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Abstract— This paper presents Pando, a completely contention-
free data dissemination protocol for wireless sensor networks.
Pando encodes data by Fountain codes and disseminates the
rateless stream of encoded packets along the fast and parallel
pipelines built on constructive interference and channel diversity.
Since every encoded packet contains innovative information to the
original data object, Pando avoids duplicate retransmissions and
fully exploits the wireless broadcast effect in data dissemination.
To transform Pando into a practical system, we devise several
techniques, including the integration of Fountain coding with
the timing-critical operations of constructive interference and
pipelining, a silence-based feedback scheme for the one-way
pipelined dissemination, and packet-level adaptation of network
density and channel diversity. Based on these techniques, Pando
can accomplish data dissemination entirely over the fast and
parallel pipelines. We implement Pando in Contiki and for TelosB
motes. We evaluate Pando with various settings on two large-scale
open test beds, Indriya and Flocklab. Our experimental results
show that Pando can provide 100% reliability and reduce the
dissemination time of state of the art by 3.5x.

Index Terms— Wireless sensor networks, data dissemination,
fountain codes, constructive interference.

I. INTRODUCTION

ATA dissemination reliably diffuses a bulk of data to

all the nodes in a wireless sensor network. It pro-
vides a fundamental service for many applications, like on-
the-air reprogramming [26] and application updating [2].
One important metric of data dissemination for these appli-
cations is reliability, which is measured by the proportion of
the data received at each node over the data to be disseminated.
To provide high reliability, traditional data dissemination pro-
tocols [20], [21], [24], [27], [28], [36], [39] flood data pack-
ets over multiple hops with contention-based access control
protocols like CSMA/CA, which suffers long backoff delay
and severely limits the channel spatial reuse. Recent advance

Manuscript received September 24, 2015; revised March 29, 2016 and
August 4, 2016; accepted September 1, 2016; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor D. Y. Eun. Date of publication
November 4, 2016; date of current version April 14, 2017. This work was
supported in part by the Singapore MOE AcRF Tier 1 under Grant RG17/13 2,
in part by the MOE AcRF Tier 2 under Grant MOE2012-T2-1-070, and in part
by the NTU Nanyang Assistant Professorship under Grant M4080738.020.
A preliminary version of this work was published in the Proceedings of
ACM SenSys 2015 [13].

The authors are with the School of Computer Engineering, Nanyang
Technological University, Singapore 639798 (e-mail: duwan@ntu.edu.sg;
cjansen@ntu.edu.sg; huanle.zhang@ntu.edu.sg; limo@ntu.edu.sg).

Digital Object Identifier 10.1109/TNET.2016.2614707

in physical-layer cooperative broadcasting [41] allows mul-
tiple synchronized transmissions constructively add on each
other. Multiple senders can thus transmit the same packet
simultaneously and the constructively interfered transmissions
can be successfully decoded at the receivers. Glossy [16]
builds upon this principle and experimentally demonstrates
that constructive interference can remove unnecessary channel
contention and improve the flooding performance. Another
work, PIP [38], builds a pipeline that enables adjacent links
in a multi-hop path to operate concurrently with multiple
channels. Based on Glossy and PIP, Splash [6] enables data
dissemination over the fast and parallel pipelines by combining
constructive interference and pipelining. It is based on a tree
topology of sensor networks. The tree has multiple layers
from the source to the lowest layers. Different layers have
multiple sensor nodes. The fast and parallel pipelines enables
the multiple nodes at the same layer and the nodes at different
layers to transmit at the same time, thereby significantly
improving the channel utilization.

The combination of constructive interference and pipelining,
however, represents a challenge to the reliability of data
dissemination. Due to the varied quality of different channels
at different nodes [4], [49] and the unreliability of constructive
interference when the number of concurrent transmitters or
the packet size is large [6], [47], the packet reception rate at
different nodes in a network may vary significantly. As a result,
the same data object needs to be disseminated in multiple
rounds to recover specific packets missing at few nodes.
To achieve high reliability, Splash requires three rounds
of data dissemination and employs contention-based local
recovery after three rounds of pipelined data dissemina-
tion. Splash suffers from the long tail problem, where
the dissemination time for achieving 100% reliability is
orders of magnitude longer than the time needed for 80%
reliability.

This paper presents Pando, a completely contention-free
data dissemination protocol, which tackles the long tail prob-
lem in data dissemination of constructive interference and
pipelining. To accomplish the dissemination entirely over
the contention-free pipelines, Pando introduces randomness
in the disseminated packets. It encodes data with Fountain
codes [35] and continuously pumps the rateless stream of
encoded data into the network. Since every encoded packet
contains innovative information for the original data, receivers
become insensitive to the loss of individual packets. Pando
avoids the overhead of re-disseminating the entire data object
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in rounds. The dissemination process is terminated once all
nodes in the network successfully recover the original data by
accumulating sufficient encoded packets.

It is challenging to disseminate Fountain-encoded packet
over the contention-free pipelines for at least two reasons.
First, the pipelined dissemination cannot be interrupted or
suspended by Fountain coding. The encoding and decoding of
packets need to be integrated into the timing-critical operations
of constructive interference and pipelining. Glossy [16] must
limit the time offset of concurrent transmissions within 0.5 s
to meet the synchronization requirement for generating con-
structive interference with high probability. Incautious design
will lead to uncertainty in data transmission, which may
impair the synchronization of constructive interference and
paralyze the pipelined data dissemination. Second, a stop
condition has to be set and conveyed to the source. Data
dissemination should be terminated once all nodes recover the
original data object. The source stops pumping packets into
the network and the relaying nodes stop forwarding packets to
their lower layer. In the pipelined data dissemination, however,
all nodes are either receiving packets from their upper layer
or relaying the received packets to their lower layer all the
time. No explicit feedback channels can be used to convey
the acknowledgements from all nodes to the source.

By tackling the above challenges, we make the following
three contributions.

1. We design a radio-driven coding scheme where the com-
putation of Fountain encoding and decoding is accommodated
into the intervals between the timing-critical operations of
highly-synchronized constructive interference and pipelining.
Fountain coding and transmission controls are tailored to
guarantee a deterministic software delay. By parallelizing data
coding and transmissions, we also avoid adding any coding
latency in dissemination time.

2. We devise a novel feedback approach in the one-way
pipelines to timely acknowledge the successful recovery of
the data object and stop the dissemination process. We lever-
age the silence of channels to aggregate and convey the
acknowledgements from the leaf nodes to the source. The
threshold of channel silence is adapted dynamically according
to the ambient noise and interference. The feedback process
is carefully integrated with the pipelined data dissemination to
guarantee the reliability of data dissemination. Packet loss is
also considered to eliminate its impact on data dissemination
and feedback delivery.

3. We apply packet-level adaptation of channel diversity
and network density to boost the dissemination efficiency.
By adapting the channel allocation and the number of concur-
rent transmitters for every packet, all nodes experience cycled
channel assignments and better wireless diversity. This avoids
few poorly-performing nodes to hinder the entire pipelines.
To incorporate the adaptation operations into the feedback
process and pipelined data dissemination, we design a set
of techniques, such as scheduled silence of leaf nodes, fast
channel switching and failure recovery.

We implement Pando in Contiki and evaluate its perfor-
mance on Indriya [5] and Flocklab [29], two large-scale
testbeds for wireless sensor networks. In our experiments,
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Fig. 1. The pipelined tree built on constructive interference and pipelining.
‘P1” and ‘P2’ represent the first packet and the second packet respectively.

Pando is able to successfully disseminate a data file
of 32 kBytes over a network of up to 6 hops within 6 seconds.
We compare Pando with state-of-the-art data dissemination
protocols, Splash [6] and Deluge [21], over various network
configurations. Our experimental results suggest that Pando
reduces the average dissemination time of Splash by 3.5x,
corresponding to a reduction factor of 32.7x over Deluge.

II. MOTIVATION

The goal of data dissemination is to deliver a bulk of data
(e.g., an executable file or an application updating profile) to
all the nodes in a network. Any packet loss may make the
received data useless. Reliability and dissemination time are
thus two key performance metrics for data dissemination.
To achieve high reliability, previous protocols, like
Deluge [21] and ReXOR [7], transmit the data object hop
by hop with explicit acknowledgements and retransmissions.
The network resources are significantly underutilized in such
a way due to high multiple access overhead and low spatial
reuse. By leveraging constructive interference, Glossy [16]
allows multiple nodes to simultaneously transmit one packet
without backoff or spatial multiplexing. The spatial reuse
is further improved by enabling multiple layers transmitting
concurrently on distinct channels [38]. Therefore, the data
dissemination time could be essentially reduced by combining
constructive interference and pipelining [6].

In this section, we experimentally study the data dissemina-
tion enabled by constructive interference and pipelining, and
reveal its long-tail problem. We also demonstrate the gain and
challenges of incorporating Fountain coding into the pipelined
data dissemination.

A. Constructive Interference and Pipelining

Based on constructive interference and pipelining, a tree
topology is built, as depicted in Figure 1. One packet is
forwarded simultaneously by all nodes at a same layer which
interfere constructively with each other; meanwhile, multiple
packets can be transmitted concurrently by different layers that
make use of distinct channels. In each time slot (corresponding
to the transmission time of one packet), all received packets
are disseminated one-hop further from upper layers (closer to
the source) to lower layers. For the nodes at the same layer,
we refer the nodes at their upper layer as their parent nodes
and the nodes at their lower layer as their child nodes.

In the pipelined tree, the channel quality varies at different
nodes [4], [49] and constructive interference becomes unre-
liable if the number of concurrent transmitters is large [47].
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The packet reception performance of every node after each round in Splash. One black point represents that the packet is correctly received by the

relative node. One white point refers to a packet loss. Due to the space limitation, only the first 100 packets (instead of all 500 packets) in each round are
presented. (a) First round (85% reliability). (b) Second round (96.8% reliability). (c) Third round (99% reliability).

As a result, some packets may not be received by several
nodes, and the data dissemination is not reliable. To the
best of our knowledge, Splash [6] is the latest data dissem-
ination protocol that combines constructive interference and
pipelining. It disseminates the data object multiple times and
relies on a local recovery phase to achieve high reliability.
In the first two rounds, it disseminates the same data object
twice. In the third round, 500 XOR-encoded packets are
disseminated. Every encoded packet is the linear combination
of 20 randomly-selected original packets. When a node
receives an encoded packet, it can recover a missing original
packet only if it has received 19 original packets which were
used to generate that encoded packet. After the dissemination
over the contention-free pipelines, a local recovery phase
is performed. Nodes request the missing packets from their
neighbors using CSMA/CA-based multiple access.

B. The Long-Tail Problem

We conducted a series of experiments with Splash [6]
on Indriya [5], the same testbed used in [6]. A data object
of 32 kBytes (i.e., 500 packets of 64-byte payload) is dissem-
inated in each experiment. Figure 2 depicts a snapshot example
of the packet reception for every node after each round.
Figure 2 demonstrates that the network reliability is
high (85%) after the first round although the packet recep-
tion rate varies for different nodes. The network reliability
is calculated as the average reliability of all nodes in the
network. From Figure 2 to Figure 2, the second round only
increases the reliability from 85% to 96.8%. It is inefficient
to repeatedly disseminate the whole data object to all nodes.
On average, for one node, 76.2% of its received packets are
duplicate. Figure 2 shows that the reliability improvement of
XOR coding is limited (from 96.8% to 99%). 97.8% of the
XOR packets cannot contribute to the recovery of original
data. The empirical design of Splash (e.g., 500 XOR-encoded
packets) deviates from the best setting which requires an
optimal number of XOR packets according to the reception
of the first two rounds.

Figure 3 shows that the overhead of XOR coding in Splash
is high and the long tail problem is severe. The XOR encoding
and decoding in Splash (i.e., around 18 seconds) require a
large amount of flash memory access and XOR operations
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Fig. 3. Network reliability achieved by Splash at some specific time points.
Before data dissemination, Splash first needs to generate 500 XOR-encoded
packets for the third round. The end of XOR encoding is labeled by a square
marker. The end of 3 dissemination rounds is indicated by circle markers.
The local recovery phase is from the end of the third round till the last node
correctly receives the data object.

among the selected packets (i.e., 915 us for encoding one
packet). To generate a XOR-encoded packet, the source needs
to read 20 original packets from the flash memory. In the third
dissemination round, all nodes write the received packets into
the flash memory. At the end of this round, they read each
encoded packet and the relative original packets from the flash
memory for decoding. In addition, due to the long tail problem,
the total dissemination time of Splash for achieving 100%
reliability is more than 10x larger than the time for achieving
75.9% reliability in the first round. Two obvious reasons can be
found in Figure 3. The dissemination in the second and third
rounds has limited contributions to the reliability progress.
The contention-based local recovery (i.e., around 13 seconds)
is time-consuming. As reported in [6], the local recovery
phase is much longer than the total transmission time of three
dissemination rounds.

C. Fountain Coding in Data Dissemination

To address the long-tail problem in data dissemination, we
use Fountain codes to introduce randomness in the dissemi-
nated packets. We disseminate the Fountain-encoded packets
along the fast and parallel pipelines. Every encoded packet
is a linear combination of several randomly-selected original
packets. Regardless of which packets one node has received,
every encoded packet provides innovative information to the
recovery of the original data. When a node accumulates
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sufficient amount of encoded packets, it recovers the original
data by simple linear determinant calculation.

By incorporating Fountain coding into the pipelined data
dissemination, duplicate retransmissions are avoided and
the network capacity can be asymptotically approached as
rateless-encoded packets are disseminated over the fast and
parallel pipelines. For example, if we replace the data packets
in the same trace of the above experiment (Section II-B)
with Fountain-encoded packets, we can achieve 100% network
reliability by just disseminating 1132 encoded packets, thereby
reducing the dissemination time of Splash by 7.2 x.

Although Fountain codes have been implemented in
some previous data dissemination protocols [20], [39], they
all use Fountain codes to improve the performance of
single-hop transmissions. The integration of Fountain cod-
ing with pipelined data dissemination is challenging. The
highly-synchronized operations of constructive interference
and pipelining can be easily paralyzed by incautious design of
Fountain coding. During the dissemination, all nodes (except
the source) are either receiving or transmitting on the down-
links. They do not have any time to decode a packet or send
an acknowledgement to their parent node.

D. Simple Integration Does Not Work

A simple way to enable Fountain coding in pipelined data
dissemination is to let the source first disseminate a certain
number of encoded packets and all nodes begin to decode after
the data dissemination. To achieve 100% reliability, however,
a local recovery phase has to be performed or the source must
know the decoding result of every node. It is troublesome to
collect the feedback from all nodes using CSMA/CA-based
multiple access and multi-hop routing. After the feedback
collection, the source has to resume the data dissemination
if any nodes have not received sufficient packets. Such a loop
may have to be performed multiple times. The above simple
solution cannot eliminate the overhead of multiple access and
defies the goal of constructive interference and pipelining.
Moreover, the decoding time impose high overhead to the total
dissemination time.

Pando is the first practical work which employs Fountain
codes for data dissemination with constructive interference and
pipelining in large-scale sensor networks. Pando accomplish
the encoding and decoding of Fountain code while the data
dissemination is ongoing. Nodes perform decoding in par-
allel with transmissions. Furthermore, Pando stops the data
dissemination only if all nodes in the network have success-
fully recover the original data. The entire data dissemination
process is completed over the fast pipelines without any
pause.

III. PANDO

Pando works as a service middleware in the protocol stack
to provide fast and reliable data dissemination. A wake-up
protocol (details in Section IV) is developed to trigger data
dissemination. During the data dissemination process, the
general network activities (e.g., data collection or duty cycling)
are temporarily suspended, and the sensor mote resources
(e.g., CPU and radio) are in active mode. All nodes resume

the previous network activities (e.g., data collection or duty
cycling), when they complete the data dissemination. Since
Pando’s dissemination is fast (6 seconds to disseminate a
file of 32 kBytes across a network of 31 nodes), Pando has
negligible impact on other network activities. Compared with
existing data dissemination protocols that use much longer
time for data dissemination, Pando essentially reduces the
energy consumption of individual nodes and prolongs the
network lifetime.

We execute Pando while a conventional data collection
protocols (e.g., CTP [18] for TinyOS and Contiki Collect [23]
for Contiki) is running. Pando builds the pipelined tree based
on the topology information provided by Contiki Collect.
Every node only needs to know its hop count, and the ID
of its parent node and its child nodes. Since data collection is
a general application of sensor networks, a hierarchical tree is
usually maintained throughout the network lifetime. Therefore,
the construction of pipelined tree imposes negligible overhead
on Pando’s data dissemination.

In this section, after a preliminary analysis of Fountain
codes, we introduce three techniques that are used to make
Pando into a practical system. The Fountain coding in Pando
is radio-driven. The coding computation is accommodated into
the CPU idle intervals of transmission operations; at the same
time, the integration is carefully tailored to guarantee the strict
synchronization of constructive interference and pipelining
(Section ITI-B). A silence-based feedback scheme is developed
for the one-way pipelines to promptly terminate the source and
complete the dissemination process (Section III-C). Packet-
level adaptation of network density and channel diversity is
adopted to boost the performance of constructive interference
and pipelining (Section III-D).

A. Preliminaries on Fountain Codes

Fountain codes, like Luby Transform (LT) codes [34] and
random linear codes [35], encode a data object of k pack-
ets, {Xy, Xo, ---, Xy}, into a stream of encoded packets,
{Y7, Y5, ---}. One encoded packet is generated by linearly
combining a certain number of randomly-selected original
packets. Once a node correctly receives m (m>k) encoded
packets, it can recover the original data using the Gaussian
Elimination (GE) or Belief Propagation (BP) decoding algo-
rithm. The coding efficiency is calculated as k/m. A compre-
hensive overview of Fountain codes can be found in [35].

Pando is not limited to any specific Fountain codes. In our
current implementation, we choose LT codes in considera-
tion of its succinct design (i.e., low computation overhead).
Although Random Linear (RL) codes and Raptor codes
may provide higher coding efficiency, they involve inten-
sive computation. RL code generates encoded packets using
modular multiplication in Galois Field (GF) 28 and Raptor
code applies a fixed error correction code before LT coding.
In LT codes, every encoded packet is calculated by performing
XOR operations of d packets that are randomly chosen from
k original packets, where d = 1,2,...,k. For an encoded
packet Y;,1 < i < oo, the degree d is determined by a
distribution p(d) = P4, where P, is the probability that d
original packets are selected to encode Y;.
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Although the BP algorithm is more computationally-light,
we use the GE algorithm, because the latter provides higher
coding efficiency, i.e., it can successfully decode the received
packets as long as the coefficient matrix of the received packets
has full rank. The computation of GE is decomposed into
small pieces and performed in parallel with data transmissions.
The default robust Soliton degree distribution produces low
coding efficiency for the applications of sensor networks
with small number of packets. We implement an optimized
degree distribution proposed in SYNAPSE+-+ [39], which
produces high coding efficiency for small data objects. Like
in our previous work [9], we use a best seed for the random
number generator that produces the lowest decoding overhead.
Since the coefficient matrix can be generated beforehand, we
eliminate the time consumption of random number generation
in the decoding process.

B. Radio-Driven Coding Scheme

We perform the encoding and decoding of LT codes along
with the timing-critical operations of highly-synchronized
constructive interference and pipelining. Since the microcon-
troller is mostly in idle mode while the radio is receiving
or transmitting, the microcontroller can execute the coding
computation in parallel with the transmissions performed by
the radio hardware. The goal of our design is to find the
largest idle intervals of the microcontroller for Fountain cod-
ing, under the precondition of controlling the synchronization
offset between the concurrent transmissions of constructive
interference within 0.5 us. Thus, we need to guarantee that
the generated idle CPU intervals are constant and the coding
computation occupies deterministic time.

Constant Intervals of Idle CPU: We generate two large
constant idle intervals in the operations of constructive inter-
ference and pipelining based on two observations. First, the
time to read/write one byte from/into the radio through the
Serial Peripheral Interface (SPI) bus (e.g., 5.75 us for gen-
eral low-power microcontrollers) is much shorter than the
latency of transmitting/receiving one byte by the radio hard-
ware (i.e., 32 ps for IEEE 802.15.4-compliant transceivers).
Second, although the operations of constructive interference
and pipelining are timing-critical, they only need to exe-
cute a few CPU commands at some important time points,
e.g., sending commands to set the radio to the right state when
an interruption is received. Therefore, after reading/writing one
packet from/into the radio and executing the commands, the
microcontroller goes into idle mode for a long time that can
be used for Fountain encoding and decoding.

We design Pando on top of the flooding protocol in
Glossy [16] and the pipelining of PIP [38]. In Glossy, hardware
interrupts are used to implicitly synchronize the concurrent
transmissions. When multiple nodes receive a packet simulta-
neously, they detect the interrupt for the end of the reception
at the same time. Based on the interrupt, their microcontrollers
immediately set their radios to TX mode and write the data
into the TX buffer of the radios. They then enter idle mode
till the end of the transmission. After the transmission, the
microcontrollers also detect an interrupt and set the radios to
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RX mode to receive the next incoming packet. They go into
idle mode for a long duration before the end of the reception.
Since the transmission time of one packet and the operations
of constructive interference are predefined, the idle intervals
are constant for every packet transmission.

Figure 4 presents the key timeline of Pando. When the
microcontroller receives an interrupt at the end of a trans-
mission (the SFD pin is set to low), it immediately sets the
radio to RX mode by sending two commands (i.e., channel
setting and RXON, command 1 and 2 in Figure 4) to the
radio. After calibration (192 us), the node receives the first
two bytes (Glossy header for synchronization) of a packet.
Instead of reading the following bytes one by one as Glossy, it
begins to decode the previously-received encoded packet for a
certain duration (e.g., 1688 s in our implementation). It then
resumes reading the received data from the radio and switches
to waiting state during the guard interval. By detecting an
interrupt for the end of a packet reception (the SFD pin is
set to low), the microcontroller sets the sending channel and
sends a TXON command (command 4 in Figure 4). After that,
it reads the last eight bytes of the received packet from the
RX buffer of the radio and writes the whole received packet to
the TX buffer of the radio. Then, the microcontroller is able to
perform Fountain coding before the radio begins to transmit
the last eight bytes.

To make sure that the coding computation in the constant
idle interval and the following hardware interrupt do not
impact each other, a guard interval, corresponding to the
transmission time of 8 bytes, is added before the end of each
interval. A timer is set at the beginning of each idle interval.
When it expires, the coding procedure saves the decoding
context and resumes its operation in the next idle interval.

Deterministic Coding Time: To be safely inserted into the
constant idle intervals, the coding computation should be
decomposable and each decomposed piece should occupy
deterministic time. We begin to decode once two encoded
packets are received. New received packets can be added into
the decoding process incrementally. Upon receiving a packet
from its parent nodes, a node has two time slots to decode that
packet before the next packet is received. In these two slots,
the node transmits that packet to its child nodes and receives
the new packet from its parent nodes respectively. During two
time slots, the microcontroller tries to complete the decoding
of the received packet in its idle intervals.

The Accumulative Gaussian Elimination (AGE) algo-
rithm [9] is used for incremental decoding. Although the BP
algorithm is less computationally expensive, AGE provides
higher coding efficiency (e.g., a coding efficiency of 89% for a
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data object of 16 original packets). AGE transforms the top-left
square submatrix of the coefficient matrix into an identity
matrix when few packets are received. As new packets are
received, AGE extends the submatrix gradually. The original
data is recovered when the size of the submatrix becomes
equal to the number of original packets.

At the end of each idle interval, if the decoding of the
last received packet is not finished, the decoding algorithm
saves the context by recoding the intermediate variables and
some decoding results, including the size of the submatrix, the
coefficient matrix and the calculated results of data packets.
When the next idle interval begins, the decoding process
is resumed. Therefore, the decoding computation occupies
deterministic time which ends before the guard interval.
In our implementation, the context saving costs at most 64 s,
which is much smaller than the guard interval (256 s for the
IEEE 802.15.4 standard).

The encoding processing can also be performed incremen-
tally. The computation of encoding one packet is much less
than the decoding complexity. The source is able to generate
one encoded packet every two time slots.

Results: We have implemented the radio-driven coding
scheme in Contiki for TelosB sensor motes, a typical sensor
mote type that has been widely used in current sensor network
deployments. A TelosB sensor mote includes a TI CC2420
radio which supports the IEEE 802.15.4 standard. The packet
size in Pando is set to 73 bytes, including 64-byte payload,
7-byte MAC header and 2-byte footer. Except the 8-byte guard
interval, the transmission time of the first 65 bytes is 2080 ws.
It only takes 392 us to read these bytes from the radio into the
microcontroller via the SPI bus. Therefore, the microcontroller
has 1688 us for decoding during the reception of one packet.
In the same principle, the microcontroller has a similar idle
interval when the radio is transmitting.

The radio-driven coding scheme is a general solution to
enable Fountain encoding and decoding in pipelined data
dissemination. Pando has no special requirements on the
underlying hardware and can be implemented on any hardware
platforms that support the implementation of constructive
interference in Glossy [16]. Glossy successfully demonstrated
the feasibility of realizing constructive interference on IEEE
802.15.4-compliant hardware platforms. Glossy can also be
easily ported to other radio platforms, like the ones feature a
RAM for packet buffering.

C. Silence-Based Feedback Scheme

As the source continuously pumps the Fountain-encoded
packets into the network, Pando approaches 100% reliability
automatically over the fast and parallel pipelines. Based on
the radio-driven coding approach, all nodes can successfully
decode the received packets when they are disseminating data
packets. To promptly terminate the source and complete the
dissemination process, every node needs to send an acknowl-
edgement to the source when it correctly recovers the original
data object. In the pipelined data dissemination, however,
nodes are either receiving new packets from their parent
nodes or relaying the received packets to their child nodes.
The acknowledgement transmission of one node should not
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Fig. 5. Dissemination process of a 16-packet data object in Pando. ‘T1’ refers
to the first TX slot. ‘R1’ represents the first RX slot. The arrow indicates the
signal transmission direction.

Layer 3

impact its role as a forwarder or the synchronized transmis-
sions of other nodes. A feedback scheme is needed to convey
the acknowledgement of every node to the source during the
data dissemination process.

A silence-based feedback scheme is devised for the one-way
parallel pipelines. With this feedback scheme, the acknowl-
edgement of every node is delivered from the lower layers,
merged at the relay node, and finally reaches the source. When
a node succeeds in decoding, it can generate the Fountain
encoded packets by itself using the recovered packets and
continue transmitting the encoded packets to its child nodes
without receiving new packets from its parent nodes. The
successful nodes can thus monitor the transmission of their
child nodes in the RX slots. In addition, the nodes at upper
layers are likely to recover the original data earlier than the
nodes at lower layers, since all packets are forwarded from
the source to the lower layers. Therefore, the nodes at upper
layers are likely to be ready for detecting the feedback before
their child nodes succeed in decoding.

In Pando, a leaf node stops transmitting when it successfully
recovers the original data. Its parent nodes (i.e., relay nodes)
can detect such silence by measuring the Received Signal
Strength Indicator (RSSI) value on the sending channel of
that leaf node. A relay node terminates transmitting, when
all its child nodes become silent, corresponding to a RSSI
value lower than a threshold (RS SIipreshoid)- The silence of
a relay node indicates that both itself and its child nodes have
successfully recovered the original data object. In such a way,
the acknowledgements from all child nodes are aggregated at
that relay node. The fused feedback can be further conveyed
to the source across the network.

Loss of Synchronization: In our experiments using the
above feedback scheme, some nodes stop working during
dissemination. It is because the transmissions are always
triggered by the lower layer and the time offset among the
concurrent transmissions increases. We solve this problem
by requiring the relay nodes to synchronize back with their
parent nodes periodically. Since the dissemination is triggered
from the source, the downlink packets have more precise
synchronization information and are used to calibrate the relay
nodes. In our current implementation, nodes listen to the
feedback channel only in the odd RX slots.

As an example, Figure 5 demonstrates the dissemination
process of a 16-packet data object in Pando. The encoded
packets are disseminated from the source to the other nodes
layer by layer. Every node needs 17 encoded packets (one extra
packet is the coding overhead) to recover the original data.
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In this example, we assume no packet loss occurs. All nodes
correctly recover the original data object when the 17th packet
is received. When the leaf nodes at the third layer receive the
17th packet, after two time slots, they succeed in decoding and
stop transmitting. The relay nodes at the second layer detect
the channel silence in their 19th RX slot and terminate their
dissemination. The fused feedback of silence is captured by the
nodes at the first layer in their 21st RX slot and finally reaches
the source. The whole dissemination process is terminated
after the 21st RX slot of the source. Figure 5 shows that the
silenced-based feedback scheme is efficient. Along the path,
the relay nodes only need 1 or 3 slots to forward the aggregated
feedback to their parent nodes. In this three-hop example, five
slots (13.6 ms) are sufficient for the feedback aggregation and
delivery after the last leaf node succeeds in decoding.

False Negative of Channel Silence: Due to ambient noise
or interference from nearby devices using the same frequency
band, a node may not be able to detect the channel silence,
when all its child nodes succeed in decoding and stop trans-
mitting. To eliminate the false negative of channel silence,
we dynamically adapt the RSSI threshold of channel silence
(RSSIipreshoid) according to the noise and interference con-
dition. Generally, RSSIipresholq must be larger than the
instant noise level. Between the wake-up protocol and the
data dissemination, we leave 10 time slots, during which all
nodes measure the average RSSI of free channels (denoted as
RSS1gience). During data dissemination, when a node suc-
cessfully receives a packet, it measures the channel RSSI and
updates the RSSI value of successful packet reception (denoted
as RSSI,.;). In our experiments on two large-scale testbeds
deployed in both indoor and outdoor environments, RSSI,,
is always larger than RSSTgjience- We set RSSIipreshold aS
(RSSIsitence + RSSI,;)/2. If some noise or interference
appears, RSS1I,, increases and RSSI;preshold becomes thus
large. When the child nodes are not transmitting, with such a
high RSSIijresholds the channel is measured as silent even in
the appearance of noise or interference.

False Positive of Channel Silence: When a node fails
to receive a packet, it cannot forward that packet. Its par-
ent node may interpret this silence as successful decoding.
To filter out such false silence, every node only infers that
all its child nodes have completed the reception when M
consecutive silent slots are detected. In practical, M is small
based on three facts. First, even if a node cannot transmit,
its parent node is likely to detect a high RSSI by the signal
from the other child nodes at the same layer. Second, it is rare
that a node cannot receive the packet from its parent node
consecutively, especially when our packet-level adaptation of
network density and channel allocation is applied. Third,
RS STipreshola cannot be too high to cause the false positive
of channel silence, as it cannot be larger than RSSI.z,
which is measured when the child nodes are transmitting.
In our implementation, M is set to 3, which can filter out
all false silences in a large-scale sensor network that is
densely deployed in a building. We will show in Section V
that the overhead of the feedback process is small com-
pared with the significant improvement of data dissemination
efficiency.
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D. Adaptation of Channel Allocation and Network Density

In pipelined data dissemination, some nodes may have poor
packet reception due to bad channel quality or unreliable
constructive interference. Some channels may be lossy at some
node locations because of ambient noise or interference from
other nodes or devices. The bad channel can be replaced
by exchanging the assigned channel among nodes. On the
other hand, constructive interference may not work well at
some nodes as the synchronization offset is high. The perfor-
mance of these nodes can be improved by changing the set
of concurrent transmitters, since constructive interference is
likely to be strong for a small number of concurrent trans-
mitters [47] and the capture effect occurs at some locations
of concurrent transmitters [16]. With capture effect, a radio is
able to receive one signal despite the interference from other
transmitters, when the signal is stronger and arrives earlier
than the interference [25]. Splash [6] changes the channel
allocation and network density after each dissemination round.
Such round-level adaptation, however, cannot effectively adapt
to the channel variations. Few poorly-performing nodes may
hinder the entire pipelines for a whole round. Moreover,
every node can only experience three different channels for
transmission or reception at most in the three dissemination
rounds respectively.

Pando enables packet-level adaptation of channel allocation
and network density. Pando allocates every packet with a
specific channel and changes the number of concurrent trans-
mitters for every packet transmission. Nodes set their RX/TX
channel according to the packets they are going to receive
or transmit. Packet-level adaptation can only be enabled in
the data dissemination of Fountain-encoded packets. As the
encoded packets are independent to each other, the loss of an
individual packet caused by unreliable constructive interfer-
ence or bad channel at some nodes can be immediately com-
pensated by the following packets disseminated with different
channels and network densities. Compared with round-level
adaptation, Pando avoids that some poorly-performing nodes
hinder the dissemination process for a long time. Moreover,
every node circularly experiences all available channels which
fully exploits the wireless diversity.

A set of techniques are designed to incorporate the adap-
tation operations into the pipelined data dissemination and
the silence-based feedback process. In order not to impact
the synchronized transmissions of constructive interference
and pipelining, channel switching is divided into two steps,
i.e., calculating which channel to use for the next packet and
setting the channel in the radio. The first step is executed in the
idle interval of the microcontroller and the last step introduces
constant software delay. A recovery mechanism is adopted to
address the failure caused by packet losses. The transmissions
of leaf nodes are scheduled according to the feedback scheme.

Channel Allocation: Figure 6 presents the data dissem-
ination process of packet-level channel allocation. Every
packet is assigned with a unique channel. Four channels
(i.e., Channel 15, 20, 25, 26 in the IEEE 802.15.4 standard)
that experience light link correlations [4] are used circularly.
At the beginning, all nodes in the network are set to a
default channel to receive the first packet. After forwarding
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Fig. 6. Packet-level channel allocation. ‘P1’ represents the first disseminated
packet. ‘C1’ indicates the first channel. From slot 1 to slot 2, all packets in
the network are forwarded one hop further by the nodes of different layers
with distinct channels.

the received packet to their child nodes, they immediately
switch to the channel allocated for the next packet. When
the relay nodes are forwarding packets, the source transmits
a new packet. The minimum distance between two packets
using a same channel is at least eight hops, which are large
enough to avoid the intra-path interference in typical sensor
networks [38].

Channel switching is performed at the end of each trans-
mission. To ensure that it produces deterministic software
delay, as shown in Figure 4, channel switching is enabled by
sending two commands (i.e., channel setting and RXON) to
the radio immediately when the SFD interrupt for the end of
transmission is detected. The channel of the next packet is
calculated according to the slot sequence. The computation
is short (addition of two integers) and performed before the
microcontroller goes to waiting state during the guard interval.
It does not cause any software delay to channel switching.

If a node misses a packet because the signal is not detected
or the CRC checking fails, it stays at the same channel and
tries to overhear that packet transmitted by the other nodes
at the same layer. Before the overhearing, the node starts a
RX timer to record a time slot. If the overhearing fails, it
can still switch the channel to the new coming packet from
the parent nodes in time. When multiple packets are missing
consecutively, the node is also able to set to the right channel
by counting the slot sequence using the RX timer. The slot
sequence is calibrated frequently when a packet is received.
The racing problem occurs if a node begins to receive after
its parent nodes transmit. Such misalignment becomes worse
as more time slots pass. To solve the racing problem, the
RX timer is set slightly shorter than a time slot. In our
implementation, nodes switch to the next channel 50 s earlier
than the start time of the next transmission.

Network Density: In Pando, although leaf nodes do not
have any child nodes, they transmit the received packets to
enable the overhearing of the nodes at the same layer. The
transmissions of leaf nodes do not impose any overhead to
the data dissemination time, since they use a unique channel
and happen at the same time with other transmissions.

To adapt the network density at packet level, the leaf
nodes transmit a received packet only when the sequence
number of that packet is even. For the received packets
with odd sequence number, the leaf nodes do not transmit
them. Because more than 50% of nodes in a data collection
tree are leaf nodes [6], disabling the transmissions of leaf
nodes for odd packets can significantly reduce the number

of concurrent transmitters. In addition, if a node does not
receive an even packet correctly, it does not transmit either.
Since the set of successful receivers varies for each packet, the
set of concurrent transmitters also changes for the following
transmission of that packet. Therefore, the network density
is altered for every packet and the reliability of constructive
interference is improved.

The leaf nodes do not transmit in the time slots of odd
packets. When considering the feedback scheme, these silent
slots may be wrongly detected as successful decoding by the
parent nodes. Our integrated design of the network density
adaptation and the feedback scheme avoids such misunder-
standing. In the time slots of odd packets when the leaf nodes
are not transmitting, the parent nodes are receiving packets
from the upper layer and do not listen to their child nodes
for feedback detection. As in Figure 5, the leaf nodes only
transmit in their even TX slots, when their parent nodes are
listening on their channel.

1V. IMPLEMENTATION

We implement Pando on TelosB sensor motes with Contiki
operating system. In this section, we introduce some technical
details which enable the Pando implementation.

Wake-up Protocol of Pando: To incorporate Pando’s data
dissemination with the general network activities of sensor
networks, before data dissemination, the source first broadcasts
a start command across the network multiple times. The
reception probability of such a short command (4 bytes) over a
multi-hop sensor network of constructive interference is more
than 99.99% for 6 retransmissions [16]. In our implementation,
the start command is transmitted 20 times and it only takes tens
of milliseconds. After the dissemination of the start command
and the silent interval of 10 time slots, the source begins to
transmit the first encoded packet. The data dissemination task
has the highest priority rather than the other tasks, like sensing
or local transmissions. All nodes set the channel to the default
channel to receive the first disseminated packet, once they
receive the start command.

The general applications of sensor networks usually work
on a single channel. The channel 26 of the IEEE 802.15.4
standard is widely adopted in real deployments of sensor
networks, since it is not overlapping with the channels of
Wi-Fi [42]. We disseminate the start command on channel 26
(the default channel in Pando). The start command includes
information about the data object size.

Page-Based Dissemination: We divide the data object
(e.g., 32 kBytes) into small pages (e.g., 2 kBytes in our
current implementation) and disseminate the pages sequen-
tially due to the memory constraints of wireless sensor motes
(e.g., 10-kByte RAM memory on TelosB). The source begins
to disseminate a new page when the current page has been
correctly received by all nodes. The source knows the dissem-
ination of one page has terminated thank to the silence-based
feedback scheme. When a node succeeds in decoding and
completes its feedback task, it switches to the default channel
and waits for the packets of the next page. If the dissemination
of the current page is not completed, the successful nodes
may receive some packets from some other nodes that are
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still transmitting packets. They check the sequence number of
the received packets. If it is larger than the last packet they
received, they infer that the packets are from the current page;
otherwise, they start the dissemination of a new page.

State Machine of Nodes: Figure 7 illustrates the state
machine of the nodes, including both relay nodes and leaf
nodes. Besides all the functions of leaf nodes, relay nodes also
need to listen to the channel of their child nodes. When a relay
node detects the silence of all its child nodes, it becomes a
leaf node. The bold arrows indicate how a relay node performs
in an ideal case. At first, all nodes receive packets from their
upper layer and immediately relay the packets to their lower
layer. When a node successfully recovers the original data, it
performs the following four operations sequentially: receiving
a packet from its parent node, forwarding that packet to its
child nodes, listening to its child nodes, and transmitting a
self-generated encoded packet to its child nodes. It switches
to the next page when it detects that all its child nodes are
silent. Upon the completion of one page, the source starts a
new page or terminates the whole dissemination process.

We introduce several failure recovery mechanisms to cope
with packet losses. As described in Section III-D, if a packet
from the upper layer is corrupted, the node stays in the same
channel and tries to receive that packet from the other nodes
at the same layer. After that, the node switches to the next
channel for the coming packet from its upper layer. If no
SFD interrupts are detected on the feedback channel, the node
loses synchronization and goes back to listen to its parent
node by setting the channel accordingly. The node follows the
right circulation of channels by using a RX timer to count the
dissemination slots.

Safe RX Buffer Reading: In the reception slots, the radio-
driven coding scheme must perform Fountain coding and
accomplish reading the received data (65 bytes) from the
radio. After the RXON command, the microcontroller sets
a coding timer of 1688 us and begins to decode. When the
timer expires, with the multiple SPI access, the microcontroller
initializes the SPI bus once and reads all the 65 bytes consecu-
tively. At the end of reading, however, the microcontroller may
try to read the last few bytes when they have not been written
in the buffer. To handle the underflow problem of RX buffer,
we read the last five bytes individually using single SPI access.
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TABLE I
DISSEMINATION TIME (SECOND) ON INDRIYA!

T§St (l?(lé)es) Pando | Splash w/o encoding | Splash
1 7 9.7 223 40.2
2 8 13.3 22.5 40.4
3 9 10.4 21.6 394
4 8 12.4 21.9 39.7
5 7 11.0 229 40.8
Average 8 11.4 22.3 40.1

As in Glossy [16], before each reading, the microcontroller
keeps checking the FIFO pin that indicates whether the RX
buffer of the radio is empty or not. It only begins to read one
byte from the radio when the FIFO pin turns to high.

V. EVALUATION

We conduct a series of experiments on two large-scale open
testbeds of wireless sensor networks, Indriya [5] and Flock-
lab [29]. Both testbeds deploy sensor motes inside a building
and operate on 2.4 GHz. Indriya currently has 99 TelosB
sensor motes with dense deployment. In Flocklab, 31 Tmote
Sky sensor motes are sparsely deployed with low network
density and some sensors are installed outdoors. The packet
size is set to 64 bytes for most of the experiments and the
data object is 32 kBytes (i.e., 500 packets).

Protocols: In our experiments, we compare Pando with
Deluge [21] and Splash [6], of which we could find the
source code. They are two state-of-the-art data dissemina-
tion protocols. Deluge is the first reliable data dissemina-
tion protocol developed in 2004. Many protocols have been
devised in the last decade to improve its performance, such as
MC-Deluge [51], Rateless Deluge [20] and MT-Deluge [17].
They all disseminate a data object in small pages hop by hop
using a handshake mechanism and CSMA/CA-based multiple
access. In 2013, Splash is designed to partially eliminate
the contention overhead using constructive interference and
pipelining. It is the latest data dissemination protocol with the
best reported performance. For the other data dissemination
protocols that we cannot find the source code, we compare
Pando with them by literature studies.

Metrics: We evaluate the data dissemination protocols using
four metrics: reliability, dissemination time, energy consump-
tion and memory cost. Pando’s dissemination time is measured
from the start of protocol (e.g., transmission of the start
command) to the termination of the source. Since Splash and
Deluge do not have an explicit termination time, we monitor
the traces of all nodes and calculate the dissemination time as
the last node correctly receives the data object.

A. Performance Comparison

Table I and Table II show the dissemination time of three
protocols on Flocklab and Indriya respectively. For each
experiment, we run Deluge, Splash and Pando separately.

IWe encountered several technical problems for running Contiki’s Deluge
on the remote testbed Indriya. The experiments of Contiki’s Deluge succeeded
on Flocklab and the results in Table II show that the dissemination time of
Contiki’s Deluge is orders of magnitude larger than Pando.
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TABLE II
DISSEMINATION TIME (SECOND) ON FLOCKLAB
Test Size Splash w/o Deluge
# (hops) Pando gncoding Splash 2 kBygtes)
1 6 5.7 18.4 36.4 481.4
2 5 4.3 18.3 36.3 471.7
3 9 7.7 18.4 36.4 481.4
4 6 6.4 18.3 36.3 481.4
5 5 4.4 18.6 36.5 466.9
Average 6 5.7 18.7 36.5 476.6

For each protocol, five tests are conducted with different
locations of the source node. Before the data dissemination,
Splash needs to first generate the XOR-encoded packets for
the third round. Splash spends about 18 seconds to encode
500 XORed packets on TelosB with TT MSP430 microcon-
troller. In Table I and Table II, we also present the dissem-
ination time of Splash without encoding in which the time
spent on encoding is not included in the dissemination time
of Splash. Pando does not have any extra coding overhead
since it can encode and decode during data dissemination.

The experiment results reveal that all three protocols
can achieve 100% network reliability. It takes Pando
11.4 seconds and 5.7 seconds to disseminate a file of 32 kBytes
on Indriya and Flocklab respectively. Splash needs about
40.1 seconds and 36.5 seconds. Pando reduces the dissem-
ination time of Splash by an average factor of 3.5 and 6.4
on Indriya and Flocklab, corresponding to 71.6% or 84%
reduction respectively. Even not considering the encoding time
in Splash, the reduction factor achieved by Pando over Splash
is 2.0 and 3.3 on Indriya and Flocklab.

Deluge has two versions: TinyOS’s DelugeT2 and
Contiki’s Deluge. We use Contikis Deluge, since it is difficult
to execute TinyOSs DelugeT2 on a remote testbed, which
requires to send the disseminated data file and some commands
from the connected PC to the source node. In our experi-
ments on Flocklab, Contiki’s Deluge spends 476.6 seconds
to disseminate 2 kBytes, corresponding to 7625.6 seconds
for 32 kBytes. Pando and Splash reduce the dissemination
time of Deluge by 1337.8x and 407.8x respectively. Since
the implementation of Deluge in Contiki is less efficient than
DelugeT2, we calculate the reduction factor over Deluge based
on the result of DelugeT2 (524 seconds) reported in [6]. The
authors in [6] did the experiments on Indriya with 139 sensor
nodes. At present, only 99 sensor nodes are available on
Indriya. The dissemination time of DelugeT2 on Indriya is
approximated as 373.2 seconds (i.e., 524 * 99/139 seconds).
The reduction factor over DelugeT2 achieved by Splash and
Pando is 9.3 and 32.7 respectively. Splash has improved the
performance of Deluge significantly. Pando further improves
the gain of Splash by 3.5x.

For the experiment results on Flocklab in Table II, Pando
produces higher improvement to the previous two proto-
cols than the results on Indriya, since the sensor motes of
Flocklab are more sparsely deployed and constructive inter-
ference performs better with small number of concurrent
transmitters. From Flocklab (Table II) to Indriya (Table I),
although the number of sensor nodes increases more than 2x,
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Fig. 9. Network reliability progress of Pando and Splash on FlockLab.

the dissemination time of both Pando and Splash only
increases less than 1x. Based on constructive interference,
the delivery of one packet from one layer to another layer
can be completed by just one transmission. With pipelining,
the transmissions on different layers can occur simultaneously.
Pando makes the gain of constructive interference and pipelin-
ing bloom in data dissemination, since it completes the entire
data dissemination process over the fast parallel pipelines.

Reliability Progress: Figure 8 and Figure 9 depict the
progress of the average network reliability achieved by Splash
and Pando on Indriya and Flocklab respectively. The exper-
iment results reveal that Splash has high XOR encoding
overhead and long tail problem. Pando completes the data
dissemination even before the end of encoding of Splash.
Even if we do not count the encoding time in the data
dissemination time for Splash (i.e., Splash w/o encoding),
it still has the long-tail problem. Pando eliminates the long-
tail problem in pipelined data dissemination and reduces the
dissemination time of Splash by 2.0x and 3.3 x on Indriya and
Flocklab respectively. As studied in Section II, the long tail
is caused by three limitations of Splash, including duplicate
disseminations, inefficient XOR coding and time-consuming
local recovery. Pando overcomes the long tail problem by
incorporating Fountain coding in data dissemination. Although
the reliability progress rate of Pando is lower than Splash
(i.e., Splash w/o encoding) in the first round due to the
feedback collection for every data page, Pando achieves much
shorter total dissemination time than Splash.

Reliability of Individual Node: Figure 11 demonstrates the
reliability of individual nodes. The encoding overhead is not
included in the dissemination time of Splash. The dissemi-
nation time of all protocols is when all nodes achieve 100%
reliability. It is the time that the last node (the last row) turns to
black. On Flocklab, Pando completes the data dissemination
within 5.7 seconds when the source receives the aggregated
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Indriya and Flocklab.

acknowledgement from all nodes in the last page dissem-
ination. Splash’s data dissemination ends at 18.7 seconds
when the last node successfully receives the data object. The
dissemination speed of Pando is 3.3x faster than Splash.
Pando completely eliminates the contention-based multiple
access overhead, but Splash has to disseminate the data object
multiple times and rely on the local recovery to achieve 100%.
Moreover, in Pando, all nodes present a similar progress rate.
The packet reception rate is more uniformly distributed across
all the nodes, since the network density and channel allocation
are adapted for every packet transmission.

Energy Consumption: Figure 10 presents the energy con-
sumption of Pando and Splash on Indriya and FlockLab.
Wireless sensor nodes are typically working in duty-cycled
mode, which reduces their energy consumption by setting
them in low-power state periodically. Since the dissemination
in the duty-cycled mode is extremely time-consuming due to
the long-preamble transmissions [14], current data dissemina-
tion protocols [6], [17], [20], [21], [39] keep the hardware
resources on sensor nodes (e.g., microcontroller and radio) in
active state during the data dissemination process. The power
consumption of Pando is the same as the previous protocols,
since all of them keep the nodes in active mode. Therefore,
in Figure 10, Pando reduces the energy consumption of
Splash by the same reduction factor as the dissemination time,
i.e., 2.0x and 3.3x on Indriya and Flocklab.
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TABLE III

REDUCTION FACTOR OF DISSEMINATION TIME OVER DELUGE ACHIEVED
BY THE EXISTING DATA DISSEMINATION PROTOCOLS

Protocols Number Data size Reduction
of nodes (KB) factor
MNP [24](2005) 100 5 1.21
MC-Deluge [53](2005) 25 24.3 1.60
Rateless Deluge [19](2008) 20 0.7 1.47
ReXOR [8](2011) 16 4 1.53
ECD [9](2011) 25 10 1.44
MT-Deluge [16](2011) 20 0.7 242
SYREN [1](2013) 21 0.5 1.6
Splash [7](2013) 139 32 9.3
Pando 99 32 32.7

The Fountain coding in Pando is performed during the idle
intervals of the microcontroller and does not impose any extra
energy consumption. The default design of Splash or the other
data dissemination protocols do not exploit the idle interval or
set the microcontroller to a power-saving mode during such
idle intervals. Even if we enable Splash to sleep during the
idle intervals, the saved energy is very limited, i.e., 5.2%
in Figure 10. It is small, compared with the energy saving
gain of Pando over Splash (69.5%). For the data dissemination
protocols of constructive interference and pipelining, including
Splash and Pando, the transceiver is always transmitting or
receiving packets during the whole data dissemination process.
The energy consumption of sensor nodes is dominated by
the transceiver. For example, the power consumption of the
transceiver on TelosB is 69 mW (23mA*3V), which is much
larger than the power consumption of the microcontroller,
ie., 5.4 mW (1.8mA*3V). Even if we put the microcontroller
to a power-saving mode (0.002mA*3V) in the idle interval,
the saved energy is limited.

Comparison With Other Protocols: We compare Pando
with other data dissemination protocols. As in [6], we refer
to the performance reported in the papers of the existing
works [7], [8], [17], [20], [24], [51]. All the previous protocols
compare their performance with Deluge [21], the first reliable
data dissemination protocol for wireless sensor networks.
Based on the reduction factor of dissemination time over
Deluge reported in the papers of these protocols, we can cal-
culate the relative gain of Pando over other existing protocols.

Table III tabulates the reduction factor of dissemination time
produced by the previous data dissemination protocols and
Pando over Deluge. The protocols developed before Splash can
only provide a reduction factor around 1.6 (maximum 2.4) over
Deluge, because they all are based on the contention-based
multiple access. Pando and Splash are orders of magnitude
faster than Deluge, since they are based on constructive
interference and pipelining. By fully exploiting the fast and
parallel pipelines as well as the packet-level adaptation of
network density and channel allocation, Pando asymptotically
approaches the network capacity and reduces the dissemina-
tion time of Splash by more than 3.5x.

Memory Cost: Pando uses 6.24 kBytes of RAM, 32 kBytes
of data flash memory, and 31.49 kBytes of ROM (program
flash memory). TelosB is composed of 10 kBytes of RAM,
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1 MBytes of data flash memory, and 48 kBytes of ROM. Pando
uses about 2.24 kBytes of RAM to store the received packets
of current page. Without temporarily storing of encoded pack-
ets in the flash memory, Pando minimizes the data memory
cost and significantly reduces the number of data flash memory
access. Splash has to store the received packets in the data
flash memory and read them into RAM for post-processing
after the 3 dissemination rounds.

B. Contribution of Individual Techniques

To further analyze the gain of Pando, we execute Pando
in several versions, in which only some individual techniques
of Pando are enabled. The results are shown in Figure 12.
In Pando-F, only Fountain coding is enabled, and the packet-
level adaptation of both network density and channel alloca-
tion is disabled. In Pando-FC, besides Fountain coding, we
also enable the packet-level adaptation of channel allocation.
Similarly, in Pando-FD, the packet-level adaptation of network
density is enabled. Pando in Figure 12 represents the full
version of Pando with all techniques.

Fountain Codes: According to Figure 12, Pando-F can
reduce the dissemination time of Splash by 1.8x and 2.6x
on Indriya and Flocklab respectively. The fundamental gain
of Pando comes from the integration of Fountain codes
with the pipelined data dissemination. With Fountain code,
Pando disseminates independent Fountain-encoded packets
along the fast and parallel pipelines during the whole dissem-
ination process. We improve the utilization efficiency of the
pipelined data dissemination and also eliminate the overhead
of contention-based local recovery. To tailor LT coding into
the highly-synchronized communication on the resource con-
strained sensor motes, we disseminate the data object in small
pages, which introduce some overhead due to the feedback
collection for each page. In our current implementation, we
adopt a page size of 32 packets. The gain of Pando can
be further improved by enlarging the page size with more
powerful hardware.

Packet-Level Adaptation of Channel Allocation: By compar-
ing the results of Pando-FC with Splash in Figure 12, we find
that Pando with Fountain codes and packet-level adaptation
of channel allocation can improve the reduction factor of
dissemination time over Splash to 1.9 and 3.1 on Indriya
and Flocklab respectively. Besides the improvement achieved
by Fountain coding, the packet-level adaptation of channel
allocation can further enhance the performance of Pando-F
by 5.6% and 14.3% on Indriya and Flocklab.
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Figure 13 shows the contribution of each channel to the
reliability of four randomly-selected nodes on Indriya test-
bed. Different channels have different performance at dif-
ferent locations. Channel 26 contributes ignorable increase
of reliability at the node 3. It may be caused by the inter-
ference from the other nodes or devices. The experiment
results suggest the necessity of packet-level channel diversity.
By changing the channel allocation at packet-level, every node
in the network experiences the four channels equally and
circularly. The packet reception becomes more uniform across
different nodes. Therefore, Pando maximizes the performance
of Fountain codes in data dissemination, as it does not have
to spend much time to deliver some packets to few poorly-
performing nodes.

Packet-Level Adaptation of Network Density: As shown
in Figure 12, the packet-level adaptation of network density of
Pando-FD reduces the dissemination time of Pando-F by 4.8%
and 10.4% respectively on Indriya and Flocklab. Figure 14
presents the contributions of two different network densities
(determined by whether the leaf nodes transmit) for four
different nodes of Indriya. The performance of concurrent
transmissions is related to the node locations. Some nodes
work well when the neighboring leaf nodes participate in the
concurrent transmissions; the others may benefit more for a
small number of concurrent transmitters. With packet-level
adaptation of network density, Pando makes the reception
performance of individual nodes more uniformly distributed
across the network.

Packet-Level Adaptation of Channel Diversity and Network
Density: According to the experiment results in Figure 12,
Pando reduces the dissemination time of Pando-F by 9.5%
and 26.0% on Indriya and Flocklab. The dissemination time
of Pando is 5.7 seconds on Flocklab and the dissemination
time of Pando-F is 7.7 seconds. Such significant improvement
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demonstrates that the packet-level adaptation of channel diver-
sity and network density is necessary for the Fountain-
enabled data dissemination of constructive interference and
pipelining.

VI. RELATED WORK

In-field deployments of wireless sensor networks nor-
mally require remotely wireless reprogramming [26]. A vari-
ety of data dissemination protocols have been developed
based on different techniques in the last decade. The best
next-hop forwarder is selected by investigating its program
version [21], [27], the information of its neighbors [24] or
its link quality [8], [53]. The frequency of advertisement
messages in Deluge is adjusted according to the network
density [3]. The link correlation [1], [43], [45], [54] and
opportunistic forwarding [19] are considered in flooding.
The multi-channel scheme is used to improve the spatial
reuse [28]. A backbone subnetwork is built to deliver data to
the other nodes based on a minimum connected dominating
set [36], [46], [52], [55]. Such a skeleton construction scheme
has also be used in the information diffusion of mobile social
networks [31]-[33]. The delay constraint is taken into account
in [22]. Selective dissemination is studied in [37] and [40]. The
above protocols disseminate data hop by hop using CSMA/CA
or TDMA, which limits the spatial reuse and imposes heavy
overhead of multiple access.

The multiple access overhead is first addressed by capture
effect for flooding in wireless multi-hop networks [25], [30],
whereas the performance of capture effect decreases when
many nodes are transmitting simultaneously [30]. Many prac-
tical works, e.g., A-MAC [14], Glossy [16] and LWB [15],
experimentally show that the reliability of constructive inter-
ference is high. Side-channel transmissions and rate adaptation
have been studied in WLAN [44], [48]. However, they focus
on the transmissions of individual packets. Splash [6] partially
eliminates the multiple access overhead in data dissemination
by combining constructive interference and pipelining.

Fountain codes [35] have been widely used to improve the
broadcasting efficiency. The light-weight fountain transmis-
sion is first realized by LT codes [34]. SYNAPSE++ [39]
leverages LT codes to enhance the broadcasting efficiency
of Deluge [21] in each hop. DLT [9], [10] uses LT codes
to improve the networking performance of wireless sensors.
SoftLight [11], [12] develops a new rateless code for the
soft hint enabled bit-level erasure channels of the screen-
camera visible light communication. In [50], two feedback
schemes are developed to estimate the number of redundant
transmissions needed at the source. Network coding schemes,
like random linear codes and XOR coding, are also adopted
to improve the single-hop broadcasting efficiency in wireless
sensor networks [20]. The above protocols based on Fountain
codes or network coding, however, are designed for single-hop
transmissions with explicit acknowledgement.

VII. CONCLUSION

This paper presents Pando, a completely contention-free
data dissemination protocol for wireless sensor networks.
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By integrating Fountain codes with constructive interfer-
ence and pipelining, Pando is able to continuously dissem-
inate Fountain-encoded packets over the parallel pipelines.
Three techniques, including radio-driven encoding and decod-
ing, silence-based feedback scheme and packet-level adapta-
tion of network density and channel diversity, are developed to
transform Pando into a practical system, which asymptotically
approaches the network capacity. Experiment results demon-
strate that Pando can provide 100% reliability and significantly
outperform the previous data dissemination protocols in dis-
semination time and energy consumption. In future works, it
is interesting to analytically study the performance of Pando
and the other data dissemination protocols. Moreover, accurate
measurement of the worst-case packet reception rate of the
nodes in the network is worthy to investigate to provide more
efficient stop mechanism of the pipelined data dissemination.
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