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In this article, we investigate the problem of controlling node sleep intervals so as to achieve the min-max
energy fairness in asynchronous duty-cycling sensor networks. We propose a mathematical model to describe
the energy efficiency of such networks and observe that traditional sleep interval setting strategies, for
example, operating sensor nodes with an identical sleep interval, or intuitive control heuristics, for example,
greedily increasing sleep intervals of sensor nodes with high energy consumption rates, hardly perform well
in practice. There is an urgent need to develop an efficient sleep interval control strategy for achieving fair
and high energy efficiency. To this end, we theoretically formulate the Sleep Interval Control (SIC) problem
and find out that it is a convex optimization problem. By utilizing the convex property, we decompose the
original problem and propose a distributed algorithm, called GDSIC. In GDSIC, sensor nodes can tune sleep
intervals through a local information exchange such that the maximum energy consumption rate of the
network approaches to be minimized. The algorithm is self-adjustable to the traffic load variance and is able
to serve as a unified framework for a variety of asynchronous duty-cycling MAC protocols. We implement
our approach in a prototype system and test its feasibility and applicability on a 50-node testbed. We further
conduct extensive trace-driven simulations to examine the efficiency and scalability of our algorithm with
various settings.
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1. INTRODUCTION

Recent years have witnessed the great success of Wireless Sensor Networks (WSNs).
As a promising technique, WSNs have spawned a variety of critical applications in
practice. In WSNs, sensor nodes are usually powered by batteries, while frequent
replacements of such power sources are normally prohibited. To close the gap between
the limited energy supplies of sensor nodes and the long-term deployment requirement
in many applications, recent research works suggest to operate sensor nodes in a

This study was supported by Singapore MOE AcRF Tier 2 grant MOE2012-T2-1-070. This study was also
supported by NAP M4080783.020, the NSFC Major Program No. 61190110, and NSFC Distinguished Young
Scholars Program 61125202.

A preliminary version of this study was presented at IEEE INFOCOM 2012 [Li et al. 2012].

Authors’ addresses: Z. Li and M. Li, School of Computer Engineering, Nanyang Technological
University; email: {lzjiang; limo}@ntu.edu.sg; Y. Liu, School of Software, Tsinghua University; email:
yunhao@greenorbs.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

© 2014 ACM 1550-4859/2014/04-ART38 $15.00

DOI: http://dx.doi.org/10.1145/2490256

ACM Transactions on Sensor Networks, Vol. 10, No. 3, Article 38, Publication date: April 2014.




38:2 Z. lietal

duty-cycling work mode [Ye et al. 2002]. In duty-cycling WSNs, radios of sensor nodes
are controlled on a periodical basis, alternating between the active and dormant states.
In the active state, sensor nodes can send or receive data, while in the dormant state
they switch radios off to save energy. For instance, with a 5% duty cycle, sensor nodes
have radios on only for 5% of the time. The duty-cycling operation therefore significantly
reduces the energy consumption rates of sensor nodes and dramatically prolongs the
network lifetime.

The duty-cycling operation has been employed in a variety of MAC-layer protocols,
which can be basically classified into synchronous and asynchronous two categories.
Typical synchronous protocols, as in Ye et al. [2002, 2006] and Dam and Langendoen
[2003], enable sensor nodes to synchronously sleep and wake up, providing inter-
mittent network services. The required time synchronization introduces tremendous
communication overhead and computation complicity. Asynchronous protocols, how-
ever, allow sensor nodes to operate independently. At an arbitrary time instance,
a subset of sensor nodes operates to provide consistent network services. Most
asynchronous protocols typically employ Low Power Listening (LPL) based approaches
[Polastre et al. 2004; Buettner et al. 2006; Liu et al. 2009], including the original
LPL technique or some other optimized techniques like strobed preamble, to achieve
asynchronous data transmissions. The basic principle of those protocols is that prior
to the data transmission, a sender transmits a preamble lasting as long as the sleep
period (i.e., sleep interval) of the receiver. The receiver is, thus, guaranteed to detect the
preamble and receive the data. Compared with synchronous protocols, asynchronous
protocols are free of time synchronization and robust to network dynamics, which are
beneficial for large-scale deployments. Recently, some variant techniques, for example,
Low Power Probing (LPP), have been proposed to enable receiver-initiated duty-cycling
data transmissions. As all those above techniques share similar energy efficiencies, for
the sake of clear presentation, we take LPL-based approaches as a vehicle to discuss
the energy fairness issue in asynchronous duty-cycling sensor networks, and further
extend our analysis and solution to other variant techniques.

Though the asynchronous duty-cycling operation releases the constraint of time syn-
chronization and enables robust sensor networks in dynamic environments [Liu et al.
2011a], there remain excessive challenges for applying such an operation to manage
the limited energy supplies of sensor nodes and approach a long network lifetime. First,
the choice of sleep interval at any given node affects not only its own energy drain to
periodically access the channel, but also the energy consumption of neighbor nodes
communicating with it. In particular, by selecting a relatively large sleep interval, one
sensor node will poll the channel less frequently with reduced energy drain and vice-
versa. On the other hand, as the LPL technique requires that preambles sent from
senders should cover the entire sleep periods of receivers, setting a large sleep interval
unavoidably increases the energy consumption of packet senders for the current recip-
ient node. Such an energy tradeoff challenges the appropriate choice of sleep intervals
for different sensor nodes, and we call the problem Sleep Interval Control (SIC). Second,
the traffic load usually distributes unevenly and varies in the network in many appli-
cations. As the traffic load directly affects the preamble and wake-up time of individual
sensors as well, the choice of sleep intervals cannot be determined separately from the
traffic load awareness. If the SIC strategy is not well designed, certain nodes could
rapidly deplete their energy and become the energy bottleneck, which severely breaks
the network-wide energy fairness and thereby shortens the network lifetime. Thus,
SIC becomes more challenging as it should be traffic-aware. In addition, the problem
will get even worse if the network scale is large, demanding distributed solutions.

There have been excessive studies tailored for achieving the energy fairness to pro-
long the network lifetime of sensor networks. Nevertheless, they cannot be directly
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applied to the asynchronous duty-cycling context [Rangwala et al. 2006; Gu and He
2007; S. J. Tang et al. 2011; Chen et al. 2010; Ma et al. 2011; Zhu et al. 2011]. There
have also been attempts made towards the SIC problem in duty-cycling WSNs. Most
of them, however, investigate bounding the end-to-end transmission delay or adjusting
the energy consumption of sensor nodes in a centralized fashion and ignoring the traffic
impact [Wang et al. 2010; Merlin and Heinzelman 2009; Park et al. 2010; Zhu 2012].
None of them tackles the SIC problem with a general setting to prolong the network
lifetime in a distributed manner. So far as we know, many fundamental issues in SIC
are not well understood and an instrument to tackle such problems is still lacking to
the community.

In this article, we thoroughly investigate the SIC problem to achieve the min-max
energy fairness in asynchronous duty-cycling sensor networks. The contributions of
this article are as follows. We propose a mathematical model to describe the energy
efficiency of sensor nodes in existing LPL based asynchronous duty-cycling sensor net-
works, which captures the essential energy tradeoff between senders and receivers.
Based on the proposed model, we observe that existing simple sleep interval control
mechanisms perform far from the optimal one, and there is an urgent need to develop
an efficient SIC strategy. Aiming at dealing with the SIC problem in general, we theo-
retically formulate such a problem and find out that it is a convex optimization problem.
Based on the convex property, we decompose the original problem into suboptimization
problems, and develop a distributed algorithm, called GDSIC, to approach the optimal
result. In GDSIC, with a solely local information exchange, sensor nodes can determine
how to adjust their sleep intervals such that all sensor nodes within the network con-
verge to the optimal sleep interval settings and the maximum energy consumption rate
in the network can be minimized. The GDSIC algorithm is self-adjustable to the traffic
load variance and is able to serve as a unified framework for a variety of underlying
asynchronous duty-cycling protocols. We implement a prototype system on a 50 TelosB
Mote testbed. The experiment results validate the feasibility and applicability of the
proposed approach in practice. We further conduct extensive and large-scale trace-
driven simulations to examine the efficiency and scalability of the proposed algorithm.

The rest of this article is organized as follows: related works are reviewed in
Section 2. In Section 3, we model the energy efficiency of sensor nodes and evaluate
the traditional SIC strategies. We formulate the SIC problem and propose our solution
in Section 4. In Sections 5 and 6, we examine the performance of our approach. We
conclude in Section 7.

2. RELATED WORK

In existing literatures, the duty-cycling MAC-layer protocols can be roughly divided into
two categories: synchronous and asynchronous protocols. Typical synchronous proto-
cols include Ye et al. [2002, 2006] and [Dam and Langendoen 2003]. In S-MAC [Ye et al.
2002], sensor nodes are configured with fixed duty-cycle ratios. S-MAC relies on the
periodical synchronization among neighbors and a series of synchronizers to cooperate
nodes in the network. The network lifetime can be prolonged compared with traditional
always-on networks. However, the energy efficiency of S-MAC is usually low. To solve
such an issue, T"MAC in Dam and Langendoen [2003] is further proposed. T-MAC can
adjust the duration of the active state for each node based on various message rates.
Later, in SCP-MAC [Ye et al. 2006], sensor nodes can achieve extremely low duty cycles
based on a two-window contention design. The major limitations of synchronous pro-
tocols are tremendous communication overhead and computation complicity for time
synchronization [Y. Wang et al. 2012]. Asynchronous protocols, on the other hand, al-
low sensor nodes to operate independently. The first reported asynchronous MAC-layer
protocol is B-MAC [Polastre et al. 2004], which applies the original LPL technique.
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Afterwards, subsequent protocols, like X-MAC [Buettner et al. 2006], C-MAC [Liu
et al. 2009], and WiseMAC [EI-Hoiydi and Decotignie 2005], are essentially similar
to B-MAC. However, some optimizations, including the strobed preamble and predic-
tive wake-up techniques, have been introduced in those protocols to further reduce the
energy consumption. In X-MAC, senders transmit a series of short preambles instead
of one long preamble. Two consecutive short preambles are separated via a brief idle
time slot. Whenever receivers wake up and hear the preamble, they will acknowledge
senders during those idle time slots. By doing so, the preamble transmission can be
stopped and senders can launch the data transmission immediately. C-MAC imple-
ments a similar idea by using RTS/CTS. Sensor nodes in WiseMAC utilize feedbacks
from the receivers to predict their wake-up times. Then, the length of preambles can
be shortened to save energy. Since preambles are sent from senders, aforementioned
asynchronous protocols are also referred to as sender-initiated protocols. Different from
sender-initiated protocols, recently, some receiver-initiated protocols have been pro-
posed, such as RI-MAC [Sun et al. 2008], PW-MAC [L. Tang et al. 2011], A-MAC [Dutta
et al. 2010], etc., which are mainly designed to improve the channel utilization and
unify services, by employing the LPP technique. Based on [Challen et al. 2010], the
energy drain in receiver-initiated protocols can be similarly analyzed as the sender-
initiated ones. In this article, we take the LPL-based protocols as an instrumental
vehicle due to LPL’s availability in the standard TinyOS distribution, while dealing
with LPP-based protocols as a promising extension.

The energy issue in sensor networks has drawn people’s attention in the past several
years. Gu and He [2007] propose DSF to optimize the expected energy consumption for
data forwarding in low duty-cycling sensor networks. Guo et al. [2009] introduces an
opportunistic scheme to achieve a rapid and energy-efficient flooding in duty-cycling
wireless sensor networks. Although the routing path can be optimized based on those
previous studies, traffic loads are still unevenly distributed. As a result, we still need to
design solutions to balance the energy fairness of the entire network. On the other hand,
to achieve sustainable operations, a series of works have exploited the sensor networks
with a harvested power management [Hu et al. 2009] or powered by ultracapacitors.
Zhu et al. [2009] first investigate the leakage-aware energy synchronization in such
networks. Then, the study in Zhu et al. [2010] extends to explore the capacitor-driven
energy storage and sharing for a long-term operation. Gu et al. [2009] further examines
how to integrate the capacitor-powered sensor networks with the duty-cycling opera-
tion. However, due to the high cost of capacitors and the design complicity, such a new
networking paradigm has not been widely adopted in large-scale sensor networks.

There are also some primary efforts to control sleep intervals in WSNs. Wang et al.
[2010] propose Dutycon to achieve a dynamic duty cycle control for the end-to-end delay
guarantee. The study in Zhu [2012] bounds the communication delay in energy har-
vesting sensor networks. In both Merlin and Heinzelman [2009] and Park et al. [2010],
multiobjective optimization formulations are introduced, covering transmission relia-
bility, end-to-end delay, and energy consumption. Optimization problems are solved by
classical methods in a centralized manner. IDEA in Challen et al. [2010] integrates
multiple networking services, like LPL adjustment, energy-aware routing, and local-
ization. Sensor nodes balance the local energy consumption in a heuristic fashion and it
is not clear how close the achieved performance is to the optimal result. As energy is the
most significant issue limiting the network performance [Dutta et al. 2008], different
from previous works, we focus on controlling sleep intervals to achieve the min-max
energy fairness so that the network lifetime can be notably prolonged. To make our
approach practical, we require that the solution should be completely distributed and
self-adjustable to the traffic variance, which is common in many applications. In addi-
tion, we also require that our solution can serve as a unified framework applicable to a
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Fig. 1. Illustration of the LPL technique.

variety of asynchronous MAC protocols. So far as we know, such an instrument is still
lacking.

3. PROBLEM SPECIFICATION AND DESIGN CHALLENGES

In this section, we mathematically characterize the energy efficiency! of sensor nodes
running LPL-based asynchronous protocols, and evaluate existing sleep interval con-
trol strategies in practice.

As depicted in Figure 1 (left), a sender transmits a long preamble prior to the data
transmission with the original LPL. After the receiver wakes up and detects the pream-
ble, it keeps awake to receive data. Later, such a working mechanism has been further
optimized due to the low energy efficiency at the receiver side, and the most represen-
tative example is the strobed preamble technique. As shown in Figure 1 (right), instead
of sending a long preamble, a serials of short preambles are sent such that intended
data can be transmitted without waiting until the end of the long preamble. Since
such a technique notably increases the energy efficiency and it is robust to dynamic
environments, it has been widely used in large-scale WSNs in practice, like GreenOrbs
[Liu et al. 2011a], and released as the default LPL-based MAC protocol in TinyOS. As
optimized techniques are proposed based on the original LPL design, we first investi-
gate energy consumption rates of sensor nodes with the original LPL technique in this
section, then we observe that later proposed protocols can be transformed to its special
cases. Before we proceed, for any sensor node (e.g., i) in the network, we introduce two
notations:

—r; is the overall energy consumption rate of node i,
—T7 is the sleep interval of node i.

In general, each r; is the summation of energy consumption rates for packet trans-
mitting (r*), packet receiving (r¢), channel polling (/") and overhearing (ri“h) at sensor
node i. As a result, r; can be expressed by:

r; =rfx+rirc+rfp+rfh. (1)

After specifying each term in Eq. (1), we obtain a general expression for the overall
energy consumption rate of any sensor node i in the following theorem.

TueoreM 3.1. With the LPL technique, the overall energy consumption rate at any
sensor node i can be unified by
Vi

slp
Ti

=T3P+ +4- T 41, (2)

1Without loss of generality, we focus on the rate of energy consumption (i.e., the energy drain in one unit
time) in this section, as the total energy consumption can be obtained by multiplying the rate and the time
duration.
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where node j receives the packets sent from node i, A;, y;, ¢, and t; are coefficients to
simplify the expression of r;.

The detailed derivation of Theorem 3.1 can be found in Appendix A. Based on Theo-
rem 3.1, we will (1) evaluate existing sleep interval control strategies in practice; and
(2) identify design challenges for the SIC problem.

3.1. Problem Specifications

To the best of our knowledge, most deployed WSNs in practice employ the identical
sleep interval setting due to the design and implementation simplicities. However,
it is well known that the in-network traffic load is usually unevenly distributed [X.
Wang et al. 2012; Du et al. 2011; Wang and Liu 2011; Liu et al. 2011b] and recent
measurement studies, like Liu et al. [2011a], have also reported such a phenomenon.
We observe that such a simple strategy may lead to heterogenous energy drains and
hardly achieve the energy fairness in the network. As a result, the network lifetime
will be severely limited.

TaEOREM 3.2. The identical sleep interval setting usually results in heterogeneous
energy consumption rates in practice.

The rigorous interpretation to Theorem 3.2 can be found in Appendix B, while we
briefly explain Theorem 3.2 here. According to Theorem 3.1, we can demonstrate that
the energy consumption rate r; of any sensor node i is mainly determined by its outgoing
(transmitting) traffic rate f/* when all sensor nodes are set an identical sleep interval.
As mentioned previously, the network traffic in practice is normally heterogenous.
Therefore, sensor nodes in heavy traffic regions are prone to suffer more frequent
preamble time and longer data receiving time. As a consequence, those sensor nodes
tend to run out of energy first, and traffic loads are prone to dominate the lifetime of
sensor nodes when all sleep intervals are set to be equal. In Section 3.2, we will conduct
a case study in data collection to further validate such a conclusion.

Theorem 3.2 essentially demonstrates that due to the inherent uneven nature of
traffic loads in practice, the widely adopted sleep interval setting policy in existing
sensor networks fails to gain a good performance in terms of the energy efficiency. To
deal with such an issue, sleep intervals should be controlled dynamically with respect
to sensors’ energy draining speeds and traffic load variances. An intuitive solution is
to increase the sleep interval of a sensor node greedily if its energy consumption rate
becomes higher [Challen et al. 2010]. The rationale behind is that prolonging the sleep
interval of this sensor node compensates its fast energy consumption. However, as we
will show in Theorem 3.3, the hardness of the SIC problem is beyond such an intuition.

TuEOREM 3.3. The greedy SIC strategy by increasing sleep intervals of sensor nodes
with large energy consumption rates hardly achieve the min-max energy fairness in
WSNs.

In Figure 2 and Figure 3, we show the energy consumption rate of a sender node
with respect to different sleep interval settings. The upper figure in either Figure 2 or
Figure 3 depicts that for any sensor node i, how does r; in Eq. (2) vary with TiSlp when
Tjs '? is fixed. If we focus on each individual sensor node, its energy consumption rate
is indeed decreased in some scenarios when the sleep interval increases. As depicted
in Figure 3 (upper), the strobed preamble technique belongs to this category. However,
there exist sufficient exceptions. For instance, sensor nodes adopting the original LPL
technique in the region with high traffic loads as shown in Figure 2 (upper). It hinders
above intuitive heuristics to be applied directly in general.
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On the other hand, from the network perspective, Eq. (2) implies that after a sensor
node increases its sleep interval, energy consumption rates of its senders increase ac-
cordingly. The lower figure in either Figure 2 or Figure 3 depicts how does r; in Eq. (2)
vary with T;’lp when T/ is fixed. As a matter of fact, the sleep interval adjustment
of one sensor node will trigger senders to tune their own sleep intervals as well. In
the greedy strategy, energy drains of sensor nodes are balanced within neighborhoods,
which essentially follows the “water-leveling” mechanism. By doing so, energy con-
sumption rates of sensor nodes could be converged to a compromised value. On the
other hand, the initial sleep interval setting has implicitly defined an interval, within
which the min-max energy fairness can be adjusted by the greedy strategy. However,
there is no guarantee that the optimal min-max energy fairness falls within the formed
interval exactly. Therefore, the greedy strategy is not always effective, which challenges
the algorithm design for SIC. In the next section, we will revisit both Theorems 3.2 and
3.3 to validate those conclusions by a concrete case study.

3.2. Case Study in Data Collection

Data collection is one important networking service for WSNs [Werner-Allen et al.
2008]. In data collection, to receive network-wide data, data collection tree [Gnawali
et al. 2009] and Directed Acyclic Graph (DAG) are two major approaches proposed in
existing literatures. While each sensor node has only one data receiver in a collection
tree, in DAG each node can forward data to multiple receivers closer to the sink [Lin
et al. 2008]. In this section, we focus on the data collection tree since DAG can be
similarly analyzed. We will examine both two approaches in Section 6 via experiments
and simulations.

Lemma 3.4. For any node i that is [-hop away from the sink node in a data collection
tree, its outgoing traffic can be approximated by:

50 = p(L? — 1 - 1)%d»/21 - Dd?, (3)
where d is the average distance of one hop, p indicates the average traffic generation
rate in the network and L is the maximum distance from the network boundary to the

sink.

The detailed derivation of Lemma 3.4 is given in Appendix C.
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3.2.1. Reuvisiting Theorem 3.2. According to Lemma 3.4, sensor nodes closer to the sink
consume their energy exponentially faster than other distant nodes. On the other hand,
as we have mentioned, when the identical sleep interval setting is adopted, the energy
consumption rate of one sensor node i is mainly determined by f/*. Therefore, those
heavy traffic burden nodes tend to run out of energy first, and those nodes are usually
located close to the sink node. We perform a simulation study in Figure 4, in which
the Y-axis of a red dot represents the energy consumption rate of one sensor node.
As indicated by Eq. (3), the traffic load is relatively high in the region near the sink
node. Therefore, sensor nodes in such a region consume energy much faster, which is
consistent to our previous discussion.

3.2.2. Revisiting Theorem 3.3. We apply the greedy sleep interval control strategy for the
sensor network and illustrate the energy consumption rate of each sensor node after the
network becomes stable in Figure 5. In the greedy strategy, sensor nodes adjust their
sleep intervals such that their energy consumption rates are set as the average value
of their neighbors, which is an intuitive way to achieve the min-max energy fairness
in the network. Compared with the identical sleep interval setting policy, the greedy
strategy effectively reduces the maximum energy consumption rates of the network.
The achieved energy fairness (i.e., 4.9 md/s) is within the interval implicitly formed by
the maximum (i.e., 5.8 mdJ/s) and minimum (4.4 md/s) values in Figure 4. However, in
such an example, the optimal min-max fairness is 2.8 md/s. Figure 5 shows that the
greedy strategy leads the network converging to a suboptimal value that is far above
the optimal result, which will cause a non-negligible gap between the achieved network
lifetime and the optimal performance.

3.3. Design Challenges

Based on these discussions, we can summarize the design challenges for the SIC prob-
lem as follows.

—Increasing the sleep interval of one sensor node does not necessarily reduce its own
energy consumption rate.

—A sensor node increases its own sleep interval to save energy; nevertheless, energy
consumption rates of the packet senders of the current receiver may increase.

—The achieved energy fairness may be far away from the optimal result if sleep inter-
vals are not carefully controlled.
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In the next section, we will introduce our solution to deal with those challenges to
achieve an optimized sleep interval control.

4. PROBLEM FORMULATION AND ALGORITHM DESIGN

The sensor network is modeled as an undirected graph G = {V, E}, where V and
E represent the sets of sensor nodes and wireless links, respectively. According to
Theorem 3.1, the energy consumption rate of an arbitrary sensor node i in the network

can be expressed as r; = A; - T;lp + /T 4 & - T + 1;, where j is the receiver? of

node i. To control the energy consumption rate in the network, we introduce a set of
variables R;s and require that 1; - T;lp +y /Tflp +&- Tflp + 1, < R; for each i. As
previously mentioned, by determining an appropriate sleep interval for each sensor
node, the Sleep Interval Control (SIC) problem aims at minimizing the maximum
energy consumption rate (i.e., the min-max energy fairness) in the network to prolong
the network lifetime, which can be captured by the model from Eq. (4) to Eq. (6) as
follows:

min max{R;} 4)

s Yi sl ..
suchthat 2; - lep + e +¢-T; {1, <R, j)€E, (5)
0<T ieV. (6)

1

Constraint (5) specifies that the energy consumption rate of each sensor node is
bounded from above by the variable R;. Constraint (6) guarantees that sleep intervals
have positive values. The coefficients %;, y;, &, and t; i € V, are all positive as well.
Thus, constraints (5) and (6) implicitly ensure that R; > 0. In the end, the objective
function (4) minimizes the maximum R; so that the global min-max energy fairness
can be achieved in the network.

A straightforward way to obtain the optimal SIC result based on this formulation is
as follows.

—Each sensor i measures its own traffic load, calculates A;, y;, ¢, and t;, and reports
the calculated coefficients to a central information collector, for example, the sink.
—Based on the harvested information from each sensor node, the sink globally solves

Eqgs. (4) to (6).
—The sink node disseminates the optimal sleep interval setting to the entire network.
—To be traffic variance-aware, these three steps are repeated periodically or triggered
via the sink when traffic dynamics are detected.

However, such a centralized solution normally incurs tremendous communication over-
head and complicated cooperation among sensor nodes, which hinders the scalability
and applicability of the solution for large-scale WSNs. To overcome those limitations,
we now introduce a distributed approach to perform the sleep interval control at each
individual sensor node’s side.

4.1. Distributed Sleep Interval Control Problem

We decompose the original SIC problem for each sensor node and focus on a local
structure of an arbitrary sensor node i in the network. As depicted in Figure 6, node

2At the current stage, we focus on the case, in which sensor node i has one receiver only. Such a scenario is
common in practice and it can be found when packets are transmitted following a tree structure, for example,
CTP [Gnawali et al. 2009]. However, our proposal is not limited to the tree structure, and we will discuss the
multireceiver case in Section 4.3.
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Fig. 6. Local structure for sensor .

J is the receiver of sensor i and node s3, £ = 1,2, ..., K, is a sender of sensor i, where
K is the total number of potential senders. By exchanging information with those
neighboring nodes, sensor node i can determine its local-optimal sleep interval based
on the formulation from Eq. (7) to Eq. (10). As Tflp affects energy consumption rates of
both node i and its senders in Eqgs. (8) and (9), the variable R; bounds the energy drain
in the local region from above to control the energy trade-off between i and each sender
sg. Similar to the original SIC problem, R; in the objective function (7) is minimized to
obtain the local min-max energy fairness. We denote Eqs. (7) to (10) as the Distributed
SIC (D-SIC) problem. The following lemma reveals the essence of both SIC and D-SIC
problems.

min R;, 7
suchthat A - T + Tysilp +4- TP +5 <R,G,)eE ®)
hi - TP + Tyflp +4-T,” +u <R (ki) eE (9)

k
0< silp,i eV. (10)

LEmMa 4.1. The SIC problem and the D-SIC problem are both convex optimization
problems.

Conclusions made by Lemma 4.1 are clear as all constraints and objective functions
in both SIC and D-SIC problems are convex. In the D-SIC problem, the total amount
of constraints is bounded by the number of senders of sensor node i. According to Liu
et al. [2011a], each sensor node only needs to solve one local D-SIC problem with a
small number of constraints (e.g., <8). As a result, a variety of mature and lightweight
techniques can be adopted in practice, such as the interior-point method [Boyd 2004],
in which the optimal result can be found within guaranteed iterations. Even D-SIC
problems can be solved locally, there remains one critical issue not answered yet: how to
ensure that such distributed computations eventually lead to the global optimal result?
The answer will be given when we introduce the Distributed SIC (DSIC) algorithm in
the next section.

Before we proceed, we particularly investigate the D-SIC problem for a set of asyn-
chronous protocols based on LPL with the strobed preamble technique, including X-
MAC, C-MAC, and so on, because its previously mentioned significance in practice.
Due to the special properties, sensor nodes with this type of protocols can avoid using
iterative algorithms to solve their own D-SIC problems; instead, close-form expres-
sions can be obtained to further simplify the system design. Egs. (8) and (9) with the
strobed preamble technique in the D-SIC problem can be replaced by Eqgs. (11) and
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(12), respectively.

I Tysilp +1 <R.Gj)eE, (11)
Tt b s Rk i) € B. (12)
k

As y; and Tflp are both positive, Eq. (11) implies R; > A; - T;lp + 1;, which further
yields: Tflp > v /(R — X - T;lp — 7;). On the other hand, since A; > 0, based on Eq. (12),
we can further obtain T\? < (R; — v/ T{"® — t)/A4. Then, for each sender &, we have:

slp

Vi < Tislp < Ri - Vk/Tk Tk’
R, — ;- T;lp -1 Al
= R~ ¢/* R +wl* >0, (13)
= F =max { (#7F + (9!") — 40]*) / 2} : (14)

where R; indicates the selected upper bound for energy consumption rates in the local
region, ¢/ £ i - T3 + 1 + v/ Ty + t, and of* 2 (- TP + )/ Ty + ) — ¥ - M.
Note that (¢ij,k)2 - 4w{"k can be transformed to (}; - TjSlp +7 -/ Tkslp +1.)% 44y, - A, > 0.
As a result, roots of R; in Eq. (13) always exist. Then, we have

1

where £ = argmaxk{(¢ij‘k + W)/Q}.

4.2. The DSIC Algorithm Design

To deal with the traffic load variance, at any sensor node i, SIC is performed on a
periodical basis or triggered when traffic dynamics are detected. Before the algorithm
execution, sensor node I collects necessary information from neighbor nodes, which

includes the current sleep interval T;lp of its receiver j, Ax, V&, ¢, and 7, of each

—sl, — s
TP — (Ri — yk//Tk,lp — Tk’)/)“k’v (15)

sender k. Such information is used to update R; and TiSlp by locally solving the D-SIC
problem from Egs. (7) to (10), or Eqgs. (11) to (15) if the strobed preamble technique
is adopted. To reduce the communication cost, these parameters can be obtained from
regular information exchanges of some underlying services, like link estimations or
CTP beacons. One point worth noting is that if there are dynamics in the network
traffic, the energy consumption rate of some sensor node (e.g., node i) may suddenly
become greater than R;. In this case, R; will not be a valid upper bound and the
DSIC algorithm will not perform correctly. To cope with such an issue, we propose
a remedial solution as follows. After node i detects its current energy consumption
rate becoming greater than R;, it needs to increase R; such that R; can still bound its
energy consumption rate from above. In our implementation, R; will be reset slightly
greater than its current energy consumption rate. However, since R; should bound
energy consumption rates within the local region of node i from above, the increasing
of R; solely according to node i’s energy consumption rate cannot guarantee that R; is
greater than the energy consumption rates of its neighbors. Therefore, we further rely
on the exchanging of R; to solve such an issue. Once receiving R}, from each neighbor £,
node i updates R; to be max{R;, max;{R;}}. After setting an appropriate R;, the DSIC
algorithm can correctly perform operations as if the traffic loads were stable.
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ALGORITHM 1: The DSIC Algorithm at Sensor Node i
Input : Current R; and sleep interval Tflp .
Output: Updated R; and T/, denoted as R; and Tflp.
Collect Tjsz” and R;, where j is the receiver of sensor node i.
Collect Ar, vk, &k, T, and Ry from each sender k.
Locally solve the D-SIC problem from Egs. (7) to (10) and obtain the updated R; and Tflp.
if R, < R, then

Set R; to be R;;

Update the sleep interval T, to T?lp;

Inform the updated 7, to its senders;
else

8 ‘ Keep both R; and T;” unchanged;
end

LN -G N I

— —sl, . = .
After R; and ij are updated, sensor node i first checks whether the new R; is

smaller than the current R;. If so, i adjusts its sleep interval to be T?lp. In addition,
R; will be replaced by R; for the next updating. Otherwise, i takes no action. The
detailed description of the DSIC algorithm is given in Algorithm 1. When R; < R;,
the adjustment of sleep interval will decrease the maximum energy consumption rate
in the local region of node i. By iteratively executing the algorithm by all the sensor
nodes, eventually, no sensor nodes can further decrease their energy consumption
rates without compromising the maximum energy consumption rate achieved within
its local region. In other words, their energy consumption rates in this process are
converging towards a common value, and such a common value keeps decreasing.
Moreover, by exchanging R;, different sensor nodes will adjust their own R; to the
maximum one within its neighborhood. As a matter of fact, the exchanging of R; will
cause the largest upper bound to eventually spread to the entire network. Thus, each
local optimization process is finally constrained by the maximum upper bound in the
network, and the updating operations in DSIC essentially adjust the sleep interval
based on the reduction of this maximum upper bound stored locally. In other words,
the DSIC solves the global optimization problem in a distributed manner with a local
exchange of R;. After the performance of DSIC converges, the energy consumption rate
of no sensor node can be further reduced. It implies that the optimal result has been
achieved. From a theoretical perspective, a rigorous interpretation to the correctness
of our algorithm is given in the following theorem.

THEOREM 4.2. By the execution of Algorithm 1 at each sensor node, the maximum
energy consumption rate in the network approaches to be minimized.

Proor. Line 4 in Algorithm 1 indicates that whenever the sleep interval is updated,
R; becomes smaller, which results in the decrease of the maximum energy consumption
rate in each local region. On the other hand, the original SIC problem and the D-SIC
problem are both convex, and each D-SIC is a subproblem of SIC. To finish the proof,
we assume that the maximum energy consumption rate in the network converges to
%, which is different from the optimal result #*. Clearly, Z > %*. Now, we prove this
theorem by contradiction. If the maximum energy consumption rate converges to % by
our algorithm, it indicates that there does not exist any R; to further reduce the current
maximum rate of the energy drain in the network, implying &% be a local minimum
point. However, the original problem is convex, such a conclusion yields that % must
be a global optimal point as well [Boyd 2004], which is a contradiction. O
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TrZSIp
Fig. 7. Multireceiver scenario.

4.3. Discussions

4.3.1. Multireceiver scenario. So far, we have focused on the case, in which each sensor
node i has only one receiver. Such a case corresponds to the packet transmission
following a tree-based routing structure. As aforementioned, packets, however, can be
transmitted following a DAG as well, in which there may exist more than one potential
receiver. Without loss of generality, we assume sensor node i has n; potential receivers.

We can slightly alter our previous analysis and reach a General Distributed SIC
(GDSIC) algorithm, which can support multiple receivers in general. GDSIC can be
simply extended from the DSIC algorithm, and the basic principle is as follows. Since
preambles sent from sensor node i must cover the sleep interval of each potential
receiver r; for 1 < j < n;, the length of i’s preamble can be determined by max j{T;jlp }
(Figure 7). Thus, the multireceiver case is accordingly transformed to an equivalent
single receiver case as shown by Figure 8, in which the sleep interval of the single
virtual receiver equals to max j{T,Sjlp }. We can then modify TjSlp as max j{Tri.lp }in line 1
of Algorithm 1 and apply the DSIC algorithm for the sleep interval control. Due to the
page limit, the detailed algorithm is given in Algorithm 2.

ALGORITHM 2: The GDSIC Algorithm at Sensor Node i
Input : Current R; and sleep interval TiSlp .
Output: Updated R; and Tflp , denoted as R; and Tflp.
1 Collect Tjrlj%’ and R, from each receiver v,, of sensor node i;
Assign Tflp in the D-SIC problem by maxj{TlfrlJ(’};
Collect Ag, 2, &k, T, and Ry, from each sender k.
Locally solve the D-SIC problem from Egs. (7) to (10) and obtain the updated R; and lep.
if R, <R, then
Set R; to be R;;
Update the sleep interval T} to Tflp;
Inform the updated 7, to its senders;
else

9 ‘ Keep both R; and Tflp unchanged,;
end

W I ST WwN

4.3.2. Considering Residual Energy Budgets. In previous discussions, we focus on mini-
mizing the maximum energy consumption rate in the network. However, after sensor
nodes are deployed and have worked for a period, the residual energy budget at each
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node might have already become uneven. Hereby, we show that the original SIC prob-
lem formulation can be transformed to consider sensor nodes’ residual energy budgets.
Denote the residual energy budget of sensor node i as e;. As a result, the lifetime of
node i remains e;/r;. With the consideration of the residual energy, we naturally hope
to maximize the minimum lifetime of sensor nodes in the network. Mathematically,
such a design target can be expressed as follows:

max min{E;} (16)
) ) slp Vi ) slp ) )

sit. e/ (A'l : Tj + T_Slp +& - Ti + Tz) > E; 1w

0<T 0<E.,icV. (18)

12

Since Eq. (17) can be rephrased as A; ~T;lp + 7+ TSP 4 ,) < e;/E;, this formulation is

essentially equivalent to the original SIC prloblem and the detailed proof is as follows.
We define R; to be 1/E;. According to Eq. (17), we have:

slp
i

e/ (Ai : T;lp + Tyi +g T+ fi) > E;,

= (ki . TjSlp + T);Llp +&- TiSlp + 'L'i)/ei <1/E;,
Vi/

T.slp
13

= A - TJ'Slp + +¢ TP +1/ < R, (19)

where 1}, y/, ¢/, and 1} equal to A;/e;, yi/ei, i /e, and t;/e;, respectively. Since E; is posi-
tive (indicated by Eq. (18)), R; in Eq. (19) is positive as well. As a result, the constraints
of both the original SIC formulation from Eq. (4) to Eq. (6) and the formulation with
the consideration of the residual energy budgets from Eq. (16) to Eq. (18) are shown to
be equivalent. Now, we further prove the equivalence of their objective functions.

max min{E;} < min max{1/E;},
l 12
< min max{R;}.
i
So far, we finish the proof the equivalence of these two problem formulations. As a

result, the proposed GDSIC algorithm can be easily extended to consider the residual
energy budgets of sensor nodes.

4.3.3. Extension to Receiver-Initiated Protocols. As a most representative technique, Low
Power Probing (LPP) has been employed in many receiver-initiated protocols. The
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Fig. 9. 10 x 5 grid testbed.

energy efficiencies of LPL and LPP are mainly different from the following two aspects.
First, the energy consumption to receive the preamble at the receiver side can be
omitted in LPP. Second, the energy consumed for overhearing in LPL should be replaced
by obtaining the receiver’s predicted wake-up schedule in LPP. After rephrasing the
energy consumption rate for each sensor node with LPP based on these two differences,
our previous analysis and solution can be seamlessly extended to the receiver-initiated
protocols.

4.3.4. SIC for Leaf Nodes. Since leaf nodes in the network have no packet senders, they
may fail to obtain an effective sleep interval adjustment based on the GDSIC algorithm.
To deal with such a marginal case, in our implementation, those sensor nodes adjust
their sleep intervals such that their energy consumption rates are approximately equal
to their receivers.

5. EXPERIMENTAL EVALUATION

In previous sections, we elaborate the design principles and important properties of the
proposed GDSIC algorithm. In this section, we validate its feasibility and applicability
in practice.

5.1. Experiment Setting

We implement GDSIC on TelosB motes and use a 50-node testbed to examine its
performance. 50 nodes are organized as a 10 x 5 grid.? (See Figure 9.) Due to the
experimental space limitation, the power of each TelosB mote is set to be the minimum
level and the communication range is about 10 centimeters. Starting from the left-top
conner, sensors are placed following the bottom-to-top and left-to-right order based on
their IDs. GDSIC is implemented at the application layer, which utilizes two major
standard components, LPL and CTP, adopted in the current TinyOS 2.1 package. On
the MAC layer, the default protocol, X-MAC, is adopted in the experiment. In the
initial five minutes, sensor nodes beacon neighboring nodes to form a stable routing
tree rooted at sensor node 0. To increase the depth of the formed routing structure,
we manually enforce that the receiver of a sensor node is selected from its adjacent
neighbors on the testbed. For example, the parent of node 15 is chosen from nodes 16,
14, 25, 5, 24, 6, 26, and 4. After the initialization phase, sensor nodes inject packets
to the network and cooperatively deliver packets to the sink (root) node. The average

3Due to the hardware failure, node number 11, in Figure 9, is excluded and only 49 sensor nodes are finally
used in the experiment.
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Fig. 10. Energy consumption rate vs. duration.

traffic generation rate is one packet every four seconds and the GDSIC algorithm is
triggered every 60 seconds.

5.2. Experimental Results

5.2.1. Energy Consumption Rate vs. Duration Time. The experiment lasts 40 minutes on
the testbed. Based on the collected data, we observe that after GDSIC executes for
20 minutes, the system performance becomes relatively stable. For a clear presenta-
tion, we mainly demonstrate the transition state of the network after the initial phase.
In Figure 10, we illustrate energy consumption rates of five representative sensor nodes
with hop counts 1, 3, 5, 7, and 9, respectively. Each selected sensor node in Figure 10
experiences approximately the fastest energy draining speed compared with other peer-
ing nodes with the same hop count. Figure 10 shows that after 800 seconds, energy
consumption rates of those sensor nodes converge to around 3.6 md/s, and there is no
obvious performance variance afterward. At time 1000 seconds, we take a snapshot of
the network and conduct an offline computation. The optimal min-max energy fairness
is obtained to be 3.2 md/s. The important insights obtained from Figure 10 are two-folds:
first, energy consumption rates of sensor nodes in different network positions are well
balanced after the network becomes stable, which effectively eliminates the hot spots
of the energy consumption within the network. Second, GDSIC has a good convergency
speed. In particular, after the initial five minutes, the overall energy consumption rates
are decreased to be fairly low within the first 500 seconds. After several extra itera-
tions, the performance converges eventually. According to Figure 10, we find that the
stabilized energy consumption rates of sensor nodes near the sink node are still slightly
greater than other distant sensor nodes in GDSIC and such a performance gap is diffi-
cult to be further closed but remains to be small. Compared with the equal sleep interval
setting policy, the min-max energy fairness has been notably improved by GDSIC.

5.2.2. Snapshot of Energy Consumption Rates. In Figure 11, we illustrate the snapshot of
the energy consumption rate of each sensor node in GDSIC and compare them with the
traditional identical sleep interval setting strategy (EQUAL). According to Figure 11,
we can observe that most sensor nodes in GDSIC achieve similar energy consumption
rates after executing the GDSIC algorithm, and only a small number of sensor nodes
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close to the sink (with heavier traffics) suffer slightly higher energy consumption rates.
However, compared with EQUAL, the min-max energy fairness has been improved by
GDSIC up to 64.1%, and the obtained energy fairness is close to the optimal result.
In addition, the average energy energy consumption rate in GDSIC also outperforms
EQUAL by 37.2%.

5.2.3. Snapshot of Sleep Intervals. In Figure 12, we depict statistics of sleep intervals of
the sensor nodes in GDSIC according to their hop counts. The statistics are obtained
after the network becomes stable. In this experiment, sensor nodes are configured
with the default sleep interval, that is, 512 ms, initially. Figure 12 indicates that all
sensor nodes should increase their sleep intervals so that the obtained min-max energy
fairness can break the barrier formed by the sleep intervals selected initially, which is
different from the intuitive suggestions of the greedy strategy. On the other hand, from
Figure 12, we can observe that the trend, that is, the sleep interval should be set large
if the sensor node is close to the sink node carrying higher traffic loads, holds after
the network becomes stable. However, such a trend only reflects a statistic result. If
we focus on each individual node pair, such a trend does not always exist. Such results
validate the hardness of the SIC problem, where heuristics can be hardly borrowed to
trivially achieve the optimal sleep interval control.

6. TRACE-DRIVEN SIMULATION EVALUATION

We conduct comprehensive and large-scale simulations to further examine the effi-
ciency and scalability of GDSIC. We evaluate the system performance of GDSIC in
comparison with the optimal policy (OPT), the greedy strategy (GREEDY), and the
equal sleep interval strategy (EQUAL). In GREEDY, sensor nodes adjust sleep inter-
vals such that their energy consumption rates are set as the average value of their
neighbors. To test a realistic network setting, simulations are conducted with a real
trace harvested from GreenOrbs [Liu et al. 2011a]. GreenOrbs is a long-term and large-
scale wireless sensor network deployed in the forest, which contains 433 nodes and has
continuously worked over one year. From the harvested trace over 6 months, we ob-
serve that the dynamics of wireless links result in fluctuating of the network topology.
To mimic the link estimation for real data transmissions, we filter out lossy links with
small RSSI values. In particular, links with the packet reception ratio lower than 30%
or RSSI smaller than —80 dB are excluded by the filter. By doing so, we obtain a stable
network topology for simulations in Figure 13. The topology includes 6567 links with
relatively good qualities.
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Fig. 14. Maximum energy consumption rates

6.1. Experimental Setting

In the trace, sensor nodes are deployed in a 700m x 200m rectangle field with the
default transmission power. Parameters of sensor nodes are set based on the TelosB
mote specification [TelosB 2004]. To collect network-wide data, both DAG and data
collection tree are investigated in the simulation. Packet retransmissions due to the
link loss are considered in the simulation. The sink node is placed at (—200.2, 115.7) and
the default traffic generation rate is one packet every ten seconds. To mimic the traffic
dynamics in real applications, we manually trigger the traffic variance and investigate
the impact of the traffic dynamics. The default MAC-layer protocol is X-MAC, while we
also study the GDSIC strategy over a variety of other asynchronous protocols, adopting
the original LPL, strobed preamble and predictive wake-up techniques.

6.1.1. Maximum Energy Consumption Rates. In Figure 14, we first investigate the
achieved maximum energy consumption rates (min-max energy fairness) with different
approaches on top of DAG. We simulate an 8000-second data collection process. During
three time intervals of [3500, 4000], [4500, 5000], and [6000, 6500], we double traffic
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generate rates of sensor nodes in four random regions and each region roughly contains
10% of total sensor nodes. In Figure 14 (up-left), we observe that EQUAL incurs much
larger min-max energy fairness than both GREEDY and GDSIC all the time. When
traffic varies, its min-max fairness fluctuates significantly. As unveiled by Theorem 3.2,
such a fluctuation is mainly caused by the traffic dynamics since sleep intervals are
set to be identical. Compared with EQUAL, GREEDY improves the achieved energy
fairness by 16.7% on average and the fluctuation of GREEDY is smoother. However,
we can find that there is still a clear gap between GREEDY and OPT, which needs to
be closed. In Figure 14, GDSIC effectively closes such a gap and outperforms EQUAL
and GREEDY by up to 32% and 21%, respectively.

To further investigate energy consumption rates of sensor nodes in different systems,
we take a snapshot at time 4000 and show the instant energy consumption rate of
each sensor node in Figure 14 (up-left). Similar to Section 5, in EQUAL, the energy
consumption rate is not well balanced. The energy drains of certain sensor nodes
are much faster than other sensors, which will potentially limit the lifetime of the
network. The difference between the maximum and minimum energy consumption
rates in EQUAL is up to 48.9%. Different from EQUAL, both GREEDY and GDSIC
result in a well-balanced energy consumption rate over the entire network. Statistics
show that differences between the maximum and minimum rates to consume energy
in GREEDY and GDSIC are only 29.5% and 14.9%, respectively. However, we notice
that the average rate of the energy drain in GREEDY is still high, and there is a
nonignorable gap between GREEDY and GDSIC. Figure 14 provides a good indication
that GDSIC has achieved the best performance in terms of both the min-max energy
fairness and average energy consumption among three approaches.

6.1.2. CDF of Energy Consumption Rates. According to Figure 14, we further illustrate
the CDF of energy consumption rates for different strategies in Figure 15. As expected,
the energy drain of GDSIC distributes within a narrow interval. In addition, the aver-
age value of GDSIC is also the smallest one compared with other two strategies. On the
contrary, the energy consumption rates of sensor nodes in EQUAL spread over a wide
region from 1.42 to 2.99 mdJ/s and certain sensor nodes suffer relatively high speeds of
the energy consumption, which will limit the lifetime of the network. Another impor-
tant piece of information delivered by Figure 15 is that, although the distribution of
GREEDY is within a narrow region as well, its average value is greater than EQUAL.
As the initial rate differences in the network might be large, when the sensor nodes
with high energy consumption rates greedily adjust their own sleep intervals, they
unavoidably increase the energy consumption rates of their children. Such a greedy
strategy could lead to a suboptimal result that is far away from the optimal result.

6.1.3. Network Yield. Network yield in Figure 16 is defined as the percentage of sensor
nodes which are reachable from sink node. Figure 16 shows that even the average
energy consumption rate of GREEDY is greater than that of EQUAL, GREEDY still
has a larger network yield than EQUAL all the time, since there is no obvious energy
bottleneck in GREEDY. Figure 16 provides a good indication to the importance of mini-
mizing the maximum energy consumption rate in the network. Different from EQUAL
and GREEDY, GDSIC performs closer to OPT all the time and achieves an excellent
min-max energy fairness performance. From statistics, network yield of GDSIC, on
average, is greater than EQUAL and GREEDY by 50.8% and 35.9%, respectively.

6.1.4. Traffic Load Dynamics. In Figure 17, we compare the system performance of
GDSIC with EQUAL, GREEDY, and OPT under different traffic generation rates in
the network. In each setting of the traffic generation rate, EQUAL always suffers from
the largest energy consumption rate than other schemes. Compared with OPT, its

ACM Transactions on Sensor Networks, Vol. 10, No. 3, Article 38, Publication date: April 2014.



38:20 Z. Lietal.
100% KRN W 18 S T T
@?E)O X —©—-EQUAL
90% g 4 09 % % K -% GREEDY/{
/ * * x . -%-GDSIC
80% - X (5] 08 e OPT
’
U
70% o X 07
cf 1
60% g » E 06
[n) ’ >
§ 50% By ,* < o0s
STk 2
40% Q ; % 04
%
30% ® * 03
S«
20% o - ’ 1 0.2
2R -O- EQUAL
10% ool - % - GREEDYH 0.1
g xx % GDSIC
o8 ;5 TTeT 18 2 22 24 26 28 3 % 05 25

Energy Consumption Rate

Simulation Time

x10*

Fig. 15. CDF of energy consumption rates. Fig. 16. Network yield.

O EQUAL

I EQUAL
71| Eapsio —#— GREEDY|
I OFT 8[| —=—aDsic
——OPT

251

0.5

Maximum Energy Consumption Rate
S
Maximum Energy Consumption Rate (mJ/s)

L L L L
3000 4000 5000 6000 7000

Simulation Time

- R |
640 1000 2000

80

160 320
Traffic Generation Rate

8000

Fig. 18. Maximum energy consumption rates in the
data collection tree.

Fig. 17. Maximum energy consumption rates
under different traffic generation rates.

performance distortion reaches as high as 58%. Although GREEDY can improve the
energy fairness achieved by EQUAL in all cases, there are still clear performance gaps
between GREEDY and OPT. From the results, we find that the performance distor-
tion of GREEDY is up to 33%. In Figure 17, GDSIC effectively narrows such a gap
down to only 6% and outperforms EQUAL and GREEDY by 35% and 22%, respectively.
Figure 17 indicates that GDISC can achieve a good performance under different traffic
loads in the network.

6.1.5. Energy Consumption Rate in a Data Collection Tree. From Figures 14 to 16, all three
strategies are operated over DAG. From Figures 18 to 20, we further demonstrate
the system performance in a data collection tree. Compared with Figure 14, we plot
the variances of the min-max energy fairness of all three strategies over time and
observe similar system behaviors. Figure 18 shows that GDSIC can achieve the best
performance among these three strategies and approach to the optimal result as well.
However, as the throughput of the data collection tree is usually smaller than that of
DAG, the energy consumed to collect data becomes smaller accordingly. Figures 14 and
18 jointly demonstrate that GDSIC can achieve a good performance in both DAG and
tree, which are two major routing structures in current WSNs.
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6.1.6. Energy Consumption Rates with Routing Dynamics. In Figure 19, we evaluate the
system performance under three different traffic generation rates in the network. For
each configuration of the traffic generation rate, after sensor nodes have achieved the
min-max energy fairness with GDSIC algorithm, we artificially change the underlying
routing structure to examine the system performance against the route change. In
particular, routing structures in two randomly selected regions are changed and each
region contains around 15% of total sensor nodes. In each local region, sensor nodes are
enforced to re-pick different parent nodes on the routing tree. In addition, we require
that one selected region is close to the sink node and another one is relatively far
away from the sink node. After the route change, sensor nodes further execute the
GDSIC algorithm to achieve the min-max energy fairness again. In Figure 19, we plot
the maximum energy consumption rates of the entire network and each local region
before and after the route change. For instance, “LL1-Max-After” in the legend of the
figure indicates the maximum energy consumption rate of the first local region after
the route change. From Figure 19, we can see that the maximum energy consumption
rate of each local region may change due to the route change. Nevertheless, the change
is usually slight. It is because the traffic burden does not change in each local region
and the GDSIC algorithm can adjust each node to approach to the min-max fairness
again after the route change. Moreover, although two local regions are selected from
different positions of the network, their energy consumption rates can still be adapted
to be close to the maximum energy consumption rate in the network. Therefore, the
proposed algorithm can achieve good energy fairness even with the route changes in
the network.

6.1.7. Distribution of Sleep Intervals in Data Collection Tree. In Figure 20, the x-axis indicates
the hop counts of sensor nodes and the y-axis represents statistic results for sleep
intervals of sensor nodes with the same hop count. A traditional belief states that
the energy bottleneck in the data collection is always around the sink node. However,
according to the statistics, not all the sensor nodes close to the sink node will adapt
to longer sleep intervals, and the sensor nodes far away from the sink node do not
necessarily set shorter sleep intervals either. Although on average the trend of sleep
intervals of sensor nodes decreases as the hop count increases, such a trend is a statistic
result only. If we focus on each individual sensor node, we find that it is nontrivial
to determine an appropriate sleep interval, especially in a distributed manner. In
addition, the SIC problem becomes even complicated in practical WSNs, since not all
heavy load regions are located near the sink node.
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6.1.8. GDSIC over Different MAC Protocols. In this set of simulations, we further extend
GDSIC to other asynchronous MAC-layer protocols, adopting the original LPL tech-
nique. Figure 21 demonstrates that compared with the original LPL technique, the
strobed preamble techniques improve the energy efficiency of the network. In addition,
after the GDSIC is applied to each type of protocols, the achievable min-max energy
fairness has been improved by 11.6% and 33.8%, respectively. As a unified framework,
on average, GDSIC has gained more than 20% performance improvement, and it is
highly beneficial for asynchronous protocols to adopt GDSIC for improving the energy
fairness and prolonging the the network lifetime.

7. CONCLUSION AND FUTURE WORK

In this article, we investigate the problem of achieving the min-max energy fairness in
asynchronous duty-cycling sensor networks. We aim at optimal sleep interval control
for sensor nodes so as to achieve min-max energy fairness. We propose a mathemati-
cal model to describe energy efficiency of such networks and observe that traditional
sleep interval setting and control strategies hardly perform well in practice. Towards
developing an efficient control strategy, we formulate the SIC problem as a convex opti-
mization problem. By utilizing the convex property, we decompose the original problem,
which yields to a distributed algorithm GDSIC. In GDSIC, the network-wide min-max
energy fairness can be achieved in a distributed fashion. The proposed solution serves
as a unified framework applicable to a variety of underlying asynchronous protocols.
One possible future work of this article is to implement and evaluate the performance
GDSIC in large-scale sensor network deployments.

APPENDIXES
In these Appendixes, we provide complete proofs that are omitted in Section 3.

A. PROOF OF THEOREM 3.1

Before one sensor node i transmits a packet to another node (e.g., j), i should send a
preamble covering sensor j’s sleep interval first, then followed by the intended packet
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as well as the ACK message. Thus,
ri = 1% 5 (T3 + Lpek Xty + T/5) X e4x. (20)

where ff* is the outgoing (transmitting) traffic rate, L, indicates the packet length,
L., represents the ACK message length, #,; is the time to transmit one digital bit,
T is the time to send out an ACK message, and e;, refers to the electric power in
transmission.

When receiving one packet, sensor i needs to wait until the end of the preamble
before the receiving of the intended packet and the ACK message. Since sensor i may
wake up to poll the wireless channel starting from any portion of the preamble, on

average, we have:
ri¢ = fI¢x (TiSZP/Z + Lper, X trep + T) X €re, (21)

where f7 is the incoming (receiving) traffic rate, ¢ is the time to receive one digital
bit, T, is the time to receive an ACK message, and e, indicates the electric power in
receiving.

The energy consumption in overhearing can be described based on /. During over-
hearing, sensor i needs to wait until the end of the preamble sent from the sender as
well. However, different from packet receiving, at the end of the preamble, sensor i
becomes aware of the occurrence of overhearing and switches to sleep immediately. As
a result, we have:

rlf’h = ﬁOh X (TiSZp/Z) X €rc, (22)

where f°" is the overhearing traffic rate.
Based on Buettner et al. [2006], Challen et al. [2010], and Langendoen and Meier
[2010], the energy consumption for regular channel polling can be expressed as:

P = (B— f = 1 — ) 5 (Tpou/ TS™) x €paut. (23)

where B is the maximum bandwidth (e.g., 256 kbps in the Zigbee protocol) and T, is
the time to poll the channel and e, is the electric power in idle listening. According to
Eqgs. (20) to (22), we can verify that Eq. (2) holds after some mathematical computation.
As mentioned in Section 3, the original LPL has been further optimized due to the low
energy efficiency at the receiver side, and the most representative example is the
strobed preamble technique. Now, we discuss how does the energy consumption rate
of each sensor node that applies such a technique can be unified by Theorem 3.1 as
follows.

Before the intended packet transmission, sensor node i sends out a series of short
preambles separated by short pauses instead of a long preamble for the energy saving
purpose. During one sleep interval of receiver j, a strobed preamble may contain at
most LT; Ly (Lspre X tup + TL5,)| complete short preamble and short pause pairs, where
L. indicates the length of the short preamble. Similarly as before, when the intended
receiver (e.g., j) wakes up and receives a short preamble, it will reply node i by an
early ACK message. Upon receiving this ACK message, the sender i stops sending
preambles and sends the data packet. Therefore, we have:

: " spre 3
r* = fi*x [Tj + Lpck X tigp + Tosp] X et

slp
Tspre & Tj % (Lsp X by + T;fk)
J Lspre X tgxb + Tatéck 2
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and
rc rc 3 rc
= ﬁ X Q(Lspre + Tack) + chk X trep + Tack X €rc.

Parallel to Egs. (23) and (22), ri” and rfh can be similarly analyzed. Therefore, r; in
this category can be expressed as:

rio= TP+ T);ilp +1, (24)
i

which is a special case of Eq. (2). In other words, Eq. (24) can be unified by Theorem 3.1
as well.

B. PROOF OF THEOREM 3.2

When the identical sleep interval setting policy is employed, according to Theorem 3.1,
the energy consumption rate of any sensor i depends on four coefficients in Eq. (2), that
is, A, Vi, ¢i, and 1;. Suppose errors and differences of hardware devices can be ignored
among different sensor nodes, by Appendix A, each of these coefficients is mainly
determined by f/* and f7¢, where f* and /¢ represent the outgoing (transmitting)
and incoming (receiving) traffic rates of node i, respectively. In addition, due to the fact
e = f** — p, where p is the traffic generation rate, coefficients thus can be further
expressed by a set of functions in terms of f/*. As previously mentioned, the network
traffic in practice is normally heterogenous. Therefore, sensor nodes in heavy traffic
regions are prone to suffer more frequent preamble time and longer data receiving
time. As a consequence, those sensor nodes tend to run out of energy first, and traffic
loads are prone to dominate the lifetime of sensor nodes when all sleep intervals are set
to be equal. In Section 3.2, we have conducted a concrete case study in data collection
for validating such a conclusion.

C. PROOF OF LEMMA 3.4

Now we consider an arbitrary sub-tree of the whole data collection tree rooted at the
sink node. Logically, we organize all sensor nodes into levels based on their hop counts
and denote the region containing all sensor nodes with the hop count [ as R;. The
average outgoing traffic density of R; can be calculated by [[, (f*“() x 0)-d(x, y), where
(1) is the average outgoing traffic rate in R; and o is the average node density of the
network. On the other hand, the overall outgoing traffic of R; originates from R; itself
plus all other regions with larger hop counts in the same sub-tree. In other words,
sensor nodes in R; generate their own traffics, meanwhile they also need to relay
traffics for the distant sensor nodes from the sink. According to the traffic conservation
nature, we have:

L
J[ rwxar-dwy = 3 [[ o xordey, (25)
R j=l Ri

where p indicates the average traffic stretch in the network and L is the maximum hop
count from the network boundary to the sink node. For any sensor node i that is /-hop
away from the sink node, after solving Eq. (25), we can obtain Eq. (3) in Lemma 3.4 as
follows:

=0 = p(L? — (1 — 1)%d%)/(2l — 1)d>.

In addition, based on the fact of /() = f/°(l) + p, we can further derive: f/°(l) =
p(L? — 12d?) /(2L — 1)d?.
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