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Abstract— Current commodity RFID systems incur high
communication overhead due to severe tag-to-tag collisions.
Although some recent works have been proposed to support
parallel decoding for concurrent tag transmissions, they require
accurate channel measurements, tight tag synchronization, or
modifications to standard RFID tag operations. In this paper,
we present BiGroup, a novel RFID communication paradigm
that allows the reader to decode the collision from multiple
commodity-off-the-shelf (COTS) RFID tags in one communica-
tion round. In BiGroup, COTS tags can directly join ongoing
communication sessions and get decoded in parallel. The collision
resolution intelligence is solely put at the reader side. To this end,
BiGroup examines the tag collisions at RFID physical layer from
constellation domain as well as time domain, exploits the under-
utilized channel capacity due to low tag transmission rate, and
leverages tag diversities. We implement BiGroup with USRP N210
software radio that is able to read and decode multiple concurrent
transmissions from COTS passive tags. Our experimental study
gives encouraging results that BiGroup greatly improves RFID
communication efficiency, i.e., 11 times performance improve-
ment compared with the alternative decoding scheme for COTS
tags.

Index Terms— RFID systems, physical layer, parallel decoding.

I. INTRODUCTION

FID (Radio Frequency IDentification) technology has

been extensively used in various applications, such
as warehouse inventory [37], object tracking [33], human-
computer interaction [7], powerless sensing [6], etc. Existing
RFID communication standards like EPCglobal C1G2 [1]
employ slotted aloha channel access and sequentially read
tags at random time slots. The communication efficiency in
current RFID systems remains low for two main reasons.
(1) Concurrent transmissions of more than one COTS tags
would collide and none of the transmission can be decoded.
(2) RFID tags send data at low data rates (e.g., 16 kbps for
backscatter link frequency of 64 kHz and Miller 4 coding [1]))
using on-off keying that cannot fully utilize the channel
capacity even when the wireless channel quality is high.
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To improve the communication efficiency, recent works
[31, [11], [29] explore the possibility of letting RFID tags
transmit in parallel and separating the collided transmissions
at the reader. These prior designs, however, require substantial
modifications to COTS tags to enable collision resolution. For
example, Buzz [29] needs to instrument tags to avoid inter-
slot interference and perform channel measurements. BST [11]
explicitly coordinates tag transmissions and misaligns tag
signal edges to separate their signals. Some other designs
[22], [24] require coding mechanisms (e.g., CDMA, rateless
codes [10]) adopted on RFID tags to facilitate collision recov-
ery. As a result, existing parallel decoding approaches cannot
fully support standardized COTS tags in widely deployed
RFID systems. While several billions of COTS RFID tags
with globalized standards are already in use worldwide, these
recently proposed schemes can hardly benefit them.

In this work, we consider an ideal parallel decoding scheme
that is able to decode packet collisions from COTS tags.
We ask the question: Can we enable “come and be served”
parallel transmissions without any extension to COTS RFID
tags? The design goal is twofold: (1) we aim to enable parallel
tag transmissions without the need of any modification to the
COTS tags; (2) we aim to support COTS tags to join on-
going communication sessions without specific coordination.
The “come and be served” design does not tamper C1G2 logics
on COTS tags and can provide direct benefits within the C1G2
framework. For example, the tag identification procedure of
C1G?2 requires individual RFID tags to send RN16 for channel
contention. A collision occurs when multiple tags send RN16
in the same slot and the slot is wasted. “Come and be served”
parallel decoding allows the reader to acquire RN16 codes of
multiple tags from the collision and thus improves identifica-
tion efficiency. According to our experimental results ([23]),
parallel decoding of merely 2 — 5 tags suffices to improve the
tag identification time efficiency by 6. For another example,
the READ command in C1G2 comes after tag identification
and reads data from one tag at a time. With “come and
be served” design, the READ command can be extended to
concurrently read data from multiple tags. The READ sessions
from different tags do not need to be synchronized. Later
transmissions can ride on on-going sessions. The throughput
can be easily multiplied.

This paper presents BiGroup (Bipartite Grouping), that
instantly decodes concurrent transmissions of COTS tags,
by purely extending the decoding intelligence at the RFID
reader. Unlike existing approaches, BiGroup examines collided
tag transmissions at both time domain (time series signal
transitions) and constellation domain (complex symbols on
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constellation plane). At time domain, regulated by standard
RFID coding schemes, e.g., FMO or Miller coding, RFID
tags flip their reflection states at bit boundaries in backscatter
transmission, which results in state transitions of the com-
bined signals at certain time points. At constellation domain,
combined signals exhibit multiple symbol clusters on the
constellation plane, corresponding to multiple collision states.
BiGroup iteratively extracts the sequence of each tag’s signal
transitions, and match these time points with the physical sym-
bol movements among clusters on the constellation plane. As
one tag only alternates between reflecting or absorbing states,
all clusters can be bipartitely grouped into two according to
that tag. We can thus produce a bipartite grouping for each tag
involved in the transmission, and the state transitions between
the two groups can be translated into a binary sequence, which
gives the transmitted data of that tag.

We implement BiGroup on a USRP N210 based RFID
reader that concurrently reads different models of COTS tags
as well as programmable RFID tags. To the best of our
knowledge, BiGroup is the first practical design that is able
to provide accurate parallel decoding for COTS RFID tags
within the C1G2 framework. In particular, compared with
source separation methods in [25], BiGroup improves the
success rate by 11x on average for decoding the collisions
of 3 — 5 CIG2 passive tags. Our experimental results also
demonstrate huge performance gain over existing schemes
for non-COTS tags. The decoding capacity of BiGroup is
affected by the channel quality and limited when the number
of colliding tags increases. Nevertheless, our experimental case
study demonstrates that concurrently decoding a small number
of tags can already significantly improve the efficiency of some
standard EPC C1G2 operations.

In the rest of the paper, we describe the background
and motivation of our design in Section II. We present the
design details in Section III. We evaluate BiGroup and present
experimental results in Section IV. We detail related work in
Section V and conclude the paper in Section VL.

II. BACKGROUND AND MOTIVATION

A passive RFID tag encodes its data by reflecting or absorb-
ing incident carrier waves, resulting in two possible states:
“High (H)” and “Low (L)”. The nth tag’s two alternative states
are denoted by,

S, =H, or L, )

which exhibit two distinct signal magnitudes when received at
an RFID reader as shown in Figure 1(a). The reader can thus
decode the data using a magnitude threshold.

When multiple tags transmit simultaneously, their signals
add up at the receiver. One collision state is a combination of
all the tags’ signal states. The possible collision states of N
tags are denoted by,

SCOZ = [315527"'751\/]7 (2)

[] means all combinations of S,, = H,, and L,,, m =
1,2,...N. In the example of the collision from two tags, the
four collision states are denoted as “HH”, “HL”, “LH” and
“LL”, respectively.
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Fig. 1. Decoding tag signals from single and multiple concurrent transmis-
sions. (a) Decoding one tag transmission based on signal magnitude. (b) The
combined signal magnitude when two tags collide (Left), and the complex
physical symbols on the I-Q plane (Right).

In commodity RFID systems, the reader solely examines
the received signal magnitudes. As a result, the reader cannot
distinguish different collision states when multiple tags trans-
mit at the same time. For example, Figure 1(b) presents the
combined signal magnitude detected at a commodity reader
when two tags transmit simultaneously. The reader cannot
determine the threshold to detect the states of either individual
tag. When we plot the received physical symbols in the
In-phase and Quadrature (I-Q) coordinates, however, we see
that the symbols form four separable clusters, each represent-
ing one collision state. Thus, if we can associate each cluster
to a specific collision state (“HH”, “HL”, “LH”, or “LL”),
the collision can be recovered. Generalized to N tags, the
decoding goal is to identify the collision state S.,;, which
is to derive in each collision state whether the separate tag
transmission state S,,, = H,, or L,,, form=1,2,... N.

A variety of approaches have been proposed in view
of above observation to decode concurrent transmissions.
Buzz [29] first coordinates tags to measure their channel
coefficients. Assuming that the collided signal of multiple tags
is linear composition of individual signals, Buzz recovers the
transmitted signal of each tag with channel measurement. In
Buzz, the RFID tags apply rateless codes to encode transmitted
data. Other coding mechanisms like [24] can also be used on
tags to facilitate collision resolution.

In a recent approach BST [11], tags transmit with allocated
initial offsets and data rates in order to create misaligned
signal edges. During backscattering, tags monitor whether
their signal edges overlap and adjust offsets and data rates.
For bootstrapping decoding and correcting decoding errors,
tags need to insert known bits called “sentinel” bits at specific
intervals in data packets. These demanded tag operations are
not supported by standard COTS tags.

Although existing approaches allow parallel decoding for
RFID tags programmed with specific logics, they do not meet
the “come and be served” requirement and cannot support
decoding COTS tags of standard operating logics. The reasons
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are as follows. First, in order to bootstrap collision recovery,
many works require controlled channel measurement (e.g.,
using preambles [3], [15], [36] or coordinated transmissions
[29], [31]) to understand channel coefficients of individual
tags. The channel measurement requires non-standard coor-
dination that is not supported by COTS tags. Extra com-
munication and coordination overhead also brings down the
efficiency. Second, many designs [3], [4], [15], [29] rely on
precise tag synchronization so collided tag signals can align
with each other. In practice, however, due to manufacturing
diversities, COTS tags have non-identical clocks and respond
asynchronously with distinct bit durations. Third, many works
require non-standard operations from RFID tags apart from
those defined in COTS tags (e.g, adaptive transmission offsets
and data rates [11], extra “sentinel” bits [11], specific tag
coding [24], [29], etc.). Affording those operations on ASIC
chips for COTS tags remains elusive.

Unlike existing works, BiGroup is designed to work with
COTS tags. BiGroup does not require channel measurement,
tag transmission synchronization, or any special operation
at tag side. The COTS tags simply follow the standardized
response logics when interrogated by the reader. A basic
observation is that when the constellation plane is examined,
regardless of where the physical symbol clusters are located
(which is determined by the channel coefficients), as long as
the clusters can be divided into two groups corresponding to
the two transmission states (“H” or “L”) of one tag, we can
decode the data transmitted from that tag. We call it bipartite
grouping. For the example case shown in Figure 1(b), we
can decode one tag by separating symbols from the group
consisting of cluster 1, 2 and symbols from the other group
consisting of cluster 3, 4. The other tag can be decoded with
the group of cluster 1, 3 and the group of cluster 2, 4.

In the general case of IV tags, symbol clusters can similarly
be grouped for each tag. For example, tag n’s “H” collision
state and “L” collision state can be represented as follows,

Hn7c()l - [51752,...Hn...7SN]
me(,l = [51752,...[/”...,5]\/] 3)

where H,, coi/Ly,cor denotes the combined collision state
where S,, = H,/L,, respectively, while S; (i # n) can
be either H; or L; in both groups of collision states. The
definition of collision state S.,; can be found in Equation (2).

As more tags collide, however, it becomes increasingly
difficult to accurately group the clusters with respect to each
tag. BiGroup examines time domain tag state transitions to
address the problem. Regulated by standard RFID coding
schemes, e.g., FMO or Miller coding, each tag transits between
the reflecting and absorbing states at bit boundaries during its
backscatter transmission. As such, at the bit boundaries of tag
n, the reader knows that tag n would definitely transit from one
of the collision states in H, ., to one in Ly, .o, OF Vice versa.
BiGroup carries such state transitions into the constellation
domain and can thus identify symbol clusters belonging to
either i, co1 Or Ly o1 As more state transitions are detected
along with the time, BiGroup is able to eventually bipartitely
group all clusters into two, that corresponds to H, ., and
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Ly, coi- The data from tag n can thus be recovered from the
temporal transitions between the two groups.

Designing and implementing BiGroup in practice entails
substantial challenges. Without coordinated responses from
COTS tags, it is challenging to identify state transitions of
individual tags. The problem becomes more difficult if we
cannot expect any prior knowledge of channel coefficients
or linear dependency among collision states. At the same
time, the design of BiGroup has to be efficiently implemented
so the computational overhead imposed by operations like
symbol clustering, boundary extraction, etc. can be properly
accommodated. We detail the design and implementation of
BiGroup in the next section.

III. DESIGN

In this section, we first briefly describe the symbol cluster-
ing method. We then introduce the design considerations and
the principle of BiGroup. After that, we give implementation
details of BiGroup in practice.

A. Symbol Clustering

One signal sample received at physical layer is represented
as one complex symbol on the I-Q plane. Due to noises and
interferences, received symbols of the same collision state are
dispersed and scattered around a centroid position, forming a
cluster. Before performing bipartite grouping for these clusters,
we need to first identify the number of clusters and the
symbols belonging to each of those clusters. We use the
density based clustering algorithm which obviates the need for
cluster number. To reduce the input size for faster clustering,
BiGroup aggregates received symbols into grids (which are
much fewer than symbols) and cluster those grids.

BiGroup divides the constellation plane into grids and
denotes all the symbols confined within a grid using the
grid center. The grid size can be adapted according to the
background noise level. After a reader sends the QUERY
command, tags remain absorbing states until they harvest
sufficient amount of energy. During the charging stage, the
cluster of received symbols corresponds to the all “L” collision
state. These symbols can be averaged to derive the cluster
centroid and the symbol dispersions can be measured to derive
the background noise level. We thereafter set the grid size
as 1/3 of the noise level. We filter out the grids with small
number of symbols and feed the centroids of the remaining
grids into the density based clustering algorithm (DBSCAN
[8] in our implementation), which outputs the final symbol
clusters. Figure 2 gives an example where 3 tags transmit to the
reader concurrently. The received symbol samples are plotted
in Figure 2(a). The kept grids and output cluster centroids
are depicted in Figure 2(b). After that, each symbol will be
marked by the label of its cluster. The received sequence of
physical symbols can then be transformed into a sequence of
cluster labels for later decoding.

B. Bipartite Grouping Using Linear Dependency?

Now we have the symbol clusters and each symbol is asso-
ciated with one cluster. One possible approach to bipartitely
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Collision symbol clusters may exhibit non-linear dependency when multiple tags respond. (a) Two tags with linear dependency. (b) Two tags with

non-linear dependency. (c) Three tags with non-linear dependency. (d) Four tags with non-linear dependency.

group the clusters is to leverage the linear dependency among
clusters. Theoretically when two complex signals collide, they
add up linearly at the receiver. In the same way, when two tags
backscatter the radio signal concurrently, the collided signal
is the linear combination of these tags’ channel coefficients.
Thus we can observe the linear dependency among differ-
ent collision states (i.e., symbols clusters). One example is
shown in Figure 2(a), where symbol vector “L;Lo— Hy Hy”
(illustrated with the black arrow) is approximately the linear
addition of two vectors “(L1Lo—H L) + (L1Lo—L1Hs)”
(illustrated with red arrows). The four cluster centroids roughly
create a parallelogram. The group of clusters “H;Hs” and
“HyLs” are shifted from the group of clusters “LiHs” and
“L1Ly”. The difference between the former two and latter
two is the state of tag 1, meaning that they belong to opposite
groups in bipartite grouping for tag 1. In a similar way,
clusters “L1Hs”, “H1Hy” and clusters “L1L>”, “H,Ly” are
separated in terms of tag 2’s state. In this case, we can
leverage the linear addition property to do bipartite grouping.
Same as other collision recovery methods [25], [29], such a
bipartite grouping approach assumes the linear dependency
among symbol clusters.

In practice, however, we also observe cases like Figure 2(b).
‘We see that the vector ‘L Lo— H7 H5” deviates from the linear
addition of two vectors “(L1Lo—H Ls) + (L1 Lo— L1 Hs)”.
Such non-linear dependency is probably due to the change
of tags’ channel conditions by nearby tags. We suspect the
mutual coupling or tag re-backscattering when multiple tags
coexist results in the non-linear dependency in the combined
signals received at the reader. According to our measurement,
the non-linear dependency becomes more obvious as more tags
coexist as shown in Figure 2(c) and Figure 2(d) where 3 and
4 tags collide, respectively. Similar non-linear dependency has
been reported in previous studies [11] as well. We note that
the non-linear dependency is affected by various factors, e.g.,
the proximity and positions of tags, the data contents, etc.,
which are not under control of the RFID reader [11], [38].
In view of that, BiGroup has to perform bipartite grouping
without assuming the linear dependency property.

C. BiGroup in Principle

In this section, we describe our key observations and the
principle of BiGroup.

Fig. 3. RFID coding property. (a) FMO coding. Tags flip reflections states
at bit boundaries represented by dashed lines. (b) Miller coding (M = 4).
Similar periodic state changing patterns are observed. Dashed lines represent
state flipping locations.

Data Agnostic State Flipping: COTS tags use standardized
FMO or Miller coding to encode data and the coding scheme
in each communication round is specified by the reader [1].
They have a predictable state flipping pattern regardless of the
transmitted data bits. We take FMO coding (bi-phase space) for
example. The bit-0 has an additional mid-bit phase inversion
while bit-1 does not flip the phase as Figure 3(a) details.
Nevertheless, FMO inverts the phase at every bit boundary, so
in the time domain we may always observe state transitions
at bit boundaries independent of the data contents. The bit
boundaries are dash lined in Figure 3(a). Similar deterministic
state transitions can also be observed in Miller coding schemes
as Figure 3(b) depicts. We note that such state transitions are
compulsory for all CIG2 COTS tags so the RFID reader is
able to track the backscatter frequencies. For brevity, we will
later use FMO codes as a vehicle to describe our method.
Our approach can be generalized with slight modifications to
handle Miller codes as well.!

Overview of Bipartite Grouping: The bit boundaries iden-
tified for tag i divide the symbol clusters into two groups,
corresponding to the “H” and “L” states of tag i. Since the state
of the tag must flip at bit boundaries, we have the knowledge
that the state before a bit boundary and state after the boundary
must belong to the opposite groups, i.e., H; .o and L; co.
Connecting to the constellation domain, the corresponding

In Miller codes, the signal state flips with a fixed period proportional to the
bit duration and with a small number of exceptions (less than 1/10). Majority
voting technique in BiGroup tolerates such exceptions.
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Fig. 4. An illustrative example of bipartite grouping.

symbols (and their cluster labels) can thus be divided as
well. As more bit boundaries of tag i are examined, more
information can be accumulated on which clusters belong to
opposite groups. All the clusters will eventually be bipartitely
grouped.

Figure 4 illustrates the process using an example. The
bit boundaries of tag i are identified and mapped onto the
sequence of symbols and the associated sequence of cluster
labels. According to the first bit boundary, cluster 4 and 1
are put in opposite groups. Then according to the second
bit boundary, cluster 3 and 4 are put in opposite groups.
Similarly, at the third bit boundary, cluster 2 is put in a group
opposed to cluster 1’s group. As we have already identified
the cluster representing all “L” state when all tags are being
charged, the group containing that cluster should be L; .o,
and the other group should be H; ... Note that the success
of bipartite grouping does not rely on full detection of all bit
boundaries. The process completes once an adequate number
of bit boundaries are identified that allows all clusters to
be distinguished. The process also tolerates inaccurate bit
boundary detection, which we will detail in the next section.

D. BiGroup in Practice

To obtain the bipartite groups of each tag, we need to
accurately extract bit boundaries for each individual tag and
deal with imprecise bit boundaries with background noise. We
first describe the tag-to-tag unsynchronization. We leverage
such tag diversities to extract bit boundaries. We then present
the method of bipartite grouping.

Unsynchronized Tag Signals: In practice, tag responses from
different tags are usually unsynchronized for two reasons:
different response delays and different bit durations.

Different tags have different response delays. A tag responds
to a reader’s QUERY with a delay. The length of the delay is
largely determined by the tag’s clock rate, power charging rate
and strength of incident radio power. Due to manufacturing
and tag location diversities, tags generally respond to the
reader’s QUERY with different initial offsets as illustrated in
Figure 5. In the figure, we see that the first tag responds at
around 60us while the second joins the concurrent transmis-
sion at around 120us. The three I-Q planes plot the snapshots
of physical symbols received when no tag, one tag, and two
tags respond, respectively.

Different tags have different bit durations. A bit duration
refers to the time period of transmitting one data bit, which
refers to the gap between two closest dashed lines for FMO
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Fig. 6. Two tags’ signals misalign with each other due to different bit
durations.

in Figure 3(a). RFID tags use digital clocks to control the
backscatter link frequency. Due to the clock diversity, the
bit durations are not identical for different tags [12], [35].
Commodity RFID readers can tolerate the link frequency
variations by tracking bit boundaries when one tag responds.
Figure 6 plots the collided signal when two tags simultane-
ously transmit the same alternating data sequences. We see
that two signals which initially align with each other gradually
misalign due to different bit durations.

When tags collide, due to unsynchronized starting time
and different bit durations, their signals do not always align
with each other. Since tags’ starting time and bit durations
are not known in advance, it is hard to figure out how
signals may collide with each other. Thus, previous schemes
[4], [29] generally consider the unsynchronization harmful
and try to avoid the inter-bit interference among tags with
explicit coordination. Unlike previous schemes, we leverage
such misalignment properties of RFID tags to identify bit
boundaries for individual tags respectively.

Extracting Bit Boundaries: RFID readers essentially have
much higher sampling rates than tags. COTS tags invert their
states at each bit boundary to allow the reader to recover
and track backscatter link frequencies. As a result, when we
examine the clusters in an I-Q plane as we receive physical
symbols, we observe that the symbols transit from one cluster
to another at bit boundaries.

We first detect all the cluster transitions due to state tran-
sitions of the RFID tags. After the symbol clustering, the
sequence of symbols is transformed to a sequence of cluster
labels. Based on the sequence of cluster labels, we identify
cluster transitions in the sequence. We may detect each cluster
transition by detecting the symbol which has a different cluster
label from the preceding symbol. In practical implementation,
instead of detecting cluster changes of individual symbols, we
detect the cluster changes of f symbols with the same cluster
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label to f symbols with different clusters as a cluster transition
so as to enhance detection robustness.

The detected cluster transitions involve two parts: compul-
sory transitions at bit boundaries and occasional transitions in
bit durations (e.g., the state flip in the middle of the duration of
bit “0”). We need to extract bit boundaries by mapping those
compulsory cluster transitions to each tag’s bit boundaries in
time series.

We denote the time points that the bit boundaries of N
collision tags fall at as T = Ui\;l T;, where T; = {t; |1 <
k < L} represents L bit boundaries due to state transitions
of tag . We note that L is determined by the packet size and
is known in advance to the RFID reader. As the tags respond
simultaneously, the bit boundaries are interleaved and mixed
together. Fortunately, because of the unsynchronization among
tags, the bit boundaries of colliding tags do not completely
coincide with each other. We incorporate the tag response
delay and bit duration and describe the bit boundaries of tag
i (i.e., T;) as follows

T; ={a; + kbi|1 < k < L}, “)

where a; and b; denote the starting transmission time and bit
duration of tag 4, and thus a; + kb; represents the location of
the kth bit boundary of tag i.

At first glance, we may determine a; and b;, and extract the
bit boundaries of 7; with linear regression by optimizing a;
and b; to minimize the residual errors as follows

min Z{Hdz + kb —ti|[*} k=1,2,3,.., L. (5)

a;,0q k

However, since the bit boundaries of different tags
(Th,m = 1,2,3,..N) are mixed within detected cluster
transitions and are unknown, we cannot trivially optimize a;
and b; to extract T; for tag .

To solve the problem, we search over the possible ranges
for a; and b; to fit L bit boundaries of 7T". For each candidate
pair of a; and b;, specifically, we find the set of cluster
transitions that minimizes the residual error. At the same time,
we denote the corresponding achieved minimum residual error
as R; and the identified L bit boundaries as T;, for each
candidate pair respectively. We then find the pair of a; and bi
and corresponding T; that has the smallest R; among all the
R;s. After extracting T; for tag ¢ and decoding tag i, BiGroup
removes both compulsory and occasional cluster transitions
caused by tag i from the detected cluster transitions and
iterates to extract bit boundaries for more tags. This iteration
ends when there are not enough cluster transitions left for
further decoding. BiGroup automatically detects whether the
decoding finishes. For each round of decoding, the minimized
residual error will be output to upper layer as a confidence
level of the decoded packet. Upper layer applications then
decide whether to accept a packet according to their accuracy
requirements.

Figure 7 plots one segment of the identified bit boundaries
as well as their linear models for 3 tags. Taking tag 1 for
example, the red marks represent the identified bit boundaries
for tag 1 (i.e., T1). The estimated linear model for tag 1 is
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Fig. 7. An illustrative example of identifying bit boundaries for three tags.
The slope of a line represents the bit duration.

depicted as the red line (y = a; + xb;). We see that the
identified bit boundaries fit well with the the linear model,
indicating a very small residual error for tag 1. Similarly,
our method extracts 75 and 73 for tag 2 and 3, respectively.
Those identified bit boundaries for different tags will be used
in determining bipartite grouping.

The search ranges for a; and b; can be determined in the
following way. When tag 7 joins the transmission, its state
switches from “L;” to “H;”, resulting in new collision states
and thus new symbol clusters in the I-Q plane (as the example
in Figure 5 suggests). Therefore, we select each cluster’s first
a few transitions as the search range for a; and let the fitting
algorithm to search for the valid starting points. As the fitting
algorithm is to find bit boundaries simply used for bipartite
grouping not decoding, as long as a; is one of the valid
bit boundaries of tag ¢, the detected bit boundaries can be
used to bootstrap bipartite grouping. The search range of bit
duration b; is set according to the possible link frequency
ranges specified in C1G2 standard [1]. In most cases, tags
transmit with the same data rate broadcasted by the reader.
If tags transmit with different data rates, BiGroup will search
over multiple bit duration ranges.

Bipartite Grouping: After extracting bit boundaries for a tag,
we determine bipartite grouping for the tag according to the
principle introduced in Section III-C. In practice, burst noise
may result in wrong cluster labels and small fluctuations of
the bit duration may cause shifted bit boundaries. Therefore,
direct bipartite grouping may mistakenly separate some cluster
pairs of the same group to opposite groups, that results in
decoding errors. We apply a majority voting algorithm to
improve bipartite grouping robustness.

For one tag, we first count the number of each cluster pair’s
occurrences on opposite sides of the tag’s corresponding bit
boundaries as the vote of this cluster pair. The vote of one
cluster pair is denoted by V; ; for cluster ¢ and j, i < j. For
example, if there are a samples that belong to cluster ¢ on one
side of a bit boundary (within half duration), and b samples
that belong to cluster j on the other side of the bit boundary
(within half bit duration), we increase V; ; by a - b.

We present the pseudocode of bipartite grouping for each
tag in Algorithm 1. The algorithm initializes the classification
with the cluster pair of the highest votes (line 4-7), i.e., if V”

has the largest value among all the votes, cluster ¢ and cluster
7 are assigned to opposite groups. The remaining clusters
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Algorithm 1 Majority voting in bipartite grouping

1: INPUT: vote for each cluster pair, e.g. V;; for cluster ¢
and cluster j
: OUTPUT: classification of clusters for one certain tag
: PROCEDURE:
: Initialization:
Find 7,7 s.t. Vi; = max {Vi;}
group 1« cluster ¢
group 2— cluster j
: repeat

for each cluster s that has not been grouped

for k=1,2
Wi, = mean {Vig,, Vi, Vs -

€ group k
12: end for
13:  end for
14:  Find 4, k s.t. Wi = max {Wy}
15:  group (3 — k‘)<— cluster 5 //Put cluster § into group k
16: until all the clusters have been grouped

—_ =
)

.}, for cluster k;
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Fig. 8. Workflow of BiGroup.

are iteratively assigned to the two groups (line 8-16). In one
iteration, for each ungrouped cluster s, we calculate the vote
of cluster s and existing bipartite group £ (kK = 1 and 2)
as a whole, denoted by Wy,. Wy is the average value of
{Vsky» Vskas Vsks---}» Where clusters ki, ko, k3... are already
assigned to group k. Then we find the highest value of W,
denoted by W;. If k= 1, cluster § will be assigned to
group 2, otherwise, cluster § will be assigned to group 1. The
process iterates until all the clusters are put into one of the
two groups.

In the end, the cluster group with the known all “L” state is
identified as “L” group, and the opposite group is identified as
“H” group. The received symbol sequence, with the knowledge
of which cluster a symbol belongs to, is thus turned into a
sequence of “H” and “L” states for each individual tag, and
input to the conventional single tag decoder.

E. Put It Together

Figure 8 illustrates the key workflow of BiGroup, which
comprises the following three main steps:
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Symbol Clustering: BiGroup first clusters the physical sym-
bols in the I-Q plane. Each symbol is classified into one cluster
and marked by the corresponding cluster label. The received
symbol sequence is thus converted into a sequence of cluster
labels for further processing.

Bit Boundary Extraction: BiGroup detects the time points
of symbol transitions among clusters. BiGroup then extracts
bit boundaries from cluster transitions and map to time series
bit boundaries of different tags respectively.

Bipartite Grouping: For each tag, BiGroup then divides the
symbol clusters into bipartite groups of “H” state and “L”
state. By examining the “H” or “L” states in the sequence of
cluster labels, BiGroup outputs a sequence of binary states
that represents the transmitted signal of that tag. Different
tags have different bipartite groups and thus give different
binary sequences. A conventional single tag decoder can then
be applied on the binary sequence to decode the data of each
tag.

F. Discussion

Decoding Capacity and the Gain: The decoding capacity
of BiGroup is inevitably limited when the number of collid-
ing tags increases. The channel quality essentially limits the
resolution in symbol clustering. Ideally, received symbols of
different collision states will fall at different positions on the
I-Q plane and can always be separated. Due to channel noise,
collision states will exhibit symbol clusters. As SNR decreases
or tag number increases, symbol clusters may overlap with
each other, making symbol clustering more difficult and error
prone. In our experiments, the throughput improvement from
BiGroup peaks when 4 — 5 tags transmit simultaneously.
Nevertheless, such decoding capacity can already significantly
improve the efficiency of some standard EPC C1G2 opera-
tions. In these operations, the maximum number of colliding
tags in most transmission slots can be easily controlled by
methods such as frame slotted ALOHA access protocol. Take
tag identification - the most widely used operation as an
example. The reader sends a QUERY command and each
tag contends for the channel by responding a random RN16
packet at a randomly selected time slot within the frame.
The reader ACKs the RN16 it hears and the corresponding
tag of the particular RN16 responds its EPC (tag ID). The
conventional reader can only retrieve the RN16 code from a
slot with single tag response, and thus has very low efficiency,
i.e., with the optimized frame setting more than 63% of the
slots are collided and thus wasted. With BiGroup, the reader is
able to retrieve RN16 from colliding slots (up to 5 concurrent
transmissions in our experiment) and thus less than 12% of
the slots are wasted.

Impact of Channel Variation: In BiGroup, received symbols
of different states are discriminated according to their cluster-
ing on I-Q plane. Channel variation may change the positions
of received symbols and thus the cluster distribution. The
transmission time of a typical RFID uplink packet, however, is
as short as a few milliseconds, which is usually within channel
coherence time. The BiGroup clustering algorithm naturally
tolerates some level of channel variation, which is determined
by the Euclidean distances among cluster centroids. In future
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(a) Software defined reader

Fig. 9. The Open RFID testbed. (a) Software defined reader. (b) COTS tags.
(c) Programmable tags.

(c) Programmable tags

work, we may explore the possibility of splitting one transmis-
sion into multiple time windows during decoding to address
significant channel variations.

G. BiGroup Extension With Multiple Antennas

When the reader is equipped with a single antenna, each
received sample is represented by a complex number com-
prised of in-phase and quadrature components, denoted as
sample = [I @]. Thus, the half grouping operation is
performed on the two-dimensional I-Q plane. As a mat-
ter of fact, current commodity RFID readers (e.g., Alien
ALR-9900) typically have four antennas and each antenna
measures backscatter signals independently.

When a reader is equipped with /N antennas, a received
sample can be represented by a higher-dimensional vector
comprised of N in-phase and N quadrature components as
follows

sample = [I) Q1 Iz Q2 ... IN QN] (6)

In this case, BiGroup can be easily generalized to cluster
and decode in 2/V-dimensional space. As tag number increases
or SNR decreases, different symbol clusters may overlap with
each other, making symbol clustering more difficult and tag
decoding more error prone. For a certain tag number and SNR
level, there is a certain probability at one receiver antenna
that symbol clusters become overlapped and undistinguishable.
With more antennas, the overlapping probability for the com-
bined higher-dimensional symbol clusters decreases exponen-
tially, thus BiGroup has potential to provide stronger decoding
capability. The numerical analysis results for BiGroup with
multiple reader antennas is shown in Section IV-D.

IV. IMPLEMENTATION AND EVALUATION

We implement BiGroup on top of our Open RFID Lab
(ORL) [2] with the USRP N210 software defined radio (SDR)
to read various COTS RFID tags and programmable tags.
Figure 9 depicts the testbed. The SDR reader is connected
to two USRP RFX900 daughterboards and operates in the
900MHz band. The SDR reader samples physical layer signals
at 4MHz (commercial readers are usually capable of GHz
sampling rate). The COTS tags follow the de facto EPCglobal
C1G2 protocol [1]. The SDR reader interrogates different
types of COTS tags (AD-833, ALN-9740 ‘G’, and ALN-
9640 Squiggle tags from left to right in Figure 9(b)). We also
test with programmable RFIDs (WISP tags in Figure 9(c))
which implement the same commodity protocol. The distances
among tags are 2-30 (cm) in our experiments. The experiments
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are conducted in a crowded lab, where there are people moving
around and furniture reflecting wireless signals. The reader
sends QUERY commands and specifies the frame length f to
be 1 by setting the contention parameter @ to 0 (f = 29) [1].
Receiving such commands, the tags respond concurrently with
RN16 packets, each consisting of a preamble followed by a
16-bit random payload. The RN16 packets are encoded with
either the FMO or Miller encoding scheme as specified by
the reader in the QUERY commands. The backscatter link
frequency (BLF) is specified as 100kHz.

We evaluate BiGroup in comparison with the following

RFID concurrent transmission schemes.

o LA (linear addition) based decoding scheme: The
approach [25] recovers tag collisions assuming that tags’
channel coefficients remain static in different collision
states. It assumes the linear dependency among cluster
centroids to determine collision states and consequently
does not perform well in practical scenarios. We compare
the performance of BiGroup and the LA scheme in
decoding the programmable tags.

e Buzz: Buzz [29] requires tight synchronization among
tags so that the bit alignment can be guaranteed for
successful decoding. The channel coefficient of each
tag is individually measured, assuming that the channel
coefficients would linearly combine at the reader dur-
ing concurrent transmissions. As a result, Buzz cannot
decode COTS tags within C1G2 framework. We com-
pare BiGroup with Buzz in trace-driven simulations of
decoding ideally synchronized tags. The maximum data
rate of Buzz is specified the same as BiGroup.

e BST: In BST [11], the response delay and the bit duration
of each tag are pre-assigned by the reader. BST does not
conform to C1G2 standard either. We compare BiGroup
with BST in trace-driven simulations. We tune parameters
of BST (e.g., its signal edge detection threshold, “sen-
tinel” bits, etc.) and report its optimum performance.

A. Decoding COTS Tags

Characterizing COTS Tag Unsynchronization: We first
experiment with the ALN-9640 Squiggle COTS tags. We
randomly choose 9 tags of the same batch (labeled as tag 1—9)
and measure their response delays and bit durations. We plot
the measured ratio of starting time offset and bit duration offset
in Figure 10(a) and Figure 10(b), respectively. We see that
different tags have different response delays and bit durations,
which result in bit misalignment and non-overlapped state
transition boundaries. In particular, the response delay offset
and the bit duration offset (normalized by period) can be up
to 30% and 1% for each bit, respectively. We also observe
similar tag diversities among other tag batches. Although the
misalignment due to tag diversities was generally considered
harmful in previous schemes [4], [29], BiGroup leverages
such inherent properties to detect bit boundaries and bootstrap
bipartite grouping.

Decoding COTS Tags: We experiment with COTS tags and
illustrate the process of BiGroup decoding. Figure 11 presents
an example of decoding 2 colliding tags. BiGroup first clusters
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Fig. 11. Decoding two COTS tags using BiGroup. (a) When two tags collide
the physical samples exhibit four different clusters. (b) Received samples
transit among the four symbol clusters. (c) Separated reflection states for
the two tags.

the received samples on the I-Q plane into 4 clusters labeled in
different colors as Figure 11(a) depicts. Each cluster represents
one collision state. To better understand cluster transitions in
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time domain, we plot in Figure 11(b) the cluster label of each
symbol sample during a time period of 500us.

By combining the observed time domain state transitions
and state flippings at bit boundaries, BiGroup performs bipar-
tite grouping. As a result, cluster 3 and 4 represent “H” state of
tag 1, and cluster 1 and 2 represent its “L” state, respectively.
Similarly, BiGroup decodes tag 2 by grouping cluster 2 and 4
which represent state “H”, and cluster 1 and 3 which represent
state “L”, respectively. In Figure 11(c), we see that BiGroup
separates the individual signals for the two tags from the
collision. After the separation, each stream of “H” and “L”
states can be decoded to bits by a conventional threshold-based
decoder.

In our experiment, BiGroup is able to decode all RN16
packets replied from COTS tags to the QUERY command. One
RN16 packet includes a predefined 22-bit Miller preamble,
followed by a random 16-bit data payload which was instan-
taneously generated at the tag. While we have no ground truth
to assess the decoded random data payloads, our experiment
shows that BiGroup can correctly recover the fixed 22-bit
Miller preambles in most cases.

B. Decoding C1G2 Programmable Tags

For more detailed evaluation of BiGroup decoding perfor-
mance, we experiment with programmable passive RFID tags
that implement the commodity C1G2 protocol [1]. In particu-
lar, we generate random bits offline and load them into WISP
tags (Figure 9(c)) as RN16 data payloads that serve as ground
truths.

We compare the performance of BiGroup and LA based
decoding scheme [25] in decoding the WISP tags. We exper-
iment with 2 — 5 tags which respond concurrently to QUERY
commands. We repeat the experiment with varied number
of tags for 500 times. For each measurement, we vary the
channel conditions by manually placing the tags in different
locations. The experiment is carried out both during the
daytime with people moving around as well as in the relatively
stable settings. We evaluate two performance metrics: the
BER (Bit Error Rate) and the number of successfully decoded
packets. We measure the BER to evaluate the collision recov-
ery capability. We also measure the number of successfully
decoded packets in each concurrent transmission to evaluate
the goodput.

BER: Figure 12 plots the CDFs of BERs for different
numbers of colliding tags. In case of collisions, a recovery
scheme may decode and output one or more packets. We
compare each output packet with the transmitted packets and
record the minimum BER. The BER of undecoded packet is
set to 0.5. We measure the average BERs of all packets and
report this average.

In Figure 12, we see that BiGroup greatly outperforms
the LA based decoding scheme. When three tags transmit
concurrently, more than 70% of collisions have 0 bit errors in
BiGroup, while less than 10% have 0 bit errors in the LA based
scheme. Around 40% of cases have O bit errors in BiGroup
when four tags transmit concurrently, and around 20% have an
average BER below 0.05 in BiGroup when five tags transmit
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concurrently. In contrast, the lowest average BERs when four
and five tags collide for the LA based scheme are much
higher (>0.1 BERs for all collisions). BiGroup achieves much
lower BERs compared with the LA based scheme, because
BiGroup tolerates the variation of channel coefficients and
does not assume the linear dependency of signal combinations
in practice.

Number of Successfully Decoding: Figure 13 plots the CDFs
of successfully decoded packets of BiGroup and the LA based
scheme in each collision.

We see that BiGroup significantly outperforms the LA based
scheme, especially with more colliding tags. When two tags
collide, BiGroup decodes both for 99% of collisions, while
the LA based scheme decodes the two tags in only 70%.
When three tags collide, BiGroup decodes all three tags in
around 71% of cases, and two tags in around 22%, while the
LA based scheme decodes the same number of tags in only
11% and 55%, respectively. When four tags collide, BiGroup
decodes all four tags in around 42% of collisions, three tags
in around 33%, and two tags in around 25%, while the LA
based scheme is only able to decode at most two tags (in
around 62%). When five tags collide, BiGroup decodes all five

C. Trace-Driven Evaluation for Non-Standard Tags

We perform the trace-driven evaluation to compare BiGroup
with Buzz and BST. The collision decoding performance is
mainly influenced by the following factors: the noise level
and the level of cluster non-linear dependency influenced by
channel coefficients.

To investigate channel coefficient distributions in practice,
we first characterise the backscatter channel of multiple tags
using the SDR testbed. In particular, the WISP tags are
programmed to backscatter known preambles and payloads,
so we can directly identify the states of all the tags in each
symbol cluster. We measure how the centroids of the collided
symbol clusters are shifted away from the linear combinations
of individually backscattered symbols. We quantify based on
such shift to signal ratio (SSR) the non-linear dependency,
which is the ratio of the shift of cluster centroid to the
average signal strength. Figure 14(a) plots the distribution of
measured SSRs in all experiments. We expect a small SSR
(e.g., —16dB) if the non-linear dependency is weak, and a
big SSR (e.g., 0dB) if the non-linear dependency is strong.
According to our measurements, we see that SSR ranges from
—16dB to 5dB, with majority of SSRs (>70%) concentrated
in the range from —6dB to —2dB.

Performance Comparison: We then let the SDR reader
QUERY the programmed tags and record the traces of
backscattered signals in 1000 rounds. Following the protocol
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specifications of Buzz and BST, we synthesize the collected
signals of up to five tags and test the performance of different
protocols. We take into consideration the non-linear depen-
dency and incorporate the SSR in the tests.

In Figure 14(b), we display BERs of different decoding
schemes with varied SSRs for concurrent transmissions of four
tags. We fix the SNR to 24dB. The result suggests that the
performance of Buzz is highly related to the SSR. The BER
of Buzz significantly increases from 1073 to 0.5 when the
SSR changes from —16dB to 5dB. In contrast, the BERs of
BST and BiGroup remain comparatively stable across different
SSRs. BiGroup consistently outperforms BST by one order of
magnitude.

We further compare the decoding schemes with different
number of colliding tags and under different SNRs and plot
the results in Figure 15. SSR is fixed at —4dB. Comparing
BiGroup and Buzz, we see that Buzz cannot achieve low BER
even with high SNRs (e.g., 25 — 35dB), while the BER of
BiGroup decreases with higher SNRs and reaches 0 when the
SNR is around 25dB. Comparing Figure 15 (a) — (d), we find
that the lowest BER of Buzz increases as the number of tags
increases, suggesting more severe performance degradation
due to stronger non-linear dependency with more tags. We
notice that Buzz has a slightly lower BER than BiGroup at low
SNRs (e.g., 5 — 20dB), where the noise level is too high for
BiGroup’s clustering algorithm. The BER provided by Buzz
in such cases (e.g., 0.1 for four tags), however, cannot support
reliable transmissions.

BiGroup also consistently provides better performance com-
pared with BST. A 3 — 4dB SNR gain is achieved by BiGroup
for low BER situations. The reason is that BST measures the
distance between consecutive symbols to detect a signal edge
(bit value transition). Due to noises, such signal edges may
not be accurately captured. BiGroup only requires majority of
the bit boundaries to be identified for the purposes of bipartite
grouping, while each mis-detected signal edge in BST may
cause bit error(s). BiGroup is inherently more robust to noises.

D. Numerical Analysis for Multiple Antennas Extension

We analyze the performance of BiGroup when multiple
antennas are used at the reader. When tag number increases or
SNR decreases, symbol clusters may overlap with each other,
and decoding accuracy of BiGroup is mainly constrained by
erroneous symbol clustering. Therefore we use the accuracy
of symbol clustering to reflect the performance of BiGroup in
this section.

1579

--BST 1
==BiGroup [}

15 20 25
SNR(dB)
(d)

=+BST \
==BiGroup N,

15 20 25 30 35 5
SNR(dB)

(©

5

BER of different decoding schemes across a range of channel conditions. (a) Two tags. (b) Three tags. (c) Four tags. (d) Five tags.

10° 60;
Ee] --SNR=20dB
[0} -4SNR=25dB
B 9 4+sNR=30dB
=) g
F 10" PR
3 g
o £30
o -
5107 <20
= -
w L 0
o 10
=z
4
10 57 6 11 15 15 3 ¥ 5
No. of Antennas No. of Tags
@ (b)
Fig. 16. Multiple antennas provide BiGroup with potential to decode more

tags. (a) Multiple reader antennas decrease the error probability of symbol
clustering (tag number=6, SNR=25dB). (b) The numbers of antennas needed
to guarantee accurate symbol clustering.

At one single antenna, the probability of erroneous symbol
clustering is represented by the probability that noise level
is beyond half of the minimum distance among clusters, as
shown below,

Pyingie(Error) = P(Noise > Distypn/2) @)

On the other hand, for M antennas, as long as the symbol
clusters do not overlap at one of the antennas, symbol cluster-
ing can still be successful in the 2 M —dimensional space. Thus
the probability of erroneous symbol clustering for M antennas
is illustrated as,

Pmultiple (ETTOT) = {]Dsingl@ (ETTOT)}M (®)

We then investigate the benefits of multiple antennas in
terms of symbol clustering error probabilities. We model
the noise as AWGN (Additive White Gaussian Noise) and
use extensive simulations to find the maximized minimum
distance among cluster centroids for different colliding tag
numbers. We first calculate the error probability for different
antenna numbers when tag number is 6 and SNR is 25dB
and plot the results in Figure 16(a). We see that using more
antennas significantly reduces error probability because of
antenna diversity. We further study the number of antennas
needed to guarantee accurate symbol clustering (i.e., error
probability < 0.01, considering RFID packet length) for
different tag numbers and SNRs. Results in Figure 16(b)
show that more antennas are needed when a larger number
of tags collide and when SNR is lower. But we should also
note that continuously increasing the number of antennas may
not monotonically produce better results in practice. A large
number of antennas beyond a threshold creates a prohibitively



1580

high dimension space and sparse symbols, which may in turn
harm the clustering algorithm. The optimal number of antennas
should be carefully selected based on experiments for different
environments.

V. RELATED WORK

A variety of approaches have been proposed to enable
multiple access in RFID communications. Existing commod-
ity RFID systems typically adopt the frame slotted aloha
scheme [1] or the tree-based arbitration [16], [26]. Besides
the TDMA based approaches, FDMA/SDMA/CDMA based
approaches [18], [19], [22], [30], [32], [34] have also been
explored to avoid concurrent tag transmissions in the same
collision domain, which incurs high coordination overhead.

Recent works improve communication efficiency by sup-
porting concurrent backscatter transmissions. Buzz [29] iden-
tifies all tags and decodes tag collisions bit by bit. It assumes
the linear combination of reflecting tags’ channel coefficients
independent of coexisting tags. Buzz also requires the bit-level
synchronization among tags as well as channel measurements
which are not supported by COTS tags. The linear addition
based scheme proposed in [25] also assumes the linear depen-
dency among symbol clusters to map symbol clusters to colli-
sion states. Some designs [3], [4], [15] require the knowledge
of channel coefficients (e.g. using predefined preambles) and
stringent tag synchronization to recover collisions of up to
two concurrent tags. The scheme [9] theoretically explores
to extract tags with strong signals by correlating with known
preambles. A most recent work BST [11] detects signal
edges when distances between consecutive symbols exceed
a predefined threshold and separates signal edges of multiple
tags. BST, however, requires the tags to transmit with assigned
initial offsets and bit durations and insert known bits at specific
intervals in data packets, all of which are not supported
by COTS tags. Some other works assign orthogonal codes
to RN16 packets [13], [17] to recover collisions, which are
application specific and non-standard. Unlike all these works,
BiGroup aims to recover collisions without modifying COTS
tags and provide general decoding benefits within EPC C1G2
framework. To the best of our knowledge, BiGroup is the first
effort made to target such a goal.

Some other recent works explore using higher order mod-
ulation schemes to improve single tag transmission rate [5],
[27], [28], which provides another way of improving RFID
communication throughput. Nevertheless, higher order modu-
lations require more complex tag circuits, higher power supply,
and are not compatible with existing EPC standards.

It is demonstrated that battery-free devices (similar to COTS
tags) can harvest energy and communicate by backscattering
ambient RF signals from TV, cellular [20], and WiFi stations
[14]. Moreover, backscatter networks can benefit from multi-
antenna designs [24], advanced coding mechanisms [24] and
full-duplex communications [21]. BiGroup is motivated to
enable concurrent transmissions for backscatter devices and
orthogonal to those works.

VI. CONCLUSION

BiGroup enables parallel transmissions and decoding with-
out any extension to COTS RFID tags. To achieve this,
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BiGroup exploits the RFID upper-layer communication pat-
terns and leverages bipartite grouping to substantially improve
the performance of physical layer collision recovery. BiGroup
does not require modifications to C1G2 logics on COTS tags,
channel measurements, or stringent time synchronization. We
experiment on the software defined testbed and the results
show that BiGroup significantly improves performance of
COTS RFID systems in comparison with other alternative
schemes and directly benefits the C1G2 framework. Future
work includes further study on scalability of our scheme as
well as hardware speedup for better time efficiency.
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