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Abstract— We present Travi-Navi—a vision-guided navigation
system that enables a self-motivated user to easily bootstrap
and deploy indoor navigation services, without comprehensive
indoor localization systems or even the availability of floor maps.
Travi-Navi records high-quality images during the course of a
guider’s walk on the navigation paths, collects a rich set of sensor
readings, and packs them into a navigation trace. The followers
track the navigation trace, get prompt visual instructions and
image tips, and receive alerts when they deviate from the correct
paths. Travi-Navi also finds shortcuts whenever possible. In this
paper, we describe the key techniques to solve several practical
challenges, including robust tracking, shortcut identification,
and high-quality image capture while walking. We implement
Travi-Navi and conduct extensive experiments. The evaluation
results show that Travi-Navi can track and navigate users with
timely instructions, typically within a four-step offset, and detect
deviation events within nine steps. We also characterize the power
consumption of Travi-Navi on various mobile phones.

Index Terms— Indoor navigation, image direction, self-
deployable system.

I. INTRODUCTION

THERE are many situations in real life, including business,
social, and personal scenarios, where people have a

strong need for navigation services. For instance, a shop
owner may want to direct customers to his shop. At a social
gathering, early arriving guests may want to guide latecom-
ers. People have for a long time resorted to non-technical
solutions in these situations. For example, shop owners post
flyers with their addresses or briefly describe routes to attract
customers, and latecomers can call friends for landmarks. Such
approaches, however, have various shortcomings. For instance,
customers need to find the addresses and follow a sequence
of landmarks, which may not be a trivial task. If the building
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floorplans are unavailable or hard to read, the trip can be
frustrating. Locating floorplans can also be troublesome in
gigantic malls. Moreover, customers may take wrong turns
when no one is around to guide them. When customers want
to visit multiple shops, it is not easy to plan trips and minimize
detours.

On the other hand, despite extensive research into indoor
localization, the wide deployment of indoor localization and
navigation systems have yet to be realized. Prior schemes
attempted to build full blown localization systems before
publishing location services. For instance, WiFi fingerprinting-
based localization systems need to sample signal strengths
and construct radio maps in advance [2]–[4]. Such approaches
require intensive initial efforts involved in site surveys to boot-
strap localization services as well as the maintenance overhead
incurred in updating the radio maps. Moreover, the indoor
floor maps may not be available for system developers due
to security or commercial reasons. With the lack of pre-
deployed comprehensive indoor localization and navigation
services, we ask the following question: Can we enable users
to easily bootstrap their own indoor navigation services by
themselves without dependency on a pre-deployed localization
system or even the availability of floor maps?

In this paper, we provide an affirmative answer through
the systematic design and implementation of Travi-Navi – a
vision-guided navigation system that enables a user to easily
deploy his own indoor navigation services. Inspired by our
own navigation experiences, in Travi-Navi, a guider records
landmarks (pathway images, sensor readings, radio signals,
etc.) along a path and shares them with followers. Using
the guider’s directions, our application runs on the follower’s
mobile device and guides the follower by presenting pathway
images and indicating turns, etc. Travi-Navi implicitly lever-
ages the follower’s visual recognition capability by presenting
pathway images to correct slight direction ambiguity and
enhance navigation experiences.

The design of Travi-Navi naturally avoids the dependency
on any pre-deployed localization services or even the floor
maps but faces particular challenges. (1) Pathway images
contain rich visual information for followers but rapidly drain
the battery power. Images taken during a walk can get blurred
due to camera shake. How to control energy usage while at the
same time ensuring the image quality remains an important
issue to address. (2) As the guider’s trace only covers the
sampled path while most areas are uncharted, it is very hard
to accurately track followers on the guider’s trace and generate
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synchronized directions. Providing correct directions at right
time is important as incorrect or untimely directions may lead
to wrong ways. We expect our system to alert users in a
timely manner when they veer off the correct path. (3) As
users may visit multiple destinations, a friendly navigation
system is expected to intelligently plan routes. The navigation
traces are independently provided by different guiders without
coordination, so it is challenging to find efficient shortcuts
among the traces. Ideally, our system should be able to guide
users along the optimal path among the available traces to the
destinations.

Based on prior research efforts, we have devised several
sensor fusion techniques to address the above challenges.
(1) To ensure high quality navigation images, we predict image
quality based on motion hints from step detection, heading
direction and rotation measurement. In particular, we infer
stable camera shooting time using accelerometer readings and
automatically trigger image capture to ensure image quality
and avoid blurred images. (2) To accurately track a follower
and generate synchronized directions, we incorporate both
magnetic field distortions and WiFi fingerprint sequences to
complement IMU (Inertial Measurement Unit) sensor based
dead reckoning and thereby accurately project the follower
onto the guider’s trace. (3) To find shortcuts and plan routes,
we detect overlapping segments and crossing points of multi-
ple traces shared by possibly different guiders. In particular,
we detect overlapping segments by measuring their similarity
of magnetic field signals and WiFi fingerprint sequences.
We identify crossing points by exploiting the mutual trends
of average gross distances between sequences of WiFi finger-
prints: as a user gets closer to a crossing point, we observe a
decreasing trend in average gross distance and an increasing
trend when the user moves away. Thus, provided multiple
navigation traces to multiple destinations, our application can
automatically find shortcuts, weave the traces to form a holistic
trace and orient users with minimum detours.

We consolidate the above techniques and implement
Travi-Navi on the Android platform. The sensor data col-
lection, tracking, and navigation instruction generation are
performed in real time. We conducted extensive experiments
under various conditions (e.g., day and night, work day
and weekend) and navigated users using Travi-Navi in both
an office building and a large shopping mall. In experi-
ments, Travi-Navi showed promising results with accurate and
timely instructions (within a 4m offset) and prompt deviation
alerts (within 9m) and fulfilled the room-level navigation
requirement.

The contributions of this work are not limited to the appli-
cation centric design of Travi-Navi that enables users to easily
deploy their own navigation services without pre-deployed
localization systems. Rather, we see more potential as an
effective crowdsourcing solution to gradually build up general
purpose indoor localization systems. Realizing the challenge
of constructing massive location database to bootstrap the
localization services, many recent schemes have proposed
crowdsourcing the data collection [5]–[8]. However, it is hard
to find a sustainable incentive mechanism and to ensure data
quality in these crowdsourcing schemes. Travi-Navi naturally

Fig. 1. A usage scenario of Travi-Navi. A shortcut (with a red dashed line)
between McD and H&M is identified from two guiders’ traces.

alleviates such challenges, since users of Travi-Navi are well
informed and actively participate in the navigation. With
enough penetration of such systems, we expect to aggregate
navigation traces and gradually build up comprehensive indoor
localization and navigation systems.

II. OVERVIEW

A. A Usage Example

Figure 1 illustrates a usage scenario of Travi-Navi, where a
restaurant owner provides a navigation trace to customers.

When the restaurant owner (as a guider) arrives at an
entrance of the mall (e.g., entrance C in Figure 1), he turns
on Travi-Navi and collects navigation traces. As he holds
the mobile phone in an upright position and walks to the
restaurant, Travi-Navi captures pathway images and samples
WiFi fingerprints and IMU sensors. Travi-Navi automatically
processes all sensor data and packs them into a navigation
trace. If there are many entrances (e.g., entrances A, B, D,
and E), the guider may want to survey multiple paths from
each entrance. As it does not need to cover every corner inside
the mall, the trace collection load is still light. We note that the
primary scenarios of Travi-Navi are planar applications (i.e.,
navigation on single floors). For shopping malls with multiple
floors, the guider may treat lift lobbies and staircases as
entrances.

A customer (as a follower) downloads the traces and
navigates to the restaurant. Travi-Navi locks on to the cus-
tomer at the entrance (i.e., entrance B in Figure 1). As the
customer naturally holds his mobile phone in his hand and
moves forward, Travi-Navi tracks his progress on the guider’s
trace by comparing instant sensor readings (IMU sensor and
WiFi signals) against the navigation trace. Travi-Navi shows
the guider’s pathway images and the directions (see UI in
Section IV-A). The customer may download multiple traces
for different destinations (e.g., the restaurant and the nearby
shop in Figure 1). In such a case, Travi-Navi is able to identify
a shortcut depicted as a red dashed line.

B. Design Challenges

Our design avoids dependency on pre-deployed localization
services or floorplans. Unlike general-purpose localization
schemes, which try to locate users on to the floorplan, our
design only needs to track the follower with respect to the
guider’s pathway and give timely directions. As a result,
a guider (e.g., the restaurant owner) can easily survey the
possible routes connecting followers to the destination. We see
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that the route contains necessary information for navigation
purposes, and the guider can skip the other areas on the floor.

Such a substantially relaxed requirement for trace collection
enables a guider to easily deploy his own navigation service.
Yet, it makes locating users on the floorplan very challenging
and renders most convention localization schemes infeasible.
For instance, as the WiFi fingerprints collected by the guider
only cover a small portion of the whole floor, the WiFi
fingerprint based localization schemes cannot accurately locate
users. Given a WiFi fingerprint, localization schemes can-
not determine whether it is on the pathway or uncharted
areas. Conventional trilateration localization methods cannot
be applied to locate users either, since the location of WiFi
access points cannot be determined solely based on a route
trace. Even with an exhaustive site survey of the whole floor,
current localization schemes cannot ensure a high localization
accuracy for commodity mobile devices to differentiate path-
ways (e.g., two close corridors with a distance <5m). Deploy-
ing dedicated infrastructure [9], [10] can indeed improve
localization accuracy but it incurs a substantial deployment
cost. As a result, many basic requirements in navigation
become challenging to fulfill with route traces.

Our design explores the possibility of leveraging visual
recognition compatibility of the followers to assist navigation.
This allows the active involvement of followers rather than to
have them passively following directions of mobile devices.
Provided pathway images, followers can easily take correct
pathways from many nearby pathways, which may not be
possible if we resort to localization systems. As guiders
capture images while they walk, the images can easily get
blurred. One naive approach might be to first capture many
frames regardless of image quality and later filter out these
blurred ones, which incurs high energy cost in image capture
as well as high computational overhead in image processing.
To solve this problem, we infer the optimal time to capture the
image with accelerometer readings and trigger image capture
to ensure image quality.

Our system intelligently identifies shortcuts and plans opti-
mized routes for users visiting multiple destinations. The trip
planning would be trivial if the floorplans and accurate local-
ization services are immediately available. However, as navi-
gation traces are independently provided by different guiders
without coordination (e.g., the blue trace to the restaurant and
the red trace to the nearby shop in Figure 1), we need to design
efficient and robust methods to merge the traces so as to find
shortcuts. Unlike trip planning on floorplans, our design aims
to determine the relative positions between route traces rather
than their absolute locations on the floor.

III. TRAVI-NAVI DESIGN

A. Functional Architecture

Figure 2 sketches the functional architecture. In the follow-
ing, we briefly describe the key components.

Motion Engine: Travi-Navi builds on prior research into
IMU sensor (i.e., accelerometer, gyroscope, and compass)
based dead-reckoning. It adopts a simple yet robust step detec-
tion method based on the rising edges of filtered accelerometer

Fig. 2. Architecture of the Travi-Navi system. The motion engine is common
to the guider and the follower.

readings. It detects turns using a virtual bounding pathway that
is more robust to sensor noise than inferences from instant
heading changes. More importantly, the motion engine also
outputs motion hints to assist image capture to reduce power
consumption and ensure image quality.

Trace Packing: Travi-Navi captures pathway images and
samples WiFi and IMU sensors as guiders walk along path-
ways to destinations. It employs lightweight motion hints to
indicate the best time for image capture to reduce power con-
sumption. It automatically packs sensor data into navigation
traces, where they are step-indexed by the relative positions to
the beginning of the trace. The navigation traces can be shared
directly to users or via a cloud server.

Navigation Engine: With a guider’s navigation trace,
the navigation engine processes a user’s instant sensor readings
and generates navigation instructions. It first locks on users to
the trace, typically at the entrances, using WiFi fingerprints. As
entrances are typically distant to one another (>20m), Travi-
Navi can confidently lock on users. As users walk towards
a destination, it incorporates WiFi fingerprints and magnetic
field distortions to complement IMU-based dead-reckoning.
It accurately tracks users with respect to the guider’s trace
and generates corresponding position-indexed pathway images
and instructions. If users want to visit multiple destinations,
it automatically detects shortcuts and plans routes.

Note that the motion engine and the trace packing module
are common to both the guider and the follower applications.
There is a slight difference in sensor data collection. Guiders
need to scan WiFi fingerprints at higher frequencies, whereas
followers may scan WiFi less frequently to save energy. The
navigation engine is solely used by followers. We note that
guiders are assumed to be self-motivated in our system to
collect navigation traces. The navigation traces include various
kinds of sensor data (e.g., pathway images, IMU sensor data,
WiFi fingerprints). We develop sensor fusion modules to
process such navigation traces to track followers and generate
direction information.

B. Vision-Guided Navigation

Humans have superior visual recognition capability. Pro-
vided pathway images, a follower can easily differentiate two
pathways that are close to each other and identify the correct
one. Our system leverages the wide adoption of cameras
on mobile devices to provide intuitive visual directions to
followers.
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Fig. 3. (a)–(f) Consecutive frames during one walking step (taken by Samsung Galaxy S2).

Fig. 4. Image quality drops when user steps down.

Motion Hints for Image Capture: As images are captured
while walking, the pathway images may get blurred due to
camera shake. To capture a clear image, one may capture
image frames at a high rate and filter out the blurred ones,
which involves extensive computations and high power con-
sumption. To solve this problem, we design a simple and
effective method to predict image quality before capturing
pathway images to reduce power consumption and ensure
image quality. The idea is inspired by the observation of
the correlation between image quality and different walking
phases. Figure 3 shows the consecutive frames taken during
one walking step. Due to body vibration and subsequent
camera shake, the first few images are blurred, while the last
few are sharper. When we examine a sequence of frames taken
during several steps, we observe alternating image qualities
exhibiting periodic patterns. We aim to capture only sharp
pathway images and display them to users.

We quantify image qualities using the detectable image
features extracted by computer vision techniques. In particular,
we adopt the ORB algorithm [11] to extract image features.
Intuitively, given the same shooting target, a larger number
of detectable features indicate sharper images. In computer
vision and image processing, a feature is defined as a piece
of information which is relevant for solving the computational
task related to a certain application. Features may be specific
structures in the image such as points, edges, or objects. For
instance, the feature extraction algorithm detects 315 keypoints
in the first frame (Figure 3(a)) and 405 keypoints in the last
frame (Figure 3(f)), respectively. Figure 4 plots the number of
features in each frame against the differential of the accelerom-
eter magnitude. When a user steps down, we observe a spike in
the differential of the accelerometer magnitude. In the figure,
right after the user steps down, the image qualities drop mainly
due to body vibration. Generally, the images taken during
the sharp turnings are similarly blurred due to the rotational
motion of the camera, though image quality soon recovers
after the user finishes a turn.

In Travi-Navi, we predict an optimal time for image capture
by exploiting the average-crossing point on the rising edge
of accelerometer magnitude. At such instants, mobile devices
are generally stabilized during a step. Thus, Travi-Navi can
automatically trigger image capture while a guider is walking.
In addition, Travi-Navi also measures orientation and rotation
changes and avoids capturing images during rapid turns. We
note that although the low quality images are not captured,
Travi-Navi does record the turns and inform users during nav-
igation. In addition, when the guider finishes turning (normally
a 5-step duration) and high image quality is again ensured,
Travi-Navi quickly resumes image capture without missing the
start of new pathways.

Usage of Captured Images: The clear images captured in
a guider’s trace serve two purposes. The primary purpose is
navigation guidance, which implicitly exploits a follower’s
visual recognition capability to help navigation. To this end,
pathway images and sensor signals are step-indexed in a
guider’s trace. Travi-Navi tracks followers with respect to the
guider’s trail and present proper pathway images to followers
during navigation.

Since indoor environments exhibit distinct visual fea-
tures (e.g., ambient color, geometric shapes, etc) [12], smart
mobile devices may infer a follower’s position on a guider’s
trail by comparing an image taken by the follower against
the guider’s images. Thus, when a follower (e.g., a Google
Glass user) can easily take images during a trip, Travi-Navi
may also incorporate images into the user tracking process.
A mobile phone user is unlikely to take images continuously.
However, the user may want to take pictures and retrieve the
most similar images from the guider’s traces. Then, the user
can select and confirm the image of the pathway the user is
actually on and start the navigation from there.

Image Matching and Retrieval: We extract image features
of local geometric shapes as well as ambient colors and carry
out image matching. Image matching operates in a pipeline.
First, discriminative points are extracted for each image, called
keypoints [11], [13]–[15]. The keypoints in each image can be
viewed as visual “words” describing the image [16]. Similar
visual “words” are clustered to form a “dictionary”. Then, each
image is described with a histogram, measuring the frequency
of each word in the dictionary. We compute the similarity of
two images by comparing their histograms. The histograms of
images are represented with fixed-sized vectors whose length
equals the dictionary size (i.e. 200) as shown in Figure 5.

To retrieve the most similar images, Travi-Navi incorpo-
rates color histograms (describing ambient colors) to extend
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Fig. 5. Image feature histogram.

the keypoint histograms (describing local geometric shapes).
As images taken on each pathway capture similar ambiences,
Travi-Navi clusters the images taken on the same pathway into
one group. Travi-Navi labels image groups with pathway seg-
ment IDs and trains the linear support vector machine (SVM)
as an image classifier. Travi-Navi also adds image shooting
angles inferred from device orientation to image matching.
In practice, the pathway images may appear similar and in
this case Travi-Navi may fail to differentiate them accu-
rately. Travi-Navi can enrich the diversity by incorporating
other sensing modalities such as WiFi and magnetic field
measurements.

C. Lock-On, Tracking and Deviation Handling

Lock-On at Entrances: When a follower enters a mall
and starts Travi-Navi, Travi-Navi first needs to lock on to
the follower. As the entrances of buildings (e.g., malls) are
generally distant (>20m), it is likely to observe distinct WiFi
signals at different entrances. Thus, Travi-Navi scans WiFi
signals and compares them against the WiFi signals in guider’s
trace and locks on to the follower at the entrance. For shopping
malls with multiple floors, guiders may not collect traces
directly from mall entrances. Instead, they may collect the
traces from lift lobbies or staircases, i.e., entrances to the
floor. Lifts and staircases can be reliably identified using
WiFi coverage information and accelerometer readings [6].
We discuss how we lock on to users in uncharted areas in
Section III-D.

Tracking Follower: Travi-Navi adopts the particle filter [17]
to track the user’s progress on the guider’s trails. After locking
on the user at an entrance, Travi-Navi generates particles
spread around the entrance to approximate the user’s location.
Each particle represents a possible position of the user and is
updated according to IMU sensor based dead-reckoning [6],
[17]–[20]. Each particle is weighted according to the mea-
surements of multiple sensing modalities. As such, the less
likely particles are gradually filtered out and the centroid of
the particles approximate the actual position of a follower.
We describe the step detection and heading measurement
techniques for completeness.

Dead-reckoning: Travi-Navi uses the weighted moving
average to filter out noise in accelerometer readings. It tracks
the average and variance of accelerometer magnitude. Station-
ary and walking states are differentiated using an empirical
threshold on variance. To detect steps, it searches rising
edges of accelerometer magnitude. For heading measurement,
as users naturally hold mobile phones, the device heading

Fig. 6. Two walking paths with overlapping segments and corresponding
magnetic field measurements. (a) Walking paths. (b) Magnetic measurements.

generally aligns with walking directions. However, due to the
severe magnetic field distortion inside buildings, the compass
does not always point the heading direction [21], [22]. As the
gyroscope is immune to magnetic field distortion and can mea-
sure rotations by integrating angular velocities, we leverage the
gyroscope and fuse it with compass [1], [23], [24].

To compensate for the differences in step length and heading
measurement noise, a zero mean gaussian noise is added to
each particle’s step length and the measured heading directions
in dead-reckoning. If Travi-Navi detects steps, each particle
is then updated to a new location. After that, each particle
is weighted according to the follower’s instant WiFi signal
as well as magnetic field readings. Travi-Navi measures the
centroid of weighted particles to approximate a follower’s
position. The weighted particles are resampled after weight
normalization. The tracking process is repeated until the user
reaches the destination.

Magnetic signal weighting: Next, we describe how
Travi-Navi weights each particle according to observed
magnetic field readings. Although the magnetic directed dead-
reckoning suffers severe errors inside buildings, the mag-
netic distortions are stable and provide discriminative
power [6], [21]. Figure 6 shows the walking paths of two
guiders with overlapping pathway segments, and the magnetic
field distortions observed on the trails. We see that the mag-
nitude of magnetic field varies along the trails. The patterns
of the common segment are very similar, which confirms the
stability of the magnetic field [6], [21].

Leveraging the distinctive patterns of the magnetic field,
Travi-Navi finds the most similar subsequence of magnetic
measurements on the guider’s trace to track a follower.
Travi-Navi uses the dynamic time warping (DTW) algo-
rithm [25] to compare the sequence similarity to compensate
for the difference in speeds between the guider and the
follower. DTW searches for the best alignment that minimizes
the total cost using standard dynamic programming and the
cost is defined as the difference of aligned magnetic mag-
nitudes. When particles need to be updated, their weights
are set according to their DTW costs via a Gaussian kernel.
In particular, for the ith particle, its weight is set as follows:

weightim = e−
di
k (1)

where di is the DTW cost and k is a tunable parameter.
In our experiments, we observed that the magnetic field

readings may exhibit similar patterns on distant pathway
segments. A longer walking trail enriches diversity and
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Fig. 7. WiFi fingerprints are collected as users walk along a straight pathway.
We see WiFi similarity decreases as the walking distance increases.

improves discernibility. As followers are tracked on a step
basis, the gain from further increasing the monitoring win-
dow (e.g., >5steps) becomes marginal. We balance the com-
putation overhead and discernibility by setting an empirical
5-step window.

WiFi signal weighting: With WiFi signal strength mea-
surements, Travi-Navi gives greater weights to the more likely
particles and iteratively filters out the less probable ones.
We denote the user’s and the guider’s WiFi fingerprints as
Fu

t = (Ru
1 , Ru

2 , . . . , Ru
n) and F g

t = (Rg
1, R

g
2, . . . , R

g
n), where

Rj
i is the RSSI of the ith AP observed by j at time t.

In practice, we set -99dBm to the RSSI of undetectable APs.
The distance between fingerprints Fu and F g is measured
by [7]

Dis(Fu, F g) =
1
n

n∑

k=1

|Ru
k − Rg

k|. (2)

Similarly, we measure the geographical distance (i.e.,
Euclidian distance) of dead-reckoning positions between Pu

and P g by
Dis(Pu, P g) = ||Pu − P g||. (3)

Figure 7 plots the WiFi distance Dis(F1, Ft) of three
different walks along an approximately 20m straight pathway.
We see that the distances of WiFi fingerprints to the first
fingerprint gradually increase as the users walk farther. Due
to signal noise, larger distances may not always mean farther
locations (e.g., Dis(F1, F4) > Dis(F1, F7) for user 1). Based
on this trend, however, we see that within a small number
of steps (e.g., 5 steps) larger distances of WiFi fingerprints
generally indicate farther locations on a pathway. In other
words, the geographic distance and WiFi signal distance
should be correlated on a pathway. Based on this observation,
Travi-Navi weights the particles with the correlation of the
Euclidian distances and the WiFi fingerprint distances. Let−→
D i

Euc = {Dis(P i, P g
t )} and

−→
D i

WiFi = {Dis(P i, P g
t )},

(1 ≤ t ≤ m) denote the Euclidian distances and WiFi dis-
tances from the ith particle to the guider’s m dead-reckoning
positions and associated WiFi fingerprints, respectively. Then,
the ith particle is weighted as follows

weightiw =

{
Corr(

−→
D i

Euc,
−→
D i

WiFi), if > 0

0, otherwise
(4)

As illustrated in Figure 8, a particle closer to a user’s
real position would be weighted higher than a distant one,
as the distances from the more probable particle would be
more correlated to the measured WiFi distances. Note that the

Fig. 8. The more probable particle is weighted higher based on the correlation
of Euclidean and WiFi distance.

use of correlation as a similarity metric naturally incorporates
multiple WiFi fingerprints, enhancing robustness against WiFi
signal strength fluctuations.

Magnetic and WiFi Fusion: In Travi-Navi, we assign
equal weights to magnetic and WiFi signals and multiply the
two weights to fuse them as follows

weighti = weightim · weightiw

We note that one may evaluate the reliability of magnetic
and WiFi signals, e.g., by measuring their variation over time,
and assign different weights accordingly. Such a weighting
strategy may improve the tracking accuracy compared with
the current equal weighting method. In practice, the current
method provides sufficient tracking accuracy for the purpose
of Travi-Navi. To reduce power consumption, a follower may
reduce the WiFi sampling rate and accordingly reduce the
weight of WiFi measurements. If the WiFi scan is saved,
particles are weighted using only magnetic signals. If query
pathway images are captured, we may assign higher weights
to the retrieved pathway accordingly. It should be noted that
the optimal weighting strategy remains as an open question.

Deviation Detection and Handling: If followers deviate
from the correct path, Travi-Navi should be able to detect the
deviation events and promptly alert the followers. Additionally,
followers may intentionally take short detours to avoid obsta-
cles. We detect deviations using two simple intuitions. First,
if there are mismatched turns between a guider’s trace and
a follower’s dead-reckoning, Travi-Navi changes the tracking
state to a pre-alert state. Second, if the user indeed deviates,
the centroid position of particles will not change much,
which is substantially different from normal walking. Thus,
we conclude a deviation event when observing mismatched
turns and no or slight centroid position changes for a few
steps.

Turn detection: Many methods detect turns by measuring
instant heading changes during a walk, which often results in
false detections due to sensor noise. Based on the observation
that the pathways and corridors are generally long, straight
and narrow areas, we attempt to confine dead-reckoning trails
with virtual bounding pathways, as depicted in Figure 9.
In particular, Travi-Navi builds a 4-step wide virtual bounding
pathway with the direction of the first two steps (to take
into consideration body swing rhythm) [26]. Travi-Navi tests
whether a user walks through the virtual bounding pathway
after updating the user’s position. If the user deviates from
the original direction and walks outside the virtual bounding
pathway, Travi-Navi detects turns and builds a new virtual
bounding pathway with the heading direction of the last two
dead-reckoning steps; otherwise Travi-Navi considers the user



ZHENG et al.: TRAVI-NAVI: SELF-DEPLOYABLE INDOOR NAVIGATION SYSTEM 2661

Fig. 9. Turn detection. Travi-Navi detects turns if the user walks through
the virtual bounding pathways.

to be walking without turning. Virtual bounding pathway based
detection is more robust to the noise in heading measurements.
In wide areas, e.g., parking lots, users tend to take short paths
and their dead-reckoning trails can be confined with several
concatenated virtual bounding pathways. The pathway images
are more helpful in wide open areas, as the users can easily
identify the scenes.

Deviation handling: When Travi-Navi detects a pos-
sible deviation event with a detection window of 4 steps,
it immediately marks the deviating position and reflects the
change in UI by changing the guiding arrow from a solid to
dashed lines. It also displays the dead-reckoning trail to inform
the user. Followers may intentionally take short detours to
avoid obstacles and return to correct routes. Unaware of such
intentional detours, Travi-Navi may (but very occasionally)
alert the follower to return back to guider’s routes. Meanwhile,
Travi-Navi tries to re-lock on the follower. If the particles
revive in a short amount of time, Travi-Navi resumes user
tracking and transits to the navigation state. Travi-Navi con-
firms a deviation event with a detection window of 6 steps.
Once a deviation event is confirmed, it prompts the user and
shows instructions to guide the user back to the deviating
position. Meanwhile, it also shows the pathway image of the
deviating position.

Travi-Navi does not assume the user will truly follow
the instructions to walk back. The user may continue the
exploration. Travi-Navi tries to relock on to the user by
continuing the particle filtering process as the user walks.
When the particles reconverge on the guider’s trail indicating
that the user has returned to the correct path, it prompts the
user regarding the successful relock on and continues the
navigation.

D. Finding Shortcuts

A navigation service should be able to find shortcuts and
plan trips for users. As navigation traces are independently
provided by different guiders without coordination, we need
to design efficient and robust methods to merge the traces to
find potential shortcuts. We note that if the potential shortcuts
were not surveyed by guiders Travi-Navi cannot identify the
shortcuts or navigate the users to the shortcuts. We identify
two situations in which we may find shortcuts for users.

Case 1 (Find Shortcuts From Multiple Traces With Overlap-
ping Segments): Users may want to visit multiple places (e.g.,
a restaurant after shopping). As illustrated in Figure 6(a),
a user wants to visit shops at location B and C starting from
entrance A. The user downloads two traces (A-B and A-C),

Fig. 10. Traces with crossing shortcuts. (a) Actual walking path.
(b) DR Captured ST traces.

and navigates to B first. Now to visit C, Travi-Navi needs to
find the shortcut and navigate the user from B to C directly.

Case 2 (Find Shortcuts From Crossing Traces): Multiple
guiders’ trails may only cross each other and lack long
overlapping segments. This case is more common for self-
helping users such as car finders. Figure 10(a) depicts such
cases where GT1 and GT2 are two crossing traces from
different guiders, and ST shows a self-helping user trace.
In ST, the user visits a shop at H and then another shop at K.
To navigate the user back to entrance E, ideally we would
guide the user to crossing point F and then to E.

The task of finding shortcuts would become simple if the
navigation traces to multiple destinations can be properly
merged. The key is to accurately find the overlapping seg-
ments (Case 1) and the crossing points (Case 2).

Finding Overlapping Segments: One intuitive approach to
merge the guiders’ traces is through trace replay – to emulate
the navigation process of one guider on another guider’s
trace. However, this approach does not work well. First,
the different signals prior to the overlapping segment (due
to the different starting points) will drive divergent particle
distribution. It therefore negatively affects the convergence
of particles when it comes to the overlapping portion. Con-
sequently, the identified overlaps will be much shorter than
the actual overlapping segments. Short overlaps may even
be missed. Secondly, the particle filtering, especially before
particle convergence, involves relatively high computation.
Unlike user tracking, which amortizes the computation over
the whole navigation process, Travi-Navi needs to efficiently
merge the traces in shortcut detection. Prior methods detect
distinguishable signal landmarks inside buildings (e.g., unique
WiFi fingerprints, motion patterns) as anchors to correct
dead-reckoning drifts and align traces. However, as reported,
such landmarks may be few in number and not always
detectable [5]–[8].

Travi-Navi adopts lightweight trace merging algorithms to
efficiently find overlapping segments and reliably merge mul-
tiple traces, even if no landmarks can be found. In particular,
we design a magnetic signal based detection and WiFi signal
based verification process.

Magnetic field based detection: As in the tracking case,
we also apply Dynamic Time Warping (DTW) [25] to counter
for possibly warped magnetic signal sequences, except that
here, DTW is applied to the whole sequence. To reduce the
computation and memory overhead involved in processing
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Fig. 11. Magnetic field readings on common pathways are similar and can
be used to detect shortcuts. (a) DTW cost matrix. (b) Cost of each warping.

the data sampled at the highest rate, we perform a 10-
fold downsampling, i.e., averaging over 10 samples, without
affecting the shapes of magnetic sequence outlines.

Figure 11(a) plots the cost matrix of DTW after the down-
sampling for matching the two magnetic sequences shown
in Figure 6(b). The line in Figure 11(a) highlights the min-
imum cost warping of the two sequences. In the upper-right
corner of the figure, we observe a “�”-shaped turn (highlighted
in yellow) on the minimum cost line. This is because after the
branch point the magnetic fields exhibit distinct patterns and
no good matches can be found between the two sequences.
Figure 11(b) plots the costs involved in each warping align-
ment along the minimum cost line. We see that due to the
lack of good matches, the costs immediately increase after
the branch point. Also, unlike other narrow short spikes due
to noise, the tallest spike remains high for a relatively long
period. Travi-Navi sets empirical thresholds for the cost and
window size to detect the branch point.

WiFi based verification: Travi-Navi performs post verifi-
cation using a sequence of WiFi observations to ensure correct
detection of overlapping segments. If DTW indeed finds
correct overlapped segments, the WiFi fingerprints observed
on one guider’s trace would be very similar to those observed
on the other.

In Travi-Navi, guiders perform frequent WiFi scans whereas
followers may scan less frequently. We compensate for dif-
ferent WiFi scan speeds on different devices by pairing
WiFi scans at the closest positions when calculating the
average WiFi signal distances. Evidently, the average distance
between all WiFi pairs is small for correct alignment. However,
if the segments are misaligned, the average distance will
be large. The more misaligned, the larger the average dis-
tance. Through experiments, we have decided on an empirical
threshold (10dBm) to determine a good alignment. Note that,
unlike the tracking case where a single WiFi fingerprint is
utilized, here we have to rely on a sequence of WiFi scans
for robustness.

For overlapping segments with opposite directions, Travi-
Navi can detect the overlaps by reversing one of the two traces
and apply the above detection method.

Finding Crossing Points: Since the crossing traces only
have small overlapping areas, the above overlapping segment
detection methods cannot detect crossing points. While the
traces contain WiFi fingerprints, they cover only a very small
portion of the whole indoor radio environment. We cannot

Fig. 12. “V”-shaped trend of WiFi fingerprint distances at crossing points.
(a) North to South path. (b) East to West path.

confirm a crossing point by testing if some fingerprints in one
trace are localized on another trace with conventional WiFi
localization techniques [2]. We note that the small distance
in WiFi fingerprints is necessary but not sufficient to identify
shortcuts.

Recognizing that closer positions should show more similar
WiFi fingerprints as evidenced in Figure 7, and further inspired
by [5] in which the trend of AP signal strengths is used
to detect WiFi-Marks, we design a crossing point detection
method by comparing the trend of average gross distances
of fingerprints in one trace to the fingerprints in the other.
Figure 10 depicts an example of two crossing traces GT1 and
GT2. Two guiders sample WiFi fingerprints as they walk along
GT1 and GT2, respectively. We calculate the average gross
distance – the average of the pair-wise WiFi distances to a
window of consecutive fingerprints in the other trace, e.g.,
the average WiFi distance of one fingerprint on GT1 to those
on GT2. Pair-wise WiFi distance is calculated using Eq. 2.

Figure 12 shows the average of gross WiFi distances
between WiFi fingerprints in the portions near the crossing
point of the two user traces shown in Figure 10(b). We clearly
see the “V”-shaped turning of the trend. It is important that
such trends should be mutual, i.e., the same trend should exist
when checking fingerprints on one trace against those on the
other, and vice versa. When two paths meet at a “T” crossing
point, Travi-Navi cannot identify the shortcut by detecting the
mutual decreasing-and-increasing trends in WiFi fingerprint
distances. In practice, however, since the two paths are likely
to join and form overlapping segments, Travi-Navi can detect
such shortcuts leveraging magnetic readings.

Navigation Instruction on Shortcuts: Once overlapping seg-
ments or crossing points among multiple traces are found,
we can merge them by grafting one trace to another trace.
The only subtlety of navigation on shortcuts is that certain
trace segments may need to be played in reverse.

User Lock-On From Uncharted Areas and Extend Coverage:
Some places may not be fully covered by a guider’s trace.
A follower may not start Travi-Navi at entrances and want to
navigate from uncharted areas using a guider’s trace. In this
case, the follower may first walk around and record a walk-
ing trace. Travi-Navi reuses the above shortcut identification
modules to detect whether the follower’s walking trace has
any overlapping segments or crossing points with the guider’s
trace. Once Travi-Navi confirms that the follower is on the
guider’s trail, it can lock on the follower and starts navigation.
We note that the shortcut detection method can also be used
to merge multiple traces to extend the known area.
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Fig. 13. A user trying out Travi-Navi (Left), and the UI snapshot of our
Travi-Navi client (Right).

IV. SYSTEM EVALUATION

In this section, we present the evaluation of key functional
components of Travi-Navi. We then evaluate Travi-Navi in
representative indoor environments for a better understanding
of Travi-Navi’s effectiveness and limitation.

A. Implementation

We implement Travi-Navi on the Android platform
(version 4.2.2). The current version of Travi-Navi involves
6k lines of Java implementing all the functional modules
of functional architecture (Figure 2). We adopt the OpenCV
library (version 2.4.6) written in C to implement the image
processing and image matching via JNI. As the We adopt
the bag-of-visual-words algorithm [16], which uses k-means
to cluster image features. For image classification, we adopt
the linear SVM with the default optimal parameter setting of
OpenCV [27]. The image resolution is set to 320×240 which
balances the image quality and the processing overhead. Each
image is saved as a JPEG file and the file size is around
20KB. We enable the auto-focus in image capture. Travi-Navi
packs the guider and the user functional modules into one
application and reuses the common modules. All experimental
results were obtained via online processing on mobile devices
and visualized offline if not specified otherwise.

The user interface presents navigation instructions as illus-
trated in Figure 13. The center of the UI shows guider’s
pathway image. As the follower moves forward, Travi-Navi
tracks the follower and updates the guider’s pathway image
accordingly. In addition to the pathway image, Travi-Navi also
presents the turning instructions (i.e., turn right by 40 degrees
at the next turn, presented as → 40) and the number of
remaining steps to the next turn (i.e., 6 steps, presented as ↑ 6).
In addition, it also measures the instant heading direction (blue
arrow) and presents the guider’s heading direction on the
path (purple arrow). We note that the two arrows may not
always align when users walk.

B. Evaluation

We tested Travi-Navi on a variety of Android mobile
devices (Samsung Galaxy S2, S4, Note3, HTC Desire,
and HTC Droid Incredible 2). Due to limited availability,
Travi-Navi has not yet been evaluated on wearable devices
such as Google glass.

Fig. 14. Office building navigation trail.

We conducted experiments on both an office building floor
and the first floor of a large shopping mall with a testing area
of about 1900m2 and 4000m2 during different times of day.
The lighting conditions during business hours allow guiders to
capture bright pathway images. The guiders record traces with
mobile phones held in an upright attitude and capture pathway
images using back cameras as they walk to destinations. As
the surroundings can be occluded, guiders need to find a less
crowded time to capture pathway images. Followers naturally
hold mobile phones and follow navigation instructions. For the
purpose of this evaluation, Travi-Navi recorded the followers’
traces as well. Overall, we collected 12 navigation traces cov-
ering all the main pathways of the testing areas’ entrances. The
total length of navigation traces was about 2.8km. We recruited
4 volunteer followers who walked many times on different
routes, with a total walking distance of around 10km in the
experiments. The experiment was conducted across 3 months.
We used the same 12 navigation traces that we collected at
the beginning of the experiments to navigate the volunteer
followers. We observed some dynamics of sensor data during
the experiments, e.g., WiFi signal strengths. Some sensor
data (e.g., magnetic signals, pathway images) were relatively
stable across the experiment period.

1) Motion Hints:
Image quality: Images taken by guiders during the walk

provide visual guidance to users. Due to camera shack,
the images could become blurred. We evaluate whether motion
hints could improve the image quality. We use the number
of detectable ORB features in images as the quality metric
to quantify the image quality. Generally, computer vision
techniques can detect more features in sharper images than
blurred ones. We also tested other image quality metrics (e.g.,
the maximum value of Laplacian transformation), which are
highly correlated with our metric but more subject to image
noise.

We walked along the same route and captured images
with/without the assistance of motion hints, respectively. We
measured the number of features in the images captured during
walks inside the office building. Figure 15 plots the CDFs of
the number of features with/without the assistance of motion
hints. The results show that the motion hints can predict better
shooting opportunities and effectively capture sharper pathway
images.

Pathway image retrieval: Smart mobile devices may
roughly infer a user’s location (e.g., pathway-level local-
ization) using image matching techniques. We integrate the
local geometric shapes described using ORB features and the
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Fig. 15. Image quality with/without motion hints.

Fig. 16. Pathway image retrieval performance.

ambient color histograms to form image features. We capture
images triggered by motion hints at each step on the trail
from A → B → · · · → F in our office building as depicted
in Figure 14. We label the images with the pathways (i.e., A
→ B, B → C, . . . , E → F) and train the linear SVM. SVM
training takes several seconds on mobile devices (Samsung
Galaxy S2) but we note that it only involves a one-time
training cost. A guider may train the SVM using a server and
share the SVM classifier with users to classify images in real
time on mobile phones.

Users take images on pathways and query Travi-Navi for
their locations. Before triggering image capture, Travi-Navi
consults the shooting angle by looking up the instant device
orientation. If the device is facing either the floor or ceiling,
Travi-Navi does not perform image capture or matching,
and inform the users to adjust the shooting angle. In the
experiment, each of the 4 users took 25 pathway images
to query locations. In Figure 16, we found that Travi-Navi
achieves pathway-level localization with reasonably high accu-
racy by combining the ORB feature and a color histogram. The
accuracy on path C → D is lower. Examining the images on
the path, we found that the lower accuracy is mainly due to
the line of sight blockage. Travi-Navi needs to capture a query
image with a substantial portion that has not been occluded to
retrieve the correct image in the navigation trace.

2) User Tracking and Navigation:
User lock-on: Travi-Navi locks on users at entrances

by comparing observed WiFi fingerprints against those in
navigation traces. We collected WiFi fingerprints at 6 entrances
of the shopping mall. The number of observable WiFi APs
varied from 6 to 13 at the entrances. The geographic distance
between the entrances closest to each other was around 20m.
We randomly selected one WiFi fingerprint at each entrance
and computed the WiFi distances to the other fingerprints at
the same or different entrances. The experiment results are
plotted in Figure 17, which shows the maximum WiFi distance
to the fingerprints collected at the same entrance and the
minimum WiFi distance to fingerprints collected at different
entrances. We found that the WiFi fingerprint distances at the
same entrance were substantially smaller than to fingerprints

Fig. 17. Distances between WiFi fingerprints.

at different entrances. This gap allows Travi-Navi to lock on
to users at the entrances (separated by >20m) with 100%
accuracy. We also tested in our office building at the main
entrance and 4 emergency exits on the same floor (separated
by >25m) and achieved correct lock-ons as well.

Tracking follower: Travi-Navi tracks a follower’s
progress on the guider’s trace and gives directions. We
measured the tracking error to evaluate the promptness of
instructions and tested whether Travi-Navi can navigate users
to their destinations. A guider collected navigation traces in
the office building following the trails plotted in Figure 14.
The guider took 202 steps and 2min to walk the trail
(A → F), with a total length of around 150m. In practice,
a guider (e.g., restaurant owner) should take the most conve-
nient path for followers (e.g., customers). To obtain the ground
truth, the guider taps the mobile phone to record timestamps
when the guider reaches the checkpoints depicted as green and
red dots in Figure 14.

Travi-Navi navigated the 4 followers starting from A to F.
We note that the followers were not informed of the navigation
routes, the final destination, or the checkpoint locations. In the
experiments, all the followers successfully reached the destina-
tion under the direction of Travi-Navi. During the navigation,
Travi-Navi recorded timestamps along with the instructions
presented to users. Meanwhile, a shadow person followed
behind the volunteers and recorded the timestamps when the
volunteers arrived at checkpoints.

We measured the tracking errors by the offset between
the instructions presented to followers and the instructions
recorded by the guider at each checkpoint. The offset results
are shown in Figure 18, in the unit of steps as instructions
are updated on a step basis. The experiment results show
that Travi-Navi has small tracking errors within 4 steps. We
carried out a user study with the 4 users after they reached
the destination. According to our user study, user 1 and user 2
specified the direction as “almost synchronized”, while user 3
and user 4 experienced slightly delayed and early directions,
respectively. As users normally took around 0.6s per step,
the time offset of instructions was within 3s for all users.

Deviation detection: Travi-Navi should quickly detect
deviation events and notify users. In the experiment of devia-
tion detection, Travi-Navi navigates the 4 volunteering follow-
ers from A to F as in the previous user tracking experiment.
To collect the ground truth of deviation events and measure the
effectiveness of deviation detection, we intentionally asked the
4 users to deviate at 4 bifurcating points depicted as red dots
and follow the pathways indicated as red arrows in Figure 14.
Travi-Navi enters the pre-alert stage with a detection window
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Fig. 18. User tracking accuracy.

Fig. 19. Deviation detection for different users.

of 4 steps and confirms a deviation with a detection window
of 6 steps. Thus, we set the deviation detection window to
be 6 steps. Travi-Navi recorded the instructions (including
deviation alerts if any) presented to users.

We present the steps that users took before Travi-Navi
alerted the users in Figure 19. We found that Travi-Navi
detected the deviation events within 9 steps. We also measured
deviation detections that were false positives. We walked along
the trail from A to F for 4 rounds (approximately 600m
in total) and observed only 3 false alarms. Note that in
Travi-Navi, we set a deviation detection threshold of 6 steps.
When we decrease the threshold, Travi-Navi triggers more
false alarms, while in return being more prompt in detecting
deviation events.

3) Shortcut Identification: We examine whether Travi-Navi
can accurately identify shortcuts among guiders’ traces.

Overlapping segments: We collect 100 walking traces
with different overlapping segment lengths and conduct short-
cut identification. We do not restrict the users along the
midline of corridors in the trace collection. As a user may
only want to be navigated to a small number of destinations,
Travi-Navi only needs to reliably identify the shortcuts among
a dozen traces. We note that two walking trails of opposite
directions may also have overlapping segments. To solve
this problem, Travi-Navi reverses one of the two traces and
identifies overlapping segments with opposite walking direc-
tions (Section III-D). We note that the magnetic signals may
change temporally and spatially and affect the accuracy of
shortcut identification.

Figure 20 plots the success rates with varying overlapping
lengths. We found that Travi-Navi achieved a 90% success rate
when the overlapping length was around 6m, and detected
all overlapping segments when the length was 10m. The
success rate decreased as the overlapping length became
shorter. We also measured the false detection rates by matching
traces with varying lengths against non-overlapping traces.
In the figure, shorter traces tend to have higher false detection
rates. When the trace length was 6m, the false detection rate
decreased to 8% and no false detection was observed when
the length reached 10m.

Fig. 20. Overlapping segment detection results.

Fig. 21. CDF of error of overlapping segment length.

Fig. 22. Crossing point detection results.

Among the correctly detected overlapping segments, we plot
the CDF of differences between the actual overlapping seg-
ment length and the detected one in Figure 21. We found that
about 50% of detected overlapping segments are within 3 steps
and all detection errors are within 9 steps. Considering the
corridor widths in practice, such accuracies are sufficient for
shortcut detection.

Crossing points: We evaluate Travi-Navi’s performance
in detecting crossing points with the mutual trends in WiFi
fingerprint distance. To conduct the experiment, we scanned
WiFis at 3 crossing points (CP-A, CP-B, and CP-C) indicated
by “+” in Figure 14. In addition, we also scanned WiFi at
a “T”-shaped crossing point (CP-D). To study the detection
performance with different WiFi scan frequencies, we first
collected one WiFi fingerprint every 1m (i.e., 1sample/1m),
and downsampled WiFi fingerprints to emulate lower scanning
frequencies. Figure 22 plots the success rates of detecting
the crossing points. We found that the detection rates at the
“+” crossing points were above 80% with 1 WiFi scan per
3m. Travi-Navi cannot detect “T”-shaped shortcuts, since such
a crossing point does not exhibit decreasing-and-increasing
trends mutually (Section III-D). In practice, however, two
paths meeting at “T”-shaped crossing points are likely to join
and form overlapping segments, and Travi-Navi can reliably
detect the overlapping shortcuts leveraging magnetic readings.

4) Energy Consumption: As guiders collect navigation
traces with IMU, WiFi, and cameras, it incurs relatively high
power consumption. We measure the power consumption on
various models of mobile phones using the Monsoon power
monitor [28]. The power monitor directly supplies power to
the phones and accurately tracks the current and voltage.
To accurately measure the power consumption of Travi-Navi,
we first turn off all background services and applications. The
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TABLE I

POWER CONSUMPTION MEASUREMENTS ON SAMSUNG GALAXY S2 WITH
AN 1800mAh BATTERY

Fig. 23. Power measurement with SGS2. (a) Guider mode. (b) Follower
mode.

WiFi module was turned on and the screen brightness was set
to auto-adjustment mode. All the sensor modules (e.g., IMU
and WiFi) were sampled and processed in real time. As we
need to wire the phones for measurement, we have to make the
phones stationary. We synthetically triggered image capture
and updated pathway images in Travi-Navi every 0.6s.

Figure 23 plots the working currents measured on the Sam-
sung Galaxy S2 in different working modes as an example.
The current was sampled at 5KHz using the power monitor and
averaged over every window of 0.1s. In Figure 23(a), the phone
was in sleep mode during the period from 0s to 20s. We woke
up the phone at around 20s. We then unlocked the phone at
around 25s. We launched Travi-Navi at 40s and started the
trace collection at 50s. The trace collection finished at 180s.
Similarly, Figure 23(b) plots the power measurement when
Travi-Navi was working in the follower mode from 50s to
180s. We repeated the experiments 10 times and characterized
the power draws in different modes in Table I. We measure
the average power, the average current, and the expected
battery life. The guider mode of Travi-Navi drew power at
around 616.50mA and the expected battery life was 2.92h.
The follower mode incurred less power consumption at around
532.20mA and the expected battery life was 3.38h for the
SGS2 with an 1800mAh battery.

We repeat the experiments and measure the expected battery
life of the Samsung Galaxy Note3 with a 3200mAh battery and
HTC Droid Incredible 2 with a 1450mAh battery. The detailed
measurement results are presented in Table II and Table III,
respectively. Powered by a large battery, the expected life of
Note3 was around 4.75h in guider mode, and 5.62h in follower
mode, respectively. The expected battery life of HTC Droid
Incredible 2 was 3.14h in guider mode and 3.89h in follower
mode, respectively. The expected battery life time was shorter
for the HTC Droid Incredible 2 compared with Note3, mainly
because of its smaller battery.

We note that the measurement study was carried out with
background services and applications turned off. If users run
other applications along with Travi-Navi, the actual battery

TABLE II

POWER CONSUMPTION MEASUREMENTS ON SAMSUNG GALAXY
NOTE3 WITH A 3200mAh BATTERY

TABLE III

POWER CONSUMPTION MEASUREMENTS ON HTC DROID INCREDIBLE

2 WITH A 1450mAh BATTERY

life would be shorter than expected. To study the power
consumption in real usage scenario, we run Travi-Navi to
collect navigation traces and navigate followers with the
default background services turned on. With the same SGS2,
we collected navigation traces covering one floor of our office
building and a nearby shopping with total walking distances of
about 1.2km and 2.5km, respectively. The total trace collection
of 3.7km took around 40min. After the trace collection,
we notice 26% drop in the battery life of the SGS2. Travi-
Navi in the follower mode does not need to capture pathway
images but needs to perform particle filtering. We navigated
a follower to the two destinations and measured 22% drop in
the battery life.

The current version of Travi-Navi has not yet been exten-
sively optimized for energy efficiency. Travi-Navi may adopt
multi-mode operation to reduce the power consumption by
reducing the sampling rate when the tracking accuracy is
sufficiently high. Travi-Navi may reduce the image sampling
rate and the image updating rate to save energy and bene-
fit from the energy efficient mobile vision techniques [15].
When magnetic field distortions exhibit sufficient discrimina-
tive patterns, Travi-Navi may disable WiFi scans and weight
particles solely with magnetic measurements. Travi-Navi
can leverage the adaptive particle filtering techniques (e.g.,
KLD-sampling [29]) to reduce power consumption. Travi-
Navi can benefit from energy efficient co-processor architec-
tures for sensor fusion [30].

V. BOOTSTRAPPING LOCALIZATION

We explore the possibility of bootstrapping indoor localiza-
tion with Travi-Navi. Once a comprehensive indoor localiza-
tion service is built, we can navigate users from any point
to any point. We weave 4 guiders’ traces using the shortcut
detection techniques (Section III-D) with the longest trace
as the backbone seed as in Figure 24. The dead-reckoning
trails (e.g., trace 1) are distorted compared with the ground
truth indoor pathways (Figure 14), due to magnetic field dis-
tortion inside buildings and sensor noises. If the geo-location
of some points on trails (e.g., entrances and destinations) are
known, we can scale and rotate the merged trails to map
corresponding points to the geo-coordinate system via linear
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Fig. 24. Guiders’ traces are weaved to build a navigation tree to cover most indoor pathways.

Fig. 25. CDF of location error on pathways.

transformation [7], [31]. We note that in order to merge several
traces, the traces need to have overlapped segments. In the
experiment, we assume that the coordinates of the starting and
the ending point in each trace are known and map the traces
to the geo-coordinate system. The linear transformation does
not change the localization errors measured in walking steps.

We note that the targeted indoor environment was well sur-
veyed and fully covered by the navigation traces. The guiders
collect WiFi fingerprints during walks and each fingerprint is
labeled with the detected steps as in Travi-Navi. We locate
the users by looking up the nearest WiFi fingerprints [2]. We
note that the fingerprints are only sampled on pathways by the
guiders, and thus the users cannot be accurately located if they
are not on the pathways (e.g., in offices). If a user walks a few
steps (e.g., 5 steps), we can exploit magnetic field readings and
search for the best DTW matches (Section III-D) to enhance
the WiFi fingerprint based localization. For the evaluation pur-
pose, we manually input the ground truth locations. Figure 25
plots CDF of localization errors with/without magnetic field
readings. In the figure, we see that it is possible to roughly
locate users on the pathways using WiFi fingerprints with the
90th percentile of 7 steps. With the enhancement of magnetic
field readings collected during 5 walking steps of users, we can
refine the localization and achieve higher accuracy. As studied
in literature [32], the localization accuracy in the area largely
depends on the quality of fingerprints (i.e., WiFi, magnetic
signals) in terms of density, stability, diversity, etc. In order
to build a comprehensive indoor localization system, we need
to motivate a large of shop owners to collect and share their
navigation traces.

VI. RELATED WORK

Indoor localization is an extensively studied field. Many
systems such as Cricket [33] and PinPoint [34] achieve high
position accuracy with dedicated hardware deployment. Many
methods such as Radar [2] and Horus [3] leverage existing
WiFi infrastructure. Some recent works explore the magnetic

field for indoor localization [21], [35]. All these methods
require labor-intensive site surveys. Participatory systems like
PlaceLab [36], ActiveCampus [37], and LiveLabs [38] eval-
uate localization in the real world. Leveraging rich sensing
modalities on smartphones, SurroundSense [12] infers logical
surroundings from ambient signatures.

Many crowdsourcing-based indoor localization systems [6],
[7], [17], [31], [39], [40] lack incentives to attract enough
participation especially when the services cannot provide ben-
efits. Unlike those works, Travi-Navi enables users to easily
deploy their own navigation services without comprehensive
localization services and thereby directly benefit from ser-
vice deployment, while the crowdsourcing systems typically
require huge number of volunteers who may not directly
benefit from participation.

Technique-wise, Travi-Navi draws strength from prior iner-
tial sensor based tracking [7], [17], [19], which typically
assumes the availability of floor maps and confine dead-
reckoning drifts with map constraints. Instead, Travi-Navi
intelligently fuses magnetic and WiFi signals to accurately
track a user’s progress on a guider’s navigation trace and
provides the room-level navigation. Some works [5], [6],
[41] seek to construct indoor maps and bootstrap localization
services exploiting walking traces shared by crowds. They
identify various landmarks to merge user traces, which is
similar to one of the shortcut identification cases in Travi-Navi.
Jigsaw [41] extracts and leverages geometric features from
images using computer vision techniques to enhance floor map
reconstruction.

Escort [31] navigates users to their friends inside build-
ings without relying on accurate localization services. Escort
corrects dead-reckoning drifts leveraging crowd encounters
and special audio beacons. Riehle et al. [35] navigate
blind users leveraging magnetic distortions and give audio
instructions. ARIANAA [4] sticks colored tapes along the
path, and visually impaired users may capture the tapes using
smartphone cameras and follow the path. Unlike previous
methods, Travi-Navi augments indoor navigation with motion
vision by providing followers with the guider’s pathway
images. Travi-Navi enables a user to easily bootstrap navi-
gation without infrastructure support.

Recent advances in mobile sensing and computer vision
open new research opportunities. OPS [14] locates dis-
tant objects by synthesizing GPS localization and images
taken from different angles with the Structure from
Motion (SfM). TagSense [42] tags images with locations
and activities inferred from smartphone sensors. FOCUS [43]
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indexes crowdsourced videos via content-based clustering
with the complementary synergy of SfM and sensor hints.
GigaSight [44] proposes a framework for crowdsourcing
videos that enables deep content-based search. OverLay [45]
presents a holistic design of mobile augmented reality for
ready-to-use mobile computing platforms. iGaze [46] proposes
a hardware software co-design of head-mounted eye gaze
tracking system to capture and understand user’s intention.
Rallapalli et al. [47] develop a system which leverages smart
glasses to study physical browsing without infrastructure
support or user input. LiKamWa et al. [15] analytically
characterize energy consumption of image and video cap-
ture and propose quality-energy tradeoff strategies. Travi-Navi
augments indoor navigation with mobile vision, and avoids
unnecessary power consumption and computation leveraging
motion hints inferred from IMU sensors.

VII. CONCLUSION

This paper describes our attempts to design, implement,
and evaluate Travi-Navi, a vision-guided indoor navigation
system. The key idea is to enable self-motivated users to
easily deploy indoor navigation services without assuming a
comprehensive indoor localization service or even the avail-
ability of floor maps. We incorporate magnetic field distortion
and WiFi signals in particle filtering to ensure accurate user
tracking. We further develop effective methods to detect short-
cuts among overlapping and intersecting navigation traces.
We devise a method to automatically capture high quality
images while walking using motion hints. We implicitly
leverage the users’ visual recognition capability by providing
them pathway images to correct slight direction ambiguity
and enhance navigation experiences. Extensive experimental
results and feedback from user trials confirm the effectiveness
of Travi-Navi. We plan to further optimize Travi-Navi and
reduce power consumption in the future.
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