform-based methods, more approaches
are considered. In Reference [46], higher-order crossing analysis is adopted. The authors of Ref-
erence [41] make use of the fractal dimension-based algorithm to quantify the basic emotions.
However, these algorithms mainly focus the emotion recognition accuracy. The time constraints
and the energy consumptions are rarely considered. Most of them are proposed for offline recog-
nition process. The authors of Reference [41] build a real-time emotion recognition system, but it
is not affordable for the wearable-class hardware in terms of both the computation capacities and
battery life.

Recent years a devise of sensing algorithms on smartphones are proposed to offer a rich set of
user signals, including affective activities. Some indirect approaches are explored. EmotionSense
[48] builds an audio-based emotion recognition on smartphones. In References [15, 33], the re-
lationship between the phone usage pattern and the personalities is discussed. The authors of
MoodScope [37] propose their findings that by analyzing the communication history and appli-
cation usage patterns, users’ daily mood can be inferred accurately. Comparing to these systems,
Memento leverages EEG directly and interprets the users’ affective activities in the perspective of
physiological properties.

Lifelogging system. The origin goal of the lifelogging system is to digitize the users’ activities
and to provide the query services. In MyLifeBits [19], various activities are collected, including
emails, photos, presentation slides, home videos, and audio recordings. It is considered one of the
first bite to the comprehensive lifelogging system. In the past decades, many lifelogging systems
have been proposed. We categorized them into two groups: dedicated equipment for certain pur-
poses and lifelogging systems on personal mobile devices, smartphones specifically. SenseCam [22]
is a body mounted camera, which passively captures photos through a wide-angle lens. SenseCam
is proposed for the memory aid. Extending it, Footprint Tracker [21] studies the effects of multiple
memory cues. In Reference [34], a ubiquitous lifelogging system is also designed for the episodic
memory impairment. Recently wearables gain the popularities. Some wearable cameras [1, 2, 5]
can be used to log daily lives. However, most of these lifelogging devices are designed to passively
log or request users’ intervention. Memento aims to provide a automatic, affordable lifelogging
solution on COTS smart glasses.

Lifelogging systems on smartphones are also emerging. Leveraging the rich on-board sensors
and sensing algorithms, some context-aware approaches [17, 42] are proposed and can be used to
improve lifelogging. Experience Explorer [10] not only senses and captures contextual lifelogs but
also provides social network features. Lifelogger [14] collects a diverse of sensor data and focuses
on providing the robust lifelog query services. In UbiqLoq [49], authors propose a lightweight
framework allowing developers easily create lifelogging application based on it. Recent ZOE [31]
leverages the advanced system-on-chip (Soc) techniques. It supports continuously sensing a num-
ber of user activities (physical, personal, and social) and provides the dialog-based user interaction.
These lifelogging systems are developed to record the external environment. Meanwhile the in-
ternal experience of people is important and helpful for lifelogging as well [24]. Memento makes
attempts to leverage the user’s emotions to improve the quality of lifelogs.

7 CONCLUSION

In this article, we present the design and implementation of Memento, an emotion-driven lifel-
ogging system on wearables. Memento senses the emotional changes of users and automatically
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launches the lifelogging based on that. So far as we know, Memento is the first-of-its-kind lifelog-
ging system. Through a series of techniques, Memento integrates EEG and proposes the two phase
emotion recognition that makes it efficient and affordable on wearables. Finally, Memento outputs
lifelogs tagged with emotion information that we believe could enhance many existing services.
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