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This article presents a scalable algorithm for managing property information about moving objects tracked
by a sensor network. Property information is obtained via distributed sensor observations, but will be
corrupted when objects mix up with each other. The association between properties and objects then becomes
ambiguous. We build a novel representation framework, exploiting an overcomplete Radon basis dictionary to
model property uncertainty in such circumstances. By making use of the combinatorial structure of the basis
design and sparse representations we can efficiently approximate the underlying probability distribution of
the association between target properties and tracks, overcoming the exponential space that would otherwise
be required. Based on the proposed theories, we design a fully distributed algorithm on wireless sensor
networks. We conduct comparative simulations and the results validate the effectiveness of our approach.
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1. INTRODUCTION

In this article, we address the property management problem in wireless sensor net-
works, which is related to the identity management problem [Guibas 2008]. Both prob-
lems arise in the context of accurately tracking and identifying multiple moving targets
with distributed sensors in the field.
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Fig. 1. Targets move in a sensor network. (a) Identities of targets can get confused when they pass each
other. (b) Four red or blue targets (denoted by red triangles and blue squares) moving around. We get confused
about colors when track 1 crosses with track 3, then track 3 crosses with track 4. In the end, we observe that
the target on track 3 is red.

We first give a brief review of the identity management problem. Identity man-
agement for moving targets in the sensor networks was first introduced by Shin
et al. [2003]. Suppose we have a sensor network which is tasked at tracking multiple,
simultaneously moving targets in the monitored area. In such a setting, we assume that
positions of the targets can be instantly tracked by the sensor nodes and we focus on dis-
tinguishing their identities during the tracking. When targets are well separated and
good-quality observations are obtained by the sensors, the problem factorizes nicely.
Different sensor nodes can focus on different targets, forming collaboration groups
to best determine target identities. The problem becomes more complicated, however,
when two targets come close to each other, which leads to confusion as the signal signa-
tures of two targets mix up. After the two targets separate again, their positions may
become immediately distinguishable, but their identities can still be confused, and the
sensors may no longer be able to tell who is who.

Such uncertainties about identities will be carried forward in time with each target,
until good-quality observations on their identities are obtained to allow disambigua-
tion. How to achieve accurate and efficient disambiguation is subtle, for example, when
the identity of target A becomes clear due to a new observation from a sensor close to
A, another target B which A has mixed up with earlier becomes unambiguous as well;
see Figure 1(a). Thus when there are many moving targets with mixed trajectories, it
becomes increasingly complicated for the sensor network to resolve such ambiguities
globally. Such a problem is called the identity management problem and the major
task in addressing the problem is to maintain a belief state for the correct associa-
tion between target tracks and target identities with continuous input of target mixing
events and updated identity observations from sensors. The identity management prob-
lem poses a challenge for probabilistic inference as it needs to address the fundamental
combinatorial challenge that there are a factorial number of possible associations to
maintain between tracks and identities. There have been many works proposed to
address the identity management problem.

Property management problem is another interesting problem related to the identity
management problem. We note that in many cases, we do not need to distinguish the
identity of every individual target or the sensors are not powerful enough to capture all
target features for identification. Instead we may only get coarse property information
on targets and such information will suffice for many applications. For example, when
we track troops of different parties on the battlefield so as to infer which party the
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individuals are affiliated with, it would suffice that we correctly track their affiliations
rather than their identities. Here their affiliations are regarded as properties associated
with the targets. As a matter of fact, tracking such properties associated with targets
is a more natural assumption for sensor networks because what sensors directly sense
is property information rather than identity features. While there have been many
efforts put in studying the identity management problem, few studies have been done
for the property management problem in sensor networks.

In this article, we conduct the first study on such a problem, where we focus on tar-
get properties rather than their identities. For simplicity of exposition, we restrict our
attention to the basic case where the targets can be classified into two categories, red
or blue. Similar to the identity management problem, confusion will arise when a red
target and a blue target mix up with each other and then depart. Future property ob-
servations by sensors can help to resolve such ambiguities. The property management
problem is to maintain a belief state for the correct association between target tracks
and target properties (red or blue) with target mixing events and updated property
observations.

In the setting where there are k red targets and n − k blue targets, there would be(n
k

)
total possibilities about which k tracks contain the red targets. To overcome such a

combinatorial complexity challenge of storing a distribution of length
(n

k

)
, we introduce

the use of hierarchical Radon bases dictionary. It turns out that each Radon basis can
be indexed by a discrete set, which allows us to implicitly characterize the distribution
by storing only a collection of discrete sets together with coefficients. Moreover, we
can update the distribution by updating the discrete sets and coefficients which reflect
the happening of mixing and observation events. In addition, all the Radon bases
form an overcomplete dictionary, which makes it possible for us to explore sparse
approximations of a distribution. Thus, we are able to always maintain a compact
summary about which k tracks contain the red targets with the Radon bases machinery.

The property management problem is closely related to the identity management
problem; we can reveal target identities if we have enough target properties to differ-
entiate the identities. Typically, O(log n) target properties are adequate to completely
identify an object out of n. Thus, property management provides us an alternative
method to study the identity management problem, while the identity management
solutions cannot be applied for property management. The property management prob-
lem has to be addressed separately, as multiple targets may share the same property
and the permutation machinery assumption that each track corresponds to a unique
identity no longer applies.

We summarize the contributions of our article as follows.

(1) To the best of our knowledge, this is the first work to address the property man-
agement problem with sensor networks.

(2) We use novel overcomplete bases together with sparse approximation algorithms
to represent uncertainties to achieve high accuracy as well as low computational
and communication overhead.

(3) We propose a fully distributed algorithm which is easy to implement and
lightweight for sensor network processing.

The article is organized as follows: In Section 2, we introduce some related works.
In Section 3, we use a Markov model to formulate the property management prob-
lem. A novel overcomplete Radon basis dictionary for representing uncertainties over
homogeneous spaces is introduced in Section 4. In Section 5, scalable algorithms are
provided based on the proposed framework. We conduct comparative simulations to
validate this approach in Section 6. In Section 7, we conclude this article.
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2. RELATED WORKS

The key computational challenge in the identity management problem is that the num-
ber of possible associations between tracks and target identities can be very large. To
address such a problem, Shin et al. [2003] use the belief matrix to approximate the
association probabilities, which collapses the factorial distribution to its first-order
marginals (marginal probability that identity i is associated with track j). An alter-
native representation [Schumitsch et al. 2005] is using an information matrix whose
elements represent marginal log-likelihoods. Both methods provide efficient and scal-
able algorithms yet fail to characterize higher-order marginals, such as the association
probabilities between pairs of tracks and pairs of identities. The marginals of differ-
ent orders are interconnected, thus the formulation becomes quickly unmanageable.
Fortunately, there is an established mathematical theory that ideally suits to disen-
tangling all the information: the representation theory of permutation group [Diaconis
1988; Sagan 2001; Serre 1977]. It turns out that one can define Fourier transforms
for functions over all permutations, and low (high)-order Fourier coefficients contain
information about low (high)-order marginals. Kondor et al. [2007] use a general set
of Fourier coefficients to represent uncertainty over permutations and demonstrate
improvements against only using low-order Fourier coefficients. Recently, Huang et al.
[2009a] proposed an algorithm, called Kronecker Conditioning, which performs all
probabilistic inference operations completely in the Fourier domain. Such a method
can address any mixing or observation model and gains efficiency by truncating the
Fourier expansions, allowing for a principled trade-off between computational com-
plexity and approximation accuracy. Though polynomial, the Fourier methods are still
quite computationally demanding when the number of targets is of even modest size.
One way to mitigate the overhead is to factorize the problem into smaller clusters,
so that highly certain individual or group associations can be pulled out of a global
Fourier representation and represented compactly [Huang et al. 2009b].

The identity management problem is not identical with the classical data association
problem of maintaining correspondences between tracks and observations. In the iden-
tity management problem, the rate at which observations happen that are informative
about target identities is not coupled to the rate of observations about target posi-
tions and can be much lower. We note that a vast literatures already exist on the the
data association problem, beginning with the Multiple Hypothesis Testing approach
(MHT) of Reid [1979]. MHT is a deferred logic method in which past observations are
exploited in forming new hypotheses when a new set of observations arises. Since the
number of hypotheses can grow exponentially over time, various heuristics have been
proposed to help cope with the complexity. For example, one can choose to maintain
only the k best hypotheses for some parameter k [Cox and Hingorani 1994], using
Murty’s algorithm [Murty 1968]. But for the approximation to be effective, k still has
to be exponential in the number of targets. A slightly more recent filtering approach
is the Joint Probabilistic Data Association filter (JPDA) [Bar-Shalom and Fortmann
1988], which is a suboptimal single-stage approximation of the optimal Bayesian filter.
JPDA makes associations sequentially and is unable to correct erroneous associations
made in the past [Poore 1995]. Even though it is more efficient than MHT, the cal-
culation of the JPDA association probabilities is still an NP-hard problem [Collins
and Uhlmann 1992]. Polynomial approximation algorithms to the JPDA association
probabilities have recently been studied using Markov Chain Monte Carlo (MCMC)
methods [Oh et al. 2004; Oh and Sastry 2005]. Generalized sensor models, for example,
binary sensors [Aslam et al. 2003] which can only tell whether the target is moving
toward the sensor or away from the sensor, as well as the related localizability prob-
lems [Yang et al. 2010] have also been considered in the literature. However, none of
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Table I. Localized Mixing and Observation Data

Event # Event Type
1 Tracks 1 and 3 mixed
2 Tracks 3 and 4 mixed
3 Observed target on track 3 is red

these proposed approaches can be used to address the property management problem.
To the best of our knowledge, there is neither theoretical study on the problem itself
nor algorithmic efforts in making distributed solutions in sensor networks.

Modern computer technologies have made it possible for us to deploy densely dis-
tributed sensor network systems. Such systems can hold up to hundreds of sensor
nodes, which can perform lots of sensing and controling tasks such as multitarget
tracking [Dutta et al. 2006; Liu et al. 2011; Zhu et al. 2012], intrusion detection [Arora
et al. 2004], ecosystem surveillance [Mo et al. 2009], etc. The classical problem of reli-
ably tracking also connects the vision community if one considers the camera network
for object detection and recognition [Xie et al. 2008].

Given that the tracking literature is becoming mature, however, we note that the
property management problem still needs to be addressed. In this problem, we don’t
assume a dense in time and accurate in space measurements of the target positions
which are typically assumed in the tracking literature because these dense measure-
ments are quite expensive to acquire. We also note that in a sensor network, often
different types of sensors convey property information rather than positional infor-
mation, and typically the former are more expensive. For example, we can imagine a
network of simple proximity sensors that can be used to detect the presence of targets
(and therefore provide information about locations), but which cannot differentiate the
mobile targets from each other. These inexpensive sensors then can be augmented with
a network of sparse but expensive camera sensors that can observe other properties
of targets, such as colors, which help in differentiating or identifying the targets. The
latter observations occur much less frequently, however. Thus, such a problem setup
deserves research attention from a theoretical perspective.

3. FORMULATION

We start with a simple tracking problem with four target tracks. As depicted in
Figure 1(b), four targets, where two are red and the other two are blue, are mov-
ing within a field deployed with sensors. The sensors are capable of sensing target
properties (red or blue). As we have mentioned earlier, the property management prob-
lem requires to maintain a belief state for the correct association between target tracks
and target properties (red or blue), without distinguishing among red (blue) targets.

In this particular example, when the four targets are moving within the field, local
sensors may report two types of events, namely, mixing events (i.e., two tracks get
mixed when the targets get too close to each other) and observation events (i.e., the
target property on a particular track is clearly observed by a local sensor). Hence, a
stream of localized data is observed about the four tracks, which is recorded in Table I.

Assume initial colors of the targets are known. Then from Table I, we know track
2 never mixes with other tracks. Observing red target on track 3 will clarify all the
ambiguities, for example, targets on tracks {2, 3} are red and targets on tracks {1, 4} are
blue. Such a simple example illustrates the combinatorial nature of the property man-
agement problem; reasoning on the mixing events allows us to determine which targets
move along which tracks even though we only have partial observations on the tracks.

In the following, we introduce a Markov model to formulate the property manage-
ment problem.
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x(0) P(x(1)|x(0))−−−−−−−→ x(1) P(x(2)|x(1))−−−−−−−→ x(2) P(x(3)|x(2))−−−−−−−→ x(3) ···−−−−→
⏐
⏐L(z(0)|x(0))

⏐
⏐L(z(1)|x(1))

⏐
⏐L(z(2)|x(2))

⏐
⏐L(z(3)|x(3))

z0 z1 z2 z3

Fig. 2. The Markov model for the property management problem.

3.1. The Markov Model

Consider we have n targets, k of them are red and n − k of them are blue. We consider
all possible k-sets of the set {1, 2, . . . , n}, so that each k-set characterizes a state indi-
cating which k tracks have the red targets. We introduce a Markov model to model the
uncertainty, which is represented by a probability distribution f over all k-sets x(t) at
time t = 0, 1, 2, . . . . Such a distribution encodes the probability of an arbitrary k-set of
the tracks being red at time t. As Figure 2 illustrates, we will update the distribution
f over x(t) at each time step.

In Figure 2, to model the conditional probability distribution P(x(t)|x(t−1)), we will
work on a mixing model so that the mixing model reflects, for example, that the targets
belonging to two tracks are swapped with some probability at a mixing event. To model
the distribution L(z(t)|x(t)), we will work on an observation model, which captures the
likelihood of observation z(t), given that targets on a k-set of tracks x(t) are all red.

We focus on filtering, where one queries the Markov model for posterior at each time
step, based on all past observations. Given distribution f (x(t)|z(0), . . . , z(t)), we recur-
sively compute f (x(t+1)|z(0), . . . , z(t+1)) with two steps: a rollup step and a conditioning
step. The rollup step multiplies the distribution in the mixing model and the distribu-
tion of the previous step.

f
(
x(t+1)|z(0), . . . , z(t)) =

∑
x(t)

P
(
x(t+1)|x(t)) f

(
x(t)|z(0), . . . , z(t))

The conditioning step conditions the distribution on an observation z(t+1) using
Bayes rule.

f
(
x(t+1)|z(0), . . . , z(t+1)) ∝ L

(
z(t+1)|x(t+1)) f

(
x(t+1)|z(0), . . . , z(t))

Since the space of all k-sets of an n-set is of size
(n

k

)
, a single iteration of the algorithm

requires at least O(
(n

k

)
) operations, which is not polynomial with k. As will be detailed

later, the approach that we advocate is to use a novel representation of distributions
over all k-sets, through which we can always maintain a compact representation for an
arbitrary distribution. We will also present scalable algorithms such that updating dis-
tributions under the rollup and conditioning steps in such a representation framework
requires polynomial complexity in both n and k.

The unique feature of this problem is that there are inherent dependencies among
the property values, where the joint probability cannot be factorized as products of
marginal probabilities. Many typical compact representations, such as graphical mod-
els, cannot capture the inherent mutual exclusivity constraints associated with the
problem where k targets are red reflecting that the other n − k targets are blue.

3.2. Permutation Groups and Homogeneous Spaces

In this section, we formally introduce permutation groups and homogeneous spaces
which are used in modeling our problem. In mathematics, the set of all k-sets of an
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n-set is known as a homogeneous space. Such a homogeneous space is associated with
the permutation group, which acts on the homogeneous space in a transitive way.

Definition 1. A permutation on n elements is a one-to-one mapping of the set
{1, . . . , n} onto itself and can be written as a tuple, σ = [σ (1), σ (2), . . . , σ (n)], where
σ (i) denotes where the i-th element is mapped with the permutation. The set of all
permutations on n elements forms the permutation group Sn under the operation of
function composition. We sometimes notate σ = (i, j) which denotes a swap of i with j.

Definition 2. The collection of all k-sets of {1, 2, . . . , n} is a homogeneous space, de-
noted by Xk. The permutation group Sn acts on Xk in the following way: suppose σ ∈ Sn
and x = {x1, x2, . . . , xk} ∈ Xk, then σ x = σ {x1, x2, . . . , xk} = {σ (x1), σ (x2), . . . , σ (xk)}. It is
easy to verify that Sn acts transitively on Xk(any x, y ∈ Xk there exists a σ such that
σ x = y).

A permutation acting on a homogeneous space models the process of how tracks fol-
lowed by targets might be mixed or swapped. Recently, Jiang et al. [2009] invented an
approach based on the homogeneous space to study the clique detection problem in so-
cial networks. Although homogeneous spaces are well-studied objects in mathematics,
to the best of our knowledge, they have not been used before to model such association
problems.

Example 3.1. In the previous example depicted in Figure 1(b), we consider the ho-
mogeneous space: all 2-sets of {1, 2, 3, 4} (denoting the four tracks). At the beginning,
targets on tracks {1, 2} are red. If tracks 1 and 3 swapped the targets, then targets on
tracks {2, 3} will be red. Using mathematical terms, it can be stated in the following
way: the permutation (1, 3) acts on {1, 2} (an element in X2) will be {2, 3}.
3.3. Mixing Model

In this article, we consider a particular class of probabilistic mixing models: that of
random walks over the permutation group, which assumes that x(t+1) is generated
from x(t) by drawing a random permutation σ (t) from some distribution Q(t) over the
permutation group Sn. With such a probabilistic mixing model, we can write the rollup
operation as a Markov transition matrix times the prior distribution. In our problem,
σ (t) ∈ Sn represents a random permutation that might occur among tracks when they
get too close to each other. As we have introduced in the previous section, a permutation
σ (t) acts on a state x(t) in the homogeneous space Xk as σ (t)x(t). Hence, the distribution
over x(t+1) generated from x(t) by a random draw from the distribution Q over Sn is

f
(
x(t+1)|z(0), . . . , z(t)) =

∑
x(t)

P
(
x(t+1)|x(t)) f

(
x(t)|z(0), . . . , z(t))

=
∑

(x(t),σ ): σ x(t)=x(t+1)

Q(σ ) f
(
x(t)|z(0), . . . , z(t)) = T

(
x(t), x(t+1)) f

(
x(t)|z(0), . . . , z(t)),

where T (x, y) = ∑
σ :σ x=y Q(σ ), meaning that all Q(σ ) such that σ x = y will contribute

to the (x, y)−entry of the transition matrix. In addition, we have the following theorem.

THEOREM 1. Let Q be a probability distribution on Sn, then Q induces a doubly
stochastic Markov transition matrix for Xk with transitions: T (x, y) = ∑

σ :σ x=y Q(σ ).

The preceding theorem [Diaconis 1988] gives an explicit formula for transition ma-
trices of a distribution over the homogeneous space. As we will see later, transition
matrices induced from the distribution Q also interact nicely with the homogeneous
space, which can be utilized to simplify the computation of the rollup step.
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Table II. Updated Priors when Mixing Happens

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
f (x(0)) 1 0 0 0 0 0
f (x(1)) 1/2 0 0 1/2 0 0
f (x(2)) 1/2 0 0 1/4 1/4 0

In this article, we consider the simplest probabilistic mixing model which assumes
that with probability p, nothing happens to the two targets, and with probability (1− p),
the targets for tracks i and j are swapped (similar models are considered in Huang
et al. [2009a]). The probability distribution Qover Sn for this probabilistic mixing model
is therefore

Q(σ ) =
⎧⎨
⎩

p if σ = id
1 − p if σ = (i, j)

0 otherwise
.

We note that there are special structures that we can explore in the transition matrix
induced from the particular distribution Q over Sn, that is, each row or column has
either one nonzero entry (which must be 1) or two nonzero entries (which must be p
and 1 − p). We will use such a fact to do the rollup operation in an efficient way.

Example 3.2. We run the mixing update routines on the first two mixing events
of the example in Figure 1(b). For each mixing event, we assume two tracks i and j
swap targets with equal probability. Using the probabilistic mixing model we obtain
distributions f (x(t)) for t = 0, 1, 2 as shown in Table II. Here, f (x(t)|z(0), z(1), . . . , z(t)) is
abbreviated as f (x(t)).

3.4. Observation Model

In contrast to the rollup step, the conditioning step can potentially decrease uncertainty.
We use Bayes rules to find the posterior distribution P(x(t)|z(t)) after observing some
evidence z(t), which can be expressed as the following.

f
(
x(t)|z(0), z(1), . . . , z(t)) = L

(
z(t)|x(t)

)
f
(
x(t)|z(0), z(1), . . . , z(t)

)
∑

x(t) L
(
z(t)|x(t)

)
f
(
x(t)|z(0), z(1), . . . , z(t)

)
It requires two steps to compute the posterior: a pointwise product of prior

f (x(t)|z(0), z(1), . . . , z(t)) and likelihood L(z(t)|x(t)), followed by a normalization step, which
is computing

∑
x(t) L(z(t)|x(t)) f (x(t)|z(0), z(1), . . . , z(t)).

The simplest observation model assumes that we get observation z of the form: “see
red on track i” (similar models are considered in Huang et al. [2009a] and Kondor
et al. [2007]). Now we assume all red (blue) targets have the same color histograms;
sensors sense properties by a random draw from the color histogram of the target.
If, for example, all red targets have 80% of red, 10% of blue, and 10% of other colors
(yellow, grey, etc.) while all blue targets have 70% of blue, 20% of red, and 10% of other
colors, then the likelihood function for observation event z = “see red on track i” given
“targets on k-set tracks x are red” is:

—if i ∈ x, L(z|x) = L(z|x are red) = L(z|i is red) = .8;
—if i /∈ x, L(z|x) = L(z|x are red) = L(z|xc are blue) = L(z|i is blue) = .2.

So we have

L(z|x) =
{

.8 if i ∈ x

.2 if i /∈ x
.
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We conclude this section by pointing out that both the rollup step and conditioning
step are of complexity at least O(

(n
k

)
), if we explicitly form the distribution on the homo-

geneous space. In the next section, we will explore the math structure of homogeneous
spaces to overcome such a complexity issue.

4. EFFICIENT REPRESENTATION

In this section, we propose a novel representation framework to characterize distribu-
tions over homogeneous spaces.

4.1. Hierarchical Radon Basis

Let L(Xk) be the set of all functions on the homogeneous space Xk. There is a special
technique for decomposing L(Xk). For each 0 ≤ j ≤ k, define a matrix � j,k as an

(n
k

)
by

(n
j

)
matrix where each row represents a k-set and each column represents a j-set.

The entries in � j,k are binary, indicating whether the j-set is a subset of the k-set. The
matrix � j,k can be interpreted as a mapping from functions on all j-sets to functions on
all k-sets. The columns of the matrix � j,k span an

(n
j

)
-dimensional subspace of L(Xk),

which are called the Radon bases of order j. With a Radon basis we can represent a
distribution over k-sets by using coefficients on j-sets, where 0 ≤ j ≤ k.

In Section 3.3, we noticed that a probability distribution Q over Sn can induce an ac-
tion on a distribution over all k-sets, that is, Q induces a transition matrix for updating
distributions over all k-sets. However, there is nothing special about k when we define
the transition matrix there. Thus we can generally let Q induce a transition matrix
for updating distributions over all j-sets, where 0 ≤ j ≤ k. Here the transition matrix
is T j(x, y) = ∑

σ : σ x=y Q(σ ), where x, y are two j-sets. The following proposition sum-
marizes important properties regarding � j,k(0 ≤ j ≤ k) and the transition matrices
induced from Q.

THEOREM 2. Let Q be a distribution over Sn, we have the following three propositions:

(1) R(�0,k) ⊂ R(�1,k) ⊂ · · · ⊂ R(�k,k) where R(·) denotes the range of a matrix.
(2) Each subspace R(� j,k) is invariant under the action of the distribution Q.
(3) The matrix � j,k commutes with the action of the distribution Q, that is, � j,kT j =

T k� j,k where T j, T k are transition matrices induced from the same distribution Q.

The first proposition states that the range of matrices � j,k forms a hierarchical
decomposition of L(Xk). Bases that span R(� j,k) of small (large) j are efficient for
approximating smooth (peaky) distributions over Xk respectively. We note that such a
hierarchical basis design derives from the representation theory of permutation groups
in such a way that each subspace is invariant under group actions [Diaconis 1988]. The
second proposition tells us that if f ∈ L(Xk) lies in the range of � j,k for some j ≤ k,
then after the rollup operation, the updated distribution still lies in the range of � j,k.
The third proposition suggests us an efficient algorithm to update f when f ∈ R(� j,k).
Suppose we have a distribution over k-sets f = � j,kc j where c j are coefficients on
j-sets, then because of this commutative property, the rollup operation for f can be
performed simply by computing rollup operation for coefficients c j .

T k f = T k� j,kc j = � j,kT jc j = � j,k(T jc j
)

One interesting fact about the Radon basis matrix � j,k is that it has a pseudo-
inverse (� j,k)+ which maps from functions on k-sets to functions on j-sets. � j,k and
(� j,k)+ satisfy that (� j,k)+� j,k is identity and � j,k(� j,k)+ is an orthogonal projection.
Given Radon bases consisting of delta functions on all j-sets and k-sets, respectively,
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the (r, s) element of (� j,k)+ is (−1)k− j (k− j)
(−1)|s−r||s−r|( n− j

|s−r|)
, where s − r means the set difference, that

is, s − r = s ∩ rc.

4.2. Overcomplete Basis Representation

Recent approaches [Huang et al. 2009a; Kondor et al. 2007] in modeling the identity
management problem keep a compact representation of distributions over permutation
groups by storing only low-order Fourier coefficients. Clearly, similar ideas can be
adopted here; we can use coefficients for low-order Radon bases (� j,k with small j)
to represent a distribution over the homogeneous space Xk. Using a low-order Radon
basis, however, fails to characterize highly certain cases, for example, a delta function
on Xk which can be characterized by a single basis in �k,k, while a low-order Radon
basis is incapable of representing accurately such a peaky distribution; on the other
hand, high-order Radon bases are not efficient for representing smooth distributions
over Xk, for example, a constant function can be characterized by a single basis in
�0,k, while one cannot have a compact representation for such a smooth function by
using high-order bases. Similar problems happen in the identity management problem,
where a low-order Fourier basis fails to represent peaky functions on permutation
groups while high-order Fourier bases are not efficient to represent smooth functions. In
reaction to this, we propose to use an overcomplete Radon basis dictionary to represent
distributions over homogeneous space Xk where we concatenate all � j,k’s, that is,

f = �0,kc0 + �1,kc1 + · · · + �k,kck =
k∑

j=0

� j,kc j,

where c j are coefficients on j-sets. By using a hierarchical overcomplete Radon basis,
we will hopefully have sparse representation for any distribution over Xk.

Example 4.1. In the example in Figure 1(b), the distribution f at t = 2 can be
represented with coefficients c0 = 0, c1 = [0, 1/4, 0, 0]T , and c2 = [1/4, 0, 0, 0, 0, 0]T to
f as the second column of �1,2 indicates three 2-sets which contain 2.

5. ALGORITHM DESIGN

In this section, we design algorithms based on aforementioned theorems for updating
probabilistic distributions over the homogeneous space Xk. We assume that, using
overcomplete bases, sparse representations are available for the distributions over Xk

which we work with. By making use of the combinatorial structure of the basis matrices
and our sparse representation assumptions, we obtain efficient algorithms for updating
distributions over Xk polynomial in n and k, which will be detailed in Section 5.1 and
Section 5.2. When we keep updating the Radon basis coefficients, however, we may
gradually lose sparsity. To resolve such an issue, we propose in Section 5.3 sparse
approximation algorithms to reorganize the coefficients and regain sparsity. To make
our approach applicable in distributed sensor networks, we further develop distributive
ways of doing all such algorithms within the sensor network in Section 5.4.

5.1. Algorithm for Rollup Step

Given a distribution f over homogeneous space Xk using overcomplete Radon bases,
we have f = ∑k

j=0 � j,kc j where c j are coefficients over j-sets. If each c j(0 ≤ j ≤ k) is
sparse, then we can store f by only storing the nonzero values in each c j and their
corresponding column indices, which are j-sets. We can represent f in another way.
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ALGORITHM 1: Algorithm for Rollup Step
Input: A collection of sets with associated values I = {(α, cα) : cα �= 0}
Output: A collection of sets with associated values O
Procedure:
Initialize O ← {}
for each (α, cα) ∈ I do

if ti ∈ α, tj ∈ α or ti /∈ α, tj /∈ α then
O ← O ∪ {(α, cα)}

else if ti ∈ α, tj /∈ α or ti /∈ α, tj ∈ α then
β ← α�{ti, tj}
Retrieve value vα associated with α, if α exist in O; otherwise set vα = 0
Retrieve value vβ associated with β, if β exist in O; otherwise set vβ = 0
O ← O ∪ {α, vα + pcα}
O ← O ∪ {β, vβ + (1 − p)cβ}

end if
end for

We have

f =
∑

α

�αcα,

where α is a set of size at most k, and cα is the coefficient for the basis column �α.
We now describe the algorithm for updating Radon basis coefficients when mixing

events happen. In particular, we consider probabilistic mixing models as described in
Section 3.3. When a mixing event happens, we need to perform a rollup operation. We
have f ← T k f where T k is a transition matrix for distribution f over all k-sets, and
T k is induced from a probability Q on permutation group Sn. In Section 4.1, we know
that the basis matrices φ j,k commute with the action of a distribution Q over Sn. Hence,
we have

T k f = T k
k∑

j=0

� j,kc j =
k∑

j=0

T k� j,kc j =
k∑

j=0

� j,kT jc j .

To update f , we only need to update coefficients c j ’s as c j ← T jc j , for 0 ≤ j ≤ k.
When tracks ti and tj mix, according to the probabilistic mixing model in Section 3.3,

we have a distribution Q which takes nonzero values only on id and (ti, tj). Note that
there is a special structure within the induced transition probability matrix; each
column of the transition matrix T j has either one nonzero entry (which is 1) or two
nonzero entries (which are p and 1 − p). If we store f by using a collection of sets α’s
with associated values cα ’s, then we can efficiently get the result of the rollup operation.
In cases where ti ∈ α, tj ∈ α, or ti /∈ α, tj /∈ α, �αcα will not be affected after updating,
that is, T k(�αcα) = �αcα; in cases where ti ∈ α, tj /∈ α, or ti /∈ α, tj ∈ α, �αcα will be split
into pcα and (1− p)cα on α and β = α�{ti, tj}, where � denotes the symmetric difference
between two sets (A�B = (A∪ B) ∩ (A∩ B)c), that is, T k(�αcα) = �α(pcα) + �β(1 − p)cα.

We have the following theorem regarding Algorithm 1.

THEOREM 3. Suppose f = ∑
α �αcα, N is the number of nonzero coefficients cα ’s and

k is the number of red targets. The rollup algorithm can generate output in O(kN log N)
computational time. The size of nonzero coefficients in the output is at most 2N.

Example 5.1. In the example in Figure 1(b), at time t = 1 the distribution over
2-sets can be stored by

I = {({1, 2}, 1/2), ({2, 3}, 1/2)}.
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After the mixing event happens between tracks 3 and 4 where we have a probability
distribution Q over S4,

Q(σ ) =
⎧⎨
⎩

1/2 if σ = id
1/2 if σ = (3, 4)
0 otherwise

.

The updated distribution can be stored as

O = {({1, 2}, 1/2), ({2, 3}, 1/4), ({2, 4}, 1/4)}.
5.2. Algorithm for Conditioning Step

Two computation phases are involved in the conditioning step. First, a pointwise prod-
uct needs to be computed, and second, we need to compute the normalizing constant.
Note that in the observation model in Section 3.4, the likelihood functions L(z|x) are of
the form

L(z|x) =
{

a if i ∈ x
b if i /∈ x

.

Such a likelihood function L(z|x) lies in the space of R(�1,k). If we define a function L1
on 1-set as

L1( j) =
{

a − k−1
k b if j = i

1
kb if j �= i

,

it is easy to verify that L(z|x) = R1,kL1. We can even express L(z|x) in a more compact
way: L(z|x) = b�∅ + (a − b)�{i}.

Given f (x) = ∑
α �αcα and L(z|x) = ∑

β �βcβ where β ’s are at most 1-sets, the
pointwise product is

f (x) · L(z|x) =
(∑

α

�αcα

)
·
⎛
⎝∑

β

�βlβ

⎞
⎠ =

∑
α,β

cαlβ(�α · �β),

where the last equality is due to the distributive law for the pointwise product
operation.

For the basis vector corresponding to α and the basis vector corresponding to β, the
pointwise product between �α and �β can be estimated as

�α · �β =
{

�α∪β if |α ∪ β| ≤ k
0 if |α ∪ β| > k

.

The normalizing constant actually equals the l1 norm of f (x) · L(z|x). If we have
f (x) · L(z|x) = ∑

γ �γ cγ , then Z = ∑
γ |�γ |1cγ = ∑

γ

(n−|γ |
k−|γ |

)
cγ .

The algorithm for updating Radon basis coefficients when an observation event hap-
pens is summarized in Algorithm 2, which can be used to deal with general likelihood
functions. In the special case where the likelihood function can be compactly repre-
sented as a linear combination of �∅ and �{i}, we have the following theorem.

THEOREM 4. Suppose f = ∑
α �αcα, N is the number of nonzero coefficients cα ’s and

k is the number of red targets. The conditioning algorithm can generate output in
O(kN log N) computational time. The size of nonzero coefficients in the output is at
most 2N.

We remark that in the conditioning algorithm, the normalizing step is not es-
sential because if we do not normalize the distribution, the result is still accurate
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ALGORITHM 2: Algorithm for Conditioning Step — Computing Posterior Distribution
Input: Two collection of sets with associated values I1 = {(α, cα) : cα �= 0}, I2 = {(β, lβ ) : lβ �= 0}
Output: A collection of sets with associated values O
Procedure:
for each (α, cα) ∈ I1 do

for each (β, lβ ) ∈ I2 do
if |α ∪ β| ≤ k then

Retrieve value vγ associated with γ , if γ exist in O; otherwise set vγ = 0
γ ← α ∪ β
vγ ← vγ + cαlβ
O ← O ∪ {(γ, vγ )}

end if
end for

end for
Compute normalizing constant Z ← ∑

γ

(n−|γ |
k−|γ |

)
cγ

Divide each cγ in O by Z

up to a multiplication constant. We may even choose a special likelihood function
L(z|x) = b�∅ + (a − b)�{i} where b = 1 with the benefit that if f = ∑

α �αcα is the prior
distribution, then cα will not change after the conditioning step when the reported
target i does not belong to α. Such a technique will be useful in Section 5.4.

5.3. Sparse Approximation

We have developed algorithms for updating Radon basis coefficients at the rollup step
and conditioning step. For the rollup step, coefficients only propagate within Radon
bases of the same order while for the conditioning step coefficients may propagate to
Radon bases of higher orders, that is, the more observations we have, the more we will
be certain about which k-set has the red targets.

The one-step rollup and conditioning algorithms are quite scalable. As we keep
updating the Radon basis coefficients using the rollup and conditioning algorithms,
however, we may need more and more coefficients to represent the distribution over
all k-sets (as revealed by Theorems 3 and 4, we may need up to two times more
coefficients to characterize the distribution). As a result, the number of coefficients
used to represent the distribution may grow exponentially as we proceed with the
rollup steps and conditioning steps.

To overcome the exponential growth of number of bases used in the representation,
we develop an approximation algorithm to reorganize the Radon basis coefficients such
that we can always keep compact representation of the distribution. This is possible
since we used overcomplete Radon bases, which for any distribution, means there are
more than one way to characterize it. Thus we can search for a sparse approximation
representation for the distribution if it is not represented in a compact way.

5.3.1. Orthogonal Matching Pursuit. We note that after a series of mixing events happen,
distributions on the homogeneous space Xk become smoother and their energies grad-
ually concentrate to subspaces spanned by low-order Radon bases. More precisely, for
any distribution f ∈ L(Xk), if we consider the l2 distance between f and the orthogonal
projection of f to the subspace spanned by the columns in � j,k (0 ≤ j ≤ k), it is easy
to prove that such a distance will decrease after each rollup step. For example, in the
special case where j = 0, it reduces to the conclusion that the l2 distance between f
and the uniform distribution will decrease after each rollup step. In such sense, we
should introduce lower-order Radon bases to see if we can more efficiently represent
the distribution f after a series of mixing events.
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ALGORITHM 3: Orthogonal Matching Pursuit Algorithm
Input: Basis dictionary �, distribution f , stopping criteria ε
Output: Residual r, coefficients x, indices 

Procedure:
while ‖r‖ ≥ ε do

Measure correlations c ← �T r

 ← 
 ∪ {arg max j c( j)}
x ← arg minz:supp(z)⊂
 ‖ f − �z‖2
r ← f − �x

end while

In Gilbert et al. [2003], a greedy algorithm, Orthogonal Matching Pursuit (OMP) (see
Algorithm 3) is proposed to solve the sparse approximation problem over redundant
dictionaries, which works by greedily searching for bases most correlated with the
residual and using them to fit the distribution. The Orthogonal Matching Pursuit
algorithm also has better theoretical guarantees about quality of the approximation,
given that the dictionary has smaller incoherent parameter [Gilbert et al. 2003]. In
our case, we can use the entire overcomplete Radon basis dictionary as input basis
dictionary to OMP, yet with a large incoherent parameter. However, the computational
burden of searching a combinatorial-size basis dictionary is unaffordable. We observe
that in our probabilistic mixing model (which assumes that at each time-step only
two targets may swap), targets will not get well mixed very quickly. For example,
coefficients cα on the set α will evenly spread their energy to other sets of the same size
only if there is a target i in α which well mixes with all targets in αc, with the basis
�α−{i} being efficient in representing the distribution after these mixing events.

As a result, we may adaptively downsample the whole overcomplete Radon basis
dictionary according to the current representation of f . Given f = ∑

α∈I �αcα, we
downsample a subset of the basis dictionary, for example, {β : β ⊂ α, |α − β| ≤ s, α ∈ I}
(i.e., the basis β which is a subset of some α ∈ I and β differs from α at most s
elements). For example, if s = 1 and α = {1, 2, . . . , k} ∈ I, then all (k − 1)-sets of α
together with α itself are sampled as candidate bases for approximation. If we use N
bases to represent f , then we will downsample at most kN bases. With fewer bases
sampled, we also achieve a smaller incoherence parameter.

For the computational complexity of the Orthogonal Matching Pursuit algorithm
in our case, we note that, given f = ∑

α �αcα, the inner product of a basis �β in
the basis dictionary � and f can be computed in polynomial time because 〈�β, f 〉 =∑

α〈�β,�α〉cα, where

〈�β,�α〉 =
{ (n−|α∪β|

k−|α∪β|
)

if |α ∪ β| ≤ k
0 if |α ∪ β| > k

.

Solving a least squares problem can also be done in polynomial time because the least
squares solution is (�T �)−1�T f , where estimating �T � reduces to evaluating the
inner product of two bases in the basis dictionary and estimating �T f reduces to
evaluating the inner product between a basis in the basis dictionary and f . So we have
the following theorem.

THEOREM 5. Suppose f = ∑
α �αcα, N is the number of nonzero coefficients cα ’s, and

k is the number of red targets. If we downsample at most kN bases and use the OMP
algorithm to generate an m-term approximation solution, then the complexity of the
OMP algorithm is O(k2N(N + m)m+ (k + m)m3).
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Example 5.2. In the example in Figure 1(b), we see that the distribution f can be
represented as

f = �{1,2} · .5 + �{2,3} · .25 + �{2,4} · .25.

If we run OMP on f , the basis �{2} and �{1,2} can be identified which helps us to
re-organize coefficients for f as

f ≈ �{2} · .25 + �{1,2} · .25.

In such a simple example, the approximation is highly accurate.

5.3.2. Thresholding. We may also choose to do thresholding on Radon basis coefficients
to maintain a sparse approximation to the distribution. Such a technique is especially
useful after a sequence of observation events happen, since conditioning steps may
result in exponential decay of Radon basis coefficients.

Given f = ∑
α �αcα, where cα ’s are Radon basis coefficients. If we always insist on

the positiveness of the Radon basis coefficients, then one can directly estimate the l1
norm of �αcα as

(n−|α|
k−|α|

)
cα. Based on l1 norm contribution of �αcα to the distribution f ,

we can threshold off the insignificant bases to maintain a sparse approximation of f .
Such an algorithm is quite scalable and in practice works well.

Finally we should note that OMP can help to represent the distribution on homoge-
neous spaces by lower-order bases while thresholding does not have such a property.

5.4. Distributed Approach

We assume that there is a leader-based tracking system in the sensor network, where
a small number of leaders among the sensor nodes are responsible for computing and
tracking the target properties. The main idea to achieve a distributed approach for
rollup, conditioning, and sparse approximation is to decompose the space domain of
the targets such that each leader maintains information about a set of targets that are
close to it.

Before we describe the distributed approach, we assume the following.

(1) Each 1−set {ti} (1 ≤ i ≤ n) is always maintained in the system.
(2) We do not maintain the empty set and its coefficients. We notice from Section 4.1,

it is known that R(�0,k) ⊂ R(�1,k), so we will not have information loss if all 1−sets
are maintained in the system.

(3) The normalizing step in the centralized conditioning step is not performed, as the
distribution only differs by a multiplication constant if we do not do normalizing.

In the distributed sensor network, we have several leaders, for example, L1, L2,
etc., keeping tracks of targets nearby. Figure 3 gives an example where the leader L1 is
surveiling tracks {t1}, {t2}, {t3} and {t4}, and the leader L2 is surveiling tracks {t5}, {t6} and
{t7} before the mixing and observation events happen. Each leader stores information
about certain k-sets together with their Radon coefficients where the members of the
k-sets are currently surveiled, for example, the leader L1 has information about the
track sets {t1}, {t3} and {t1, t3} with their Radon coefficients, and the leader L2 has infor-
mation about the track set {t5} and its Radon coefficient. Due to mixing and observation
events previously occurred, it is also possible that, for example, the track set {t3, t5} with
its Radon coefficient are also incorporated to represent the underlying distribution. In
such a case, we assume both leaders L1 and L2 store information about {t3, t5} together
with its Radon coefficient. More precisely, if a set with nonzero Radon coefficient has
nonempty intersections with the set of tracks surveiled by different leaders, these
leaders will store information about such a set at the same time. Thus, to ensure a set
and its coefficient are maintained consistently among different leaders, these leaders
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Fig. 3. An example scenario where targets on tracks t4 and t5 mix up and then separate. Then the target on
track t3 is revealed to be red.

communicate with each other when necessary. So we also assume each leader has its
own communication pathways to other leaders in the network such that it can talk to
them. As we will see later, such communication pathways will be updated accordingly
with the updated observation events.

Leader nodes may change due to the movement of the targets, thus information
maintained in one leader will be sent to the other leader when the leadership changes.
Each leader needs to log the mixing and observation events that happened to the targets
it surveils. We will see that part of the logs will be dropped when new observation events
happen so that the total information stored within the leaders will be under control.

5.4.1. Rollup Step. At the rollup step where the targets on two tracks ti and tj are
mixed, if the two targets are surveiled by the same leader, we simply perform the
rollup step within the leader. If, however, the mixed two targets are surveiled by two
different leaders, the two leaders, which presumably are physically close when the two
tracks mix, will exchange their information of sets α’s and coefficients cα ’s currently
maintained with each other to perform the rollup step. In both cases, the leaders gain
all necessary information for the rollup algorithms. We will split the tracks surveiled
by the two leaders according to the physical closeness information. The leaders which
perform the rollup step operation also need to send part of the updated information to
other leaders to ensure consistency.

Figure 3 depicts an example scenario, where 3 leaders L1, L2, and L3 are in the
network and surveil 8 tracks, the targets on tracks t4 and t5 mix up and then separate.
Now the target on track t5 is close to the leader L1 and the target on track t4 is close
to the leader L2. We will let the leader L1 surveil tracks {t1, t2, t3, t5} and let the leader
L2 surveil tracks {t4, t6, t7}. In the example shown in Figure 3, if we assume before the
rollup step, the leader L1 maintains information about the sets {t1},{t3},{t3, t5}, and the
leader L2 maintains information about the set {t5}. Then after the rollup step, the sets
with nonzero coefficients are {t1}, {t3}, {t3, t5}, {t4}, {t5} and {t4, t5}. Since we let the leader
L1 surveil tracks {t1, t2, t3, t5}, the sets {t1}, {t3}, {t3, t5}, {t5} and {t4, t5} with their updated
coefficients will be stored within leader L1; we let the leader L2 surveil tracks {t4, t6, t7},
and the sets {t4} and {t4, t5} with their updated coefficients will be stored in the leader
L2. We note that before the rollup step, the sets {t3, t5} are maintained within both the
leaders L1 and L2, but after the rollup step, only the set {t4, t5} is maintained within
both L1 and L2.
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In particular, it might be possible that leader L1 also maintains information about
another set, for example, {t5, t8} where the target on the track t8 is currently tracked
by another leader L3. After the rollup step, a new set {t4, t8} will emerge. The leader L1
will then send the updated information about {t5, t8} and {t4, t8} to the leader L3 via the
communication pathway between them.

A pseudocode for the distributed algorithm for the rollup step is shown in
Algorithm 4.

ALGORITHM 4: Distributed Algorithm for the Rollup Step
Input: Targets on tracks ti and tj mixed up and then separate.
Output: Updated sets and coefficients maintained in all leaders.
Procedure:
if ti and tj are surveiled by the same leader L1 then

Perform the rollup step as in algorithm 1 use data within L1.
for each set α maintained in L1 do

if α intersects with tracks surveiled by other leaders then
L1 send updated α and cα to those leaders.

end if
end for

else if ti and tj are surveiled by different leaders L1 and L2 then
Perform the rollup step as in algorithm 1 use data within L1, L2, split the updated
information to the two leaders L1 and L2.
for each set α maintained in L1 do

if α intersects with tracks surveiled by other leaders then
L1 send updated α and cα to those leaders.

end if
end for
for each set α maintained in L2 do

if α intersects with tracks surveiled by other leaders then
L2 send updated α and cα to those leaders.

end if
end for

end if

5.4.2. Conditioning Step. At the conditioning step, when the property of a target on
one track is revealed, we can perform the conditioning algorithm locally at the leader
which surveils that track. In the centralized algorithm, whenever the target property
on track tj is revealed, we need to introduce all {tj} ∪ β into the new representation for
all sets β ’s currently maintained in the system. In the distributed algorithm, however,
we slightly modify such a step. We incorporate {tj}∪β where β contains the tracks that
tj has mixed with since the property of the target on the track tj was lastly revealed.

For the example shown in Figure 3, we assume that the leader L1 currently surveils
tracks {t1, t2, t3, t5} and it maintains information about the sets {t1}, {t3}, {t3, t5}, {t5},
{t4, t5} and {t5, t8} where t8 is another track currently surveiled by another leader L3. If
the property of the target on track t3 is revealed to be red with high probability, then
we can trace back along the track t3 to see with which it mixes since the object on t3
was revealed last time.

If for example, the track t3 has mixed with tracks t8, t1, t2, then we are going to
incorporate {t3} ∪ β where β satisfies the following.

(1) It is currently maintained in the leader L1.
(2) It has nonempty intersection with {t8, t1, t2}.
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Fig. 4. Observation events happen and the communication pathways are accordingly updated.

Thus, new sets {t1, t3}, {t3, t5, t8} will be incorporated in the representation maintained
by the leader L1 (it is because {t1} and {t5, t8} are the only two sets satisfying the
two conditions). Besides, the coefficients on {t1}, {t5}, {t4, t5}, {t5, t8} will be unchanged
and the coefficients on {t3} and {t3, t5} will be updated. Such a technique works efficiently
in practice as the tracks mixed with t3 recently are the most critical to address in the
conditioning step.

When new sets {ti} ∪ β are introduced, which may have nonzero intersections with
tracks surveiled by other leaders, we need to send the updated information to these
leaders. In the preceding case, only the information about {t3, t5, t8} needs to be sent to
the leader L3.

The communication pathways are consistently updated with the distributed condi-
tioning step. To illustrate, see the example in Figure 4. In this example, when the
target property of track t3 is revealed, we can back trace along the track and identify
that the sensor nodes S1, S2, and S3 log the mixing events of t3 with t8, t1, and t2. We
move forward from these sensors and identify pathways to the leaders that surveil
the tracks t8, t1, and t2, for example, from S3 to S4 to L3, from S2 to L2, etc. Such a
process naturally defines new communication pathways between leader L1 and other
related leaders. As a result, the communication pathways between these leaders are
consistently updated with the process.

A pseudocode for the distributed algorithm for the conditioning step is shown in
Algorithm 5.

5.4.3. Sparse Approximation Step. We have discussed two classes of sparse approxima-
tion algorithms in Section 5.3. The orthogonal matching pursuit algorithms can be
performed within each leader independently whenever a leader has maintained too
much information. However, if a set is maintained within different leaders, consistency
of the Radon coefficients cannot be guaranteed if we run OMP in such a distributed
way. Thus different leaders need to talk to each other to ensure consistency. Note that
in practice, the sparsification operation will not happen very often. Moreover, only in-
formation about sets that have nonempty intersections with tracks surveiled by other
leaders need to be sent to other leaders. So the total amount of information to be sent
is still under control. The thresholding techniques are fully distributive, that is, when-
ever a k-set has coefficient less than a threshold, it would be thrown away within each
leader accordingly. In this case, each leader can perform the operation of thresholding
independently, and the result will always be consistent.
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ALGORITHM 5: Distributed Algorithm for the Conditioning Step
Input: Targets on tracks ti is revealed to be red with high probability.
Output: Updated sets and coefficients maintained in all leaders.
Procedure:
Identify the mixing events of ti since ti is revealed last time.
Perform the conditioning step as in algorithm 2 use data within L1, taking account of the
recent mixing events of ti .
for each set α maintained in L1 whose value cα changed do

if α intersects with tracks surveiled by other leaders then
L1 send updated α and cα to those leaders.

end if
end for
for each track tj that ti mixed with recently do

Identify the sensor node which logged the mixing event.
Identify the leader currently surveils tj .
Update the pathway between leaders that surveil ti and tj .

end for

5.5. Discussion

In this section, we give brief discussion on several issues related to the proposed
algorithms.

—Error Propagation. Whenever we do sparse approximation to approximate f by f ′,
we introduce errors. Mixing events always shrink the approximation error ‖ f − f ′‖
which is due to the fact that mixing matrices have eigenvalues bounded by 1, while
observation events do not. However, we note that n independent observations of all
the targets will drive both f and f ′ to converge to delta distributions. In this sense,
approximation errors can be under control.

—Sparsity Propagation. Theoretically one may need up to two times more coefficients
to represent the updated distribution. In practice, if mixing and observation events
happen locally, sparsity can always be kept to a relatively low level.

—Timing for Sparsification. In practice, we do sparsification after a sequence of mixing
events happen or a sequence of observations happen such that the true distribution
becomes more smooth or peaky while the coefficients used are too many.

—Distributed Algorithm. Compared with the centralized algorithm, the distributed
approach divides the storage of information into different leaders such that process-
ing information for rollup, conditioning, and sparse approximation step can be mostly
performed locally. In such a sense, we can still save a great amount of computational
time though communication overhead is incurred.

—Positiveness of Coefficients. Clearly, rollup and conditioning algorithms will keep the
positiveness of the coefficients. However, the OMP algorithm may result in approxi-
mating the distribution with negative coefficients. In practice, we preserve positive-
ness of the coefficients by projecting on the positive cone.

—Prediction. By using pseudoinverse (� j,k)+ mentioned in Section 4.1, we are able to
compute the score for each target. We pick out k tracks which have the highest scores
and predict the targets on these k tracks are red. This is equivalent to looking at
orthogonal projection of f to subspaces spanned by �1,k and finding out which k-set
has the largest weight.

—Comparative Methods. Similar as the approaches taken in Huang et al. [2009a] in
studying the identity management problem, we can approximate the distribution
over Xk by using low-order Radon bases, that is, f ≈ Rj,kc j with small j’s so that we
only store c j which is a vector of length

(n
j

)
. Though polynomial in n, low-order Radon
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Fig. 5. (a) A view of the simulated data. (b) Tracking errors with different percentages of mixing events.

bases are incapable of characterizing peaky distribution over Xk. In Section 6, we
will compare our approach with using only low-order Radon basis coefficients.

—k Is Not Known as A Priori. For a more general case where k - the number of red
targets is not known as a priori, we can still use the Radon bases to address the
problem. Essentially the rollup step and the conditioning step will be unaffected,
because we can see that the algorithm for the rollup step is independent of k, while
the algorithm for the conditioning step can also be adapted to the case that k is not
known (we just pretend the “if” statement is not there). For the sparse approximation
step, we note that since the spaces spanned by Radon bases of different orders have
a particular hierarchical structure, thus we can approximate high (low)-order Radon
bases coefficients with low (high) nearing-order Radon bases coefficients, depending
on whether the scenario is highly uncertain (certain). Such an operation will be
independent of k.

—Connection between Property Management and Identity Management. As for the
difference between property management and identity management, property man-
agement tries to infer less information and therefore can be easier and less costly to
implement. At the same time, in many settings, information about properties can be
sufficient for the network needs, for example, to differentiate friend from enemy. In
general, the approach for the property management problem provides an alternative
method for the identity management problem. From a mathematical point of view,
suppose we have n targets, then we can code them using O(log n) bits such that each
identity has a unique binary code of length O(log n). For each bit, all the targets can
be classified as either red or blue depending whether the bit is 0 or 1. Then, based
on probabilistic beliefs on each bit, we can infer the target identity. One can also
generalize such an approach where properties of the targets act as features which
collaboratively determine the target identities. On the other hand, it turns out that
the Fourier basis coefficients used for the identity management problem [Huang et al.
2009a, 2009b] can be collapsed to the Radon basis coefficients discussed in this arti-
cle. The intuition is that if we have a distribution over the permutation group (each
permutation assigns target positions to the identities), and if the first k identities
have color property red, then by summing up the probabilities over all permutations
such that it maps a particular k-set to the first k identities, that is, we don’t care
about the permutation within, essentially we are collapsing the Fourier basis coef-
ficients for permutation groups to the Radon basis coefficients for the homogeneous
spaces. Thus, using Radon bases to address the property management problem can
be viewed as an approach which collapses the probability distributions given by the
Fourier coefficients for the identity management problem.
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6. EVALUATION

In this section, we perform several experiments to illustrate the effectiveness and
efficiency of the proposed approach. We use the Delta3D game engine to generate
simulated crowds of up to 100 moving targets wearing either red or blue clothes and
walking around in an outdoor market [Heath and Guibas 2008]; Figure 5(a) depicts a
snapshot view of the simulated crowd. Such a simulation approach allows us to obtain
a more accurate ground truth for big crowds than was feasible in the usual physical
testbed. The data contains interesting movement patterns and we can extract mixing
and observation events directly from the data. We log a mixing event whenever two
targets get close to each other within some distance and an observation event whenever
one target is separated from all the other targets for some distance. We can control
the percentages of mixing events by adjusting the distance parameters as well. We
measure tracking errors using the fraction of mislabeled target properties over the
tracks.

We first run a small-scale experiment where there are 10 targets, 5 red and 5 blue.
The homogeneous space X5 is of size

(10
5

) = 252. As illustrated in Figure 5(b), four sets
experiments with different percentages of mixing events were performed, reflecting
scenarios of high certainty to high confusion. For each set of experiments, we run the
centralized algorithm and compare with using only low-order Radon basis coefficients.
We measure tracking errors using the fraction of mislabeled target properties over
the tracks. When mixing events happen rarely, using high-order Radon basis coeffi-
cients can greatly help to improve tracking accuracy; while if mixing events happen
frequently, using high-order Radon basis coefficients does not help much to improve
tracking accuracy. This is reasonable since if mixing events happen rarely, distribu-
tions can be well-characterized by a high-order Radon basis while low order bases are
not sufficient to characterize distributions; on the other hand, if mixing events happen
frequently, distributions can be well-characterized by low-order Radon bases, so using
a high-order Radon basis would not provide additional benefits. Our overcomplete basis
approach uses on average about 50 bases to characterize the distribution over X5. The
tracking accuracy is almost comparable to completely storing the distribution on X5,
which requires storing 252 coefficients.

In the small-scale experiments, the approach that uses 5-th-order Radon bases can
be regarded as an optimal approach in terms of tracking accuracy. It’s the best that
we can do, which completely keeps track of the distributions over X5. The approach
that uses 1st-order Radon bases can be viewed as a baseline algorithm. In such an
approach, we use 10 numbers to indicate the likelihoods of targets being red or blue,
while ignoring the mutual dependence structure among the targets.

From the small-scale experiment, we can see that there is a fundamental trade-off
between the number of coefficients used and the tracking accuracy. With more bases
used, we can track targets better, however, we cannot use as many bases as we want
if the problem size goes large because in the extreme case we would use exponentially
many bases. Moreover, the Heisenberg uncertainty principle plays an important role
in our experiments. The scenario where there are very few mixing events can be well-
characterized by using only the low-order Radon bases; while the scenario where there
are a lot of observation events can be well-characterized by using only the high-order
Radon bases. That’s why we see greater improvements of the tracking accuracy by using
more high-order Radon bases for the case where the targets have few mixings; while
there are relatively smaller improvements of tracking accuracy by using more high-
order Radon bases if targets are well-mixed. Thus, using an overcomplete Radon basis
is a good way to balance the high tracking accuracy requirement and computational
efficiency.
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Fig. 6. Sensitivity of tracking accuracies with respect to the mixing and observation parameters.

Table III. Large-Scale Experiments

Methods #Targets Tracking Errors Running Time
1st Order Radon Basis n = 20 0.3167 0.02(s)

n = 60 0.2804 0.17(s)
n = 100 0.2836 0.46(s)

3rd Order Radon Basis n = 20 0.2977 29.79(s)
n = 60 0.2845 119.45(s)
n = 100 0.2891 912.21(s)

Overcomplete Basis n = 20 0.1727 29.69(s)
n = 60 0.1751 292.90(s)
n = 100 0.1823 1342.35(s)

In our experiments, we can control two sets of parameters which determine the
tracking quality: one is the swapping probability, that is, if we can keep track of who
is who when two targets mix with high probability during the rollup step, we can
achieve better tracking performance; the other is the likelihood function, that is, if
the likelihood for observing the property of a target is high, then a conditioning step
can resolve the ambiguities better. We explore the sensitivity of tracking accuracy
with respect to different swapping probability and likelihood function parameters. As
depicted in Figure 6, as the mixing parameter goes larger, or the likelihood parameter
goes larger, we can get better tracking accuracy. In general, the tracking accuracy is
more sensitive with respect to the mixing parameter. This means that if we can robustly
estimate who is who when mixing events happen, we can greatly improve the tracking
results. Nevertheless, in all of the cases, using an overcomplete Radon bases dictionary
can yield us very good results.

Our algorithm shows great benefits on tracking accuracy and computational time in
larger-scale experiments. When there are n (n ≥ 20) targets and half of them are red,
it would be impossible to store the entire distribution f , which means that we cannot
realize the optimal approach. Thus we compare our approach with using only low-order
Radon basis coefficients which approximates f , that is, we approximate f by Rj,kc j
with small j. In our experiments, there are 1000 time steps and half of them are mixing
events. We use up to hundreds of bases in the centralized overcomplete basis algorithm
to characterize the distribution. From Table III, we see that our approach improves the
tracking accuracy greatly compared with only using low-order Radon basis coefficients
and the running time of our approach is comparable to using Radon basis coefficients
of order 3. We also run the large-scale experiments to see how the tracking accuracy
varies with the percentages of mixing events. As shown in Figure 7(a), the tracking
errors increase when mixing events happen more frequently, which coincides with
the intuition. The tracking errors also increase with the increment of the number of
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Fig. 7. (a) Tracking errors with large-scale data. (b) Tracking errors with the distributed approach. (c) Pro-
cessing overhead at the leaders with distributed approach. (d) Traffic distribution over the sensor network.
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Table IV. Identity Management Tracking Accuracy

Methods Fourier Approach (order) Radon Approach (#Properties)
n = 20 0.3842 (1) 0.4543 (5)

0.3740 (2) 0.4189 (6)
0.3603 (3) 0.3592 (7)

n = 60 0.3811 (1) 0.4428 (6)
0.3701 (2) 0.3741 (7)
0.3595 (3) 0.3624 (8)

n = 100 0.3814 (1) 0.4250 (7)
0.3569 (2) 0.3809 (8)
0.3499 (3) 0.3447 (9)

targets. The explanation for this is that we use a linear growing number of bases to
approximate a distribution whose size is exponentially growing.

We also simulate a distributed sensor network environment and test the performance
of the proposed distributed approach. We simulate a scenario where 100 sensors are
deployed approximately on a regular 10 by 10 grid. We compute the tracking accuracy
with different number of targets and different percentage of mixing events. Here 50–
500 Radon basis coefficients are used to approximate the distributions for the scenarios
where there are 10–100 targets (half of them are red) moving within the field, which is
comparable to the number of basis coefficients we used to test the centralized algorithm.
From Figure 7(b), we see that the tracking errors are comparable to the centralized
algorithm depicted in Figure 7(a). In practical sensor network applications, the total
amount of information stored in the distributed sensor network can be much larger
than the centralized case. We expect the tracking accuracy can be further reduced if
we incorporate more bases to represent the distributions.

We also perform sensitivity analysis of the tracking accuracy with respect to different
swapping probability and likelihood function parameters, in much the same way as we
did for the small-scale experiments. As depicted in Figure 7(c)–(f), we will have better
tracking accuracy as the mixing parameter go larger, or likelihood parameters go larger,
both of which correspond to cases where there are more certainties. The distributed
approach tends to have a comparable tracking accuracy to the centralized approach
under various sets of parameters.

To evaluate the overhead of the distributed approach in practical sensor networks, we
also test the average amount of information processed at the leaders and the amount of
traffic transmitted within the network. The experiment is performed with 100 targets
moving in the network. Figure 7(g) depicts the average amount of information processed
at the leader nodes. We can find that the leaders need to process more information as
the number of targets grows. When observation events happen less frequently, the
amount of information processed within the leaders will be smaller, which is due to
the fact that more leaders are involved in tracking. Figure 7(h) depicts the amount of
traffic transmitted over the sensor network. We see that each sensor transmits no more
than 4kB information to other nodes which is not a heavy load with sensor network
settings. Sensors in some part of the network where mixing and observation events
happen frequently have larger amount of information transmission. The overall traffic
distribution, however, is smooth over the entire sensor network.

We finally set up an experiment which compares using the properties to collabo-
ratively determine the target identities with the existing Fourier approach for the
identity management problem. In this experiment, each target has many properties
which collaboratively determine its identity. It can be seen from Table IV that the more
features are used, the better tracking accuracy can be achieved. The tracking accuracy
of two approaches are comparable.
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7. CONCLUSION

In this article, we have studied the property management problem. A novel method
which uses an overcomplete Radon basis dictionary to represent uncertainties is pro-
posed. We developed scalable algorithms to efficiently update the Radon basis coef-
ficients, together with approximation algorithms which can maintain a sparse ap-
proximation of the true distribution. Based on this, we further proposed a distributed
approach which can be practically implemented for a distributed sensor network. Com-
pared with other possible methods, the proposed approach achieves better performance
in tracking accuracy with tolerable computation and communication overhead.
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