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Abstract—Estimating the number of RFID tags is a fundamental
operation in RFID systems and has recently attracted wide atten-
tions. Despite the subtleties in their designs, previous methods esti-
mate the tag cardinality from the slot measurements, which distin-
guish idle and busy slots and based on that derive the cardinality
following some probability models. In order to fundamentally im-
prove the counting efficiency, in this paper we introduce PLACE, a
physical layer based cardinality estimator. We show that it is pos-
sible to extract more information and infer integer states from the
same slots in RFID communications. We propose a joint estimator
that optimally combines multiple sub-estimators, each of which
independently counts the number of tags with different inferred
PHY states. Extensive experiments based on the GNURadio/USRP
platform and the large-scale simulations demonstrate that PLACE
achieves approximately 3 ~ 4 performance improvement over
state-of-the-art cardinality estimation approaches.

Index Terms—RFID, cardinality estimation, physical layer.

I. INTRODUCTION

ADIO FREQUENCY IDENTIFICATION (RFID) tech-

nologies [21] have been developing rapidly in recent
years. Due to the low cost and small form factor of RFID tags,
RFID technology is widely used to label a large number of
items and support inventory management [26], item tracking
[16], access control [3], etc. In this paper, we mainly focus
on passive or semi-passive RFID tags that backscatter reader
interrogation signals for communications.

Counting the number of tags is a fundamental operation.
Knowing the tag cardinaltiy can facilitate many primary op-
erations in RFID systems such as tag identification [27] and
tag searching [29]. An estimation with guaranteed accuracy
normally suffices for the practical purposes. As such, many
probabilistic counting methods [4], [8], [11], [12], [17], [18],
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[28], [31] trade the estimation accuracy for the execution time.
Previous works typically measure the states of f communica-
tion slots, where each tag responds in one random slot. The slot
state can be binary if we distinguish busy and idle slots, or it
can be ternary if we further differentiate singleton and collision
slots. Thus, the tag responses in f slots can be represented with
a f x 1 binary or ternary sequence, with zeros representing idle
slots. Intuitively, when a larger number of tags participate, we
expect more tag responses and consequently fewer idle slots in
the response sequence. Despite the subtleties in design details,
previous methods estimate the tag cardinality by examining
the state of each slot in the response frame and following a
probability model to derive the cardinality.

For instance, one previous work EFNEB [8] uses the first
busy slot to estimate, while ZOE [31] computes the ratio of
zero entries over f slots and derives the tag cardinality. The
most recent work [4] advocates the importance of two-phase es-
timation, and approaches theoretical optimal performance with
the binary responses. As only 1 bit or slightly more informa-
tion is extracted from each slot, previous methods need sub-
stantial number of slot measurements to guarantee an estimation
accuracy.

In this paper, we present PLACE, a Physical LAyer Cardi-
nality Estimation scheme which extracts more information from
each tag response slot, thereby achieving higher estimation effi-
ciency. Unlike previous methods which only distinguish binary
or ternary states in each slot, we show that it is possible to detect
the number of concurrent tag responses and thus infer integer
states from the same slot at RFID physical layer.

To illustrate the possibility of detecting integer slot states,
Fig. 1 plots the received signals of real data traces when 0,
1, 2, and 3 tags respond in the same slot: Fig. 1(a)—(d) depict
amptitude signals in the time domain and Fig. 1(e)—(h) are the
scatter plots of the received physical symbols in quadrature and
in-phase components on the I-Q plane. Due to certain modu-
lation schemes, the received signal in the I-Q plane will form
certain number of clusters, each of which represents one mod-
ulation state. Such a set of clusters is called the constellation
map of the received signal. These traces are collected through
our measurement testbed including the GNURadio/USRP?2 plat-
form and WISP tags (testbed settings detailed in Section II).

In Fig. 1, we find that while straightforward measurement of
signal strength levels in time domain can only tell busy or idle
state of the slot, we observe from Fig. 1(e)—(h) that if k& tags
reply at the same time, 2* symbol clusters are clearly formed
in the corresponding constellation map. This is because each
tag takes one of the two states by either reflecting or absorbing
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Fig. 1. Tagresponse signals and their corresponding constellation maps. (a) RN-16 signal of noise; (b) RN-16 signal of 1 tag; (c) RN-16 signal of 2 tags; (d) RN-16
signal of 3 tags; (e) noise, 1 cluster; (f) 1 tag, 2 clusters; (g) 2 tags, 4 clusters; (h) 3 tags, 8 clusters.

radio waves from the RFID reader. Such observation inspires us
to detect the exact number of concurrent tag responses in each
slot. Ideally, we can infer the number of responding tags from
the number of clusters formed, and thereby extend the binary or
ternary sequence to an integer sequence.

Although simple in concept, the implementation of physical
layer estimation entails many practical challenges. (1) Accurate
and efficient estimation of the symbol clusters is non-trivial. In
particular, the symbol clustering and counting operation has to
be accommodated into the time frame of each RFID slot. In this
paper, we design a slot state detection algorithm that divides the
I-Q plane into grids and derives the symbol clusters based on
the symbol densities of grids. The proposed SSDA algorithm
takes only millisecond time in comparison with general clus-
tering algorithms that may take hundreds of seconds. (2) Novel
cardinality estimator needs to be designed to make the best use
of sequences of integer-state transmission slots instead of pre-
vious busy/idle slots. The proposed PLACE scheme combines
multiple estimations obtained from each integer slot state and
uses an optimal joint estimator such that the overall variance is
minimized. (3) Due to noises in practical RFID transmissions,
the cluster estimation output inherently contains errors. We run
full experiments to understand such errors and analyze the im-
pact on final cardinality estimation accuracy. Our analysis and
experiments show that the developed probabilistic estimators in
PLACE tolerate the error level from practical measurements.

PLACE is comprehensively evaluated on our testbed built
with the GNURadio/USRP platform and WISP tags. We per-
form large-scale simulations to compare with state-of-the-art
cardinality estimation schemes. Experiment and simulation re-
sults demonstrate that PLACE achieves approximately 3 ~ 4x
performance improvement.

The rest is organized as follows. Section II introduces the
background of RFID system and explains our initial observation
from the software defined testbed. Section III presents our slot
state detection algorithm. Section IV describes mathematically
how PLACE utilizes multiple states of slots to achieve high

RFID counting efficiency. Section V analyzes how received
signal SNR impacts the slot state detection accuracy and sug-
gests an error compensation scheme to enhance the cardinality
counting performance. Section VI provides experiments and
simulations to evaluate PLACE. Section VII overviews the re-
lated works. Section VIII concludes this paper.

II. BACKGROUND

A. Problem Description

Following previous works [4], [8], [11], [12], [17], [18],
[26]-[29], [31], we consider a large-scale RFID system con-
sisting of a number of RFID tags covered by one RFID reader.
The RFID systems may use lightweight passive RFID tags or
powerful active tags.

We exclusively study the RFID communications working at
the 900 MHz UHF band. Current commodity RFID systems
adopt the frame-slotted Aloha model, where a frame is divided
into a number of slots. Each of RFID tags randomly chooses one
slot in the frame to reply. As a result, one slot might be idle, if
no tag responds in the slot; or busy, if at least one tag responds.
Instead of replying with a 96-bit tag ID [1], which is used in
identification-based counting method [27], each tag only needs
to reply with a RN16 sequence in probabilistic cardinality esti-
mation approaches.

Suppose the actual tag cardinality is ¢, and our estimation is
t. A user-specified accuracy requirement (¢, §) can be specified
as follows:

Pr{li—t/<et}>1-34. (1

For instance, if the actual number of tags is 1000 and a user
specifies the requirement as (5%,1%), then the estimation result
is expected to be within the interval [950,1050] with a proba-
bility >99%. An ideal estimation approach is expected to meet
the estimation accuracy with the minimum execution time.

Many research efforts have been devoted to improve the
cardinality estimation efficiency [4], [8], [11], [12], [17], [18],
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Fig. 2. Our testbed with a GNURadio/USRP2 platform and 4 WISP tags.

[28], [31]. Despite the differences in design details, these works
estimate the tag cardinality by measuring the slot states and
differentiating idle and busy slots, where each tag randomly se-
lects a slot and sends a short message. For instance, EFNEB [8]
infers the tag cardinality from the position of the first busy
slot. ZOE [31] computes the ratio of idle and busy slots and
thereby derives the tag cardinality. ART [18] measures the
average run of busy slots to estimate the tag cardinality. Above
approaches [8], [18], [31] adopt the two-phase estimation,
where in the first phase the system parameters are optimized
to ensure high estimation efficiency in the second phase. One
most recent work [4] gives an in-depth analysis and explicitly
emphasizes the importance of the two-phase design. To the
best of our knowledge, all existing works do not leverage the
RFID physical layer information. They only extract binary
information from each short slot in the frame.

B. Initial Observation From Our Software Defined Testbed

To explore the possibility of cardinality estimation with PHY
layer information of RFID transmissions, we set up a testbed
with the GNURadio/USRP software defined radio and the WISP
tags as depicted in Fig. 2. We use one USRP RFX900 daughter-
board working at the 900 MHz UHF band to down-convert the
radio signals to the base band. After the down-conversion, the
physical layer symbols are transferred to a laptop via a gigabit
ethernet link for digital processing. The physical layer sampling
rate of the software defined RFID reader is set to 4 million sam-
ples per second (MS/s). Thus, the software reader samples 4000
physical symbols every 1 ms. At the physical layer, the USRP
reader can retrieve the in-phase and quadrature components of
each received symbol, which corresponds to a sample at the [-Q
plane.

For each RN16 transmission, a commodity tag needs to send
a preamble prior to the RN16 payload. The transmission time
of an RN16 varies from 0.02 ms to 8 ms, depending on the
backscatter link frequency (BLF) as well as the coding scheme
(e.g., FMO, Miller-4) [1].

In our software testbed, the WISP tags are programmed to
encode the RN16 messages with Miller-4 and backscatter at 64
kbps, which takes around 2 ms.

We collect more than 500 physical layer traces when dif-
ferent number of tags concurrently transmit RN16 messages.
In Fig. 1, we present 4 instances of received RN16 slots
with different number of responding tags. In Fig. 1(a)—(d),
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for illustration purposes, we intercept the first 600 samples
(corresponding to preambles of RN16) of the approximately
8000 samples of each trace. Fig. 1(a)—(d) plot the magnitudes
of received symbols. Fig. 1(a) measures the background noise
when no tag transmits in the slot. When one tag backscatters
its RN16 by reflecting or absorbing radio signals, as shown
in Fig. 1(b), the received signal strength at the reader may
vary depending on the message content. Current commodity
readers set an empirical magnitude threshold to decode the
backscattered message. When 2 tags transmit simultaneously,
we observe the tag collisions as in Fig. 1(c). In such a case,
commodity readers cannot reliably decode the tag collisions,
since the threshold based method no longer works. We cannot
differentiate the number of colliding tags when more than 2
tags transmit together as in Fig. 1(c) and Fig. 1(d), by solely
examining the magnitude of received signals.

When we examine the physical symbols in the I-Q plane as
depicted in Fig. 1(e)—(h), however, we see that the symbols ex-
hibit distinct clustering patterns, depending on the number of
colliding tags. Fig. 1(e) plots the physical layer symbols that
are measured when no tag transmits. If there is no noise, all
physical layer symbols overlap at one point in the I-Q plane.
In practice, due to background noise (which generally follows
Gaussian distribution [32]-[34], the symbols spread around and
form a cluster as shown in Fig. 1(e). When 1 tag backscatters
alone, 2 clusters emerge in the I-Q plane as in Fig. 1(f). Each
cluster represents one possible transmission state, i.e., idle or
backscattering. We notice that a few samples locate in a narrow
band between the two clusters, because the tag takes very short
time to transit between the two transmission states. When 2 tags
transmit simultaneously, we find that the I-Q plane contains 4
clusters as in Fig. 1(g). This is because we have 4 possible trans-
mission states when 2 tags transmit simultaneously. In Fig. 1(h),
we see that the number of clusters doubles as one more tag joins
in the transmission. Comparing Fig. 1(g), (h) with Fig. 1(c), (d),
we see that the clustering pattern of physical symbols in the I-Q
plane contains substantially richer information that allows us to
derive the number of colliding tags in each slot.

The theoretical explanation for above observation is as
follows. For passive RFID tags, tags transmit their signals by
backscattering the readers continuous wave and use On-Off
Keying (OOK) modulation scheme. In OOK, each tag has two
signal states (1) and (0). When multiple tags reply in the same
slot, their responses will add up together and their modulation
states can combine in all possible ways. Therefore, when k tags
reply concurrently, 2% signal states exist and 2* clusters appear
in the constellation map. Although our observation is based on
GNURadio/USRP2 platform and WISP tags, we believe that
similar observation can also be spotted with commercial RFID
readers and tags because of the principle in OOK modulation
scheme.

In practice, many factors affect the obtained constellation
map of the backscattered signal. The major factor is the number
of replying tags %k that determines the number of physical
symbol clusters. Other factors that affect the constellation map
include tag type, placement, product providers, etc., which
mainly affect the shape of the constellation map (e.g., cluster
sizes, positions, the distances in between) but not the number
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Fig. 3. An illustrative example of Slot State Detection Algorithm (SSDA).
(a) Physical layer symbols. (b) Filtered grid density matrix.

of clusters. In our experimental evaluation in Section VI, we
test data traces with different tag placements and characterize
other factors with different SNRs of tag signals.

III. SLOT STATE DETECTION ALGORITHM

From the initial experiments, we see that it is possible to infer
the number of colliding tags by clustering the physical sym-
bols in the I-Q plane. Traditional clustering algorithms, how-
ever, are inadequate to serve our purpose for at least two reasons.
First, many clustering algorithms (e.g., k-means [15]) require a
priori knowledge of the number of clusters. Obviously, such al-
gorithms cannot be directly used since the number of clusters is
exactly the unknown that we need to derive. Second, although
some clustering algorithms (e.g., DBSCAN [6]) do not require
the priori knowledge of the cluster number, they typically incur
high computational overhead. In particular, DBSCAN incurs a
computation overhead of O(I?), where I denotes the number of
input samples. In our system, we need to cluster thousands of
symbols in at most 2 ms, i.e., the RN16 slot length.

In this section, we propose a slot state detection algorithm
(SSDA) to efficiently process the physical layer symbols and
accurately measure the number of colliding tags in the slot. The
proposed SSDA method only incurs a computation overhead of
o).

Intuitively, SSDA leverages the fact that samples in one
cluster follow a 2-D Gaussian distribution due to channel
noise [32]-[34], and consequently we expect a peak grid for
each cluster. Thus, we measure the density of samples in each
small grid and count the number of clusters by searching the
local maximum in the I-Q plane. The input to SSDA is the
physical symbols sampled in one slot. The output of SSDA is
the number of responding tags in the slot. The whole process
of SSDA contains the following three steps:

Step 1: Calculate the Sample Density in the I-Q Plane: We
first find the min and max values of both in-phase and quadra-
ture components over all the physical symbols, represented
with complex numbers. We then divide the rectangular area
into small grids, whose size is set to 0.01 x 0.01. We calculate
the symbol density of each grid by counting the number of
symbols within the corresponding grid.

Step 2: Filter Out the Noise Grids: We set an empirical
threshold to differentiate all grids into signal grids and noise
grids. If the density of a grid is above the threshold, the grid is
considered as a signal grid; otherwise, we filter out the noise
grid. Fig. 3 depicts how the raw samples of physical symbols
in Fig. 3(a) are filtered to obtain the density matrix in Fig. 3(b).
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A constant threshold cannot work well since the grid densities
may vary, depending on the number of samples as well as the
number of clusters that are formed in the I-Q plane. Thus, we
propose to use a percentage threshold PT as follows. Suppose
there are I data samples in one slot. We set the grid density
threshold to be PT x [ for a percentage threshold of PT.

Step 3: Calculate the Number of Responding Tags: We count
the number of clusters C' by counting the number of the local
maximums of sample density in the I-Q plane. In principle, if
k tags collide together in a slot, we should observe C' = 2%
clusters. Due to noise, we have C' < 2% in practice. Thus, we
compute the number of responding tags & as [log, C'.

In the following, we study the impact of two key system pa-
rameters in SSDA—the percentage threshold, and the number of
physical samples collected in one slot. The empirical percentage
threshold of SSDA influences detection accuracy in practice: a
high threshold may miss the cluster peaks, while a low threshold
cannot adequately filter out noise grids.

The number of samples collected in one slot is determined by
the slot duration and the sampling rate. As the C1G2 standard
supports different combinations of backscatter link frequencies
and modulation schemes, we can reduce the slot duration with
higher link frequencies and coding rates, so as to reduce the
transmission time and the computation overhead involved in
SSDA.

We carry out trace-driven evaluations to study the influence
of the two system parameters. We sample the physical symbols
at 4 MS/s on our testbed and the slot duration is 2 ms. We inter-
cept varied portions of the symbols as input to SSDA. We use an
interception rate I R to represent the intercepted portion, e.g., an
interception rate IR of 10% means only the first 10% of sam-
ples are processed by SSDA. We program the WISP tags and
let different number of tags concurrently send RN16 messages
in each slot. We record the number of responding tags as the
ground truth and measure the detection accuracy. The accuracy
is defined as the ratio of correctly detected slots to the number
of tested slots.

Fig. 4(a) plots the detection accuracy with the varied per-
centage threshold ranging from 1% to 4%. We measure the de-
tection accuracy with 5 different interception rates. In the figure,
we find that a small percentage threshold (e.g., <0.5%) leads to
low detection accuracies, because noise grids cannot be filtered
out. With the same interception rate, a percentage threshold
within [0.5%,1.5%] consistently achieves high detection accu-
racies. More importantly, we find that the detection accuracy is
less sensitive to the change of the percentage threshold within
[0.5%,1.5%]. Once the percentage threshold exceeds 2.0%, the
detection accuracy decreases as the threshold increases. This is
because with a higher threshold, some peak grids with relatively
lower grid densities would be accidentally filtered out. Thus, we
set the percentage threshold PT to 1%.

We study the impact of interception rates on the detection
accuracy. Fig. 4(b) plots the detection accuracy with different
interception rates. In the figure, we see that with PT = 1%
and IR = 100%, SSDA can achieve the detection accuracy of
above 95%. Moreover, the detection accuracy remains above
95% as long as the interception rate is larger than 50%. In other
words, SSDA only needs half of the physical symbols sampled
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Fig. 4. Detection accuracies of SSDA with different system parameters.
(a) Detection accuracy with different percentage thresholds (PT). (b) Detection
accuracy with different interception rates (IR).

within one slot, to accurately count the number of responding
tags. As long as the interception rate is higher than 30%, our
detection algorithm can achieve 90% detection accuracy. The
experiment results imply that we can potentially reduce the slot
duration to further reduce the transmission time.

IV. ESTIMATION ALGORITHM

As we can differentiate multiple slot states with SSDA, we
can devise several estimators for different slot states. For in-
stance, we can estimate the tag cardinality with the fraction
of singleton slots, double-tag-collision slots, triple-tag-collision
slots, etc. Finally, we design an optimal joint estimator by com-
bining estimations from these subestimators so that the overall
variance is minimized.

A. Estimation Protocol

In each slot, each of ¢ tags generates a random integer r using
a uniform hash function. We denote the index of the right-most
zero in the binary representation of r as K. As in the previous
schemes [17], [31], a tag will respond if R > 6, where 8 is a
parameter specified by the reader. Therefore, the probability p
that a tag will respond in a slot is as follows
p=27" 2)
Suppose X, (k = 0,1,2,...) is defined as an indicator of k
tag responses in a slot, i.e., X = 1, if k tags are in the slot;
X = 0, otherwise.
For each k, X follows the Bernoulli distribution, and the
probability of observing k responses in a slot is

PriXy =1} = (;i)pk(l e

where A = pt is the load factor.
Thus, the expectation E[X}] and variance 0%, are

Ao pLI pLA
E[Xk]:ﬁe Aok, = e A(1—Ee A). 4)

We define X, = L 31" X, ; as the arithmetic average of
m observations. Then, the expectation and variance of X}, de-
noted as E[Xy] and ai:k, are as follows

DA L s
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Since different & values will produce different estimations of
t with different variances, we give the following theorem which
provides the optimal combination of multiple sub-estimators.

Theorem 1: Suppose tg,t1,...,1} are k + 1 estimations for
t with variances 03, 0%, ..., 07, respectively. For the weighting

scheme Zk o Wi = land 0 < w; < 1, the Jomt estimator
t = Zi‘ o Wit; has a variance ofm = Zi‘ o wia?. The op-

timal weights w; (i = 0,1,...,k) for each sub-estimator that

minimizes a? 1S

oy

w;‘:ki,i:(),l,...,k, (6)
Zj:(] 1/‘732'
and the minimum variance is
1
2 _
tmin k : (7)

Y im0 1/0;'2

Proof: To minimize a , we define the following Lagrange
multiplier

k k
L{wg,wy, ..., wg, 3) = Zw?af + 7 (Z w; — 1) ,
i=0 i=0

where the term Zf:o w; — 1 incorporates the weight constraint

Zf:o w; = 1.
We let the partial derivatives of L over w; (i = 0,1,...
and 3 be 0. Thus, we have

ow —2wa +8=0,¢:=0,1,...,k
aL
aB

k)

zzf:owﬁlzo.

We solve the equations as follows

-

0,1,...,k

wr =

D SN
® 2
B = S

Thus, we have the minimum variance of ¢ as follows

t min

1
Zw O’ W.

=0 i

B. Computing the Number of Rounds m

In practice, m estimation rounds have to be repeated to further
reduce at%mm and meet the requirement in (1). In the following,
we analyze the minimum value of m.

LetY = % Since t is often a large number, according
to the law of large number, Y follows the standard normal dis-
tribution. Thus, we can derive

i 13
Pr{ ¢ <cy< S }215. (8)
9¢ min atnnin
Eq. (8) is equivalent to
t
¢ > ©)
Jf,min
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where ¢ meets the following condition

15:67‘]‘(%),

and er f () represents the Gaussian error function.
Since af min 18 @ function of m, we first compute o

(10)

2
t,min’

~

According to (7), atg min 18 @ function of o;. Because {j, is a
function of Xj, the }elationship between o} and Uifk, can be
explicitly expressed.

Suppose t;, = fi(X4) is expressed with the Taylor expansion

centered on E[Xg]:
Fi(Xi) = fi (E[XR]) ~ fi, (BIX]) (X — E[Xi]) . (D)

Since we have f,(F[X]) = E[fe(X}k)], we derive from (11)
that

Var [f(Xe)] ~ {fi (EIX]) Y Var[X).  (12)
We represent (12) as follows
of = 040%, s (13)
where
dty, 1 klte
e s oy BBV
dXk | px,) X s Ae(k — A)

Combining (4), (5), (7), (13), and (14), we obtain the expres-
sion of atg min, s follows:

a min mg()\)’ (15)

2
2 t
t,

where g(}) is

b= )2
g(A):ZaiA/M)1

1=0

(16)

After obtaining afﬂnin, we can derive the number of inde-
pendent measurements i to meet the accuracy requirement by
substituting (15) into (9):

2
™2 a0y

We see that g(A) depends on k& which is the maximum number
of detectable colliding tags in one slot. Fig. 5 measures m with
different & to meet different (e, §)-accuracy requirements. We
fix € t0 0.01 and specify 4 to 1%, 10%, and 20%, respectively. In
the figure, we find that regardless of the accuracy requirement,
PLACE needs to perform fewer rounds of estimation with the
increased k. This is because PLACE is able to augment the joint
estimator with more independent sub-estimators. Nevertheless,
the marginal gain of detecting more tags in each slot gradually
decreases as & increases. As the slot state detection accuracy
decreases when more tags collide together, we combine 4 sub-
estimators in practice.

We further tune X to maximize g(A) and minimize m. In order
to find the optimal A* to maximize g(\) and minimize m, we

an
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plot g{)\) against X in Fig. 6. We see that g(A) reaches the max-
imum value with \* =~ 5.2.

C. Two-Phase Counting Algorithm

We adopt the two-phase estimation design [4]. In the first
rough estimation phase, we adjust the threshold 6* so that the
load factor A approaches 5.2; in the second phase, we repeat m
independent estimation rounds with the optimal threshold 6*.
The weights that are necessary to compute the final estimation
{ are derived from X obtained in the first phase.

In the first rough estimation phase, the reader issues a 8
value and measures the fraction of each slot state, i.e., X
(k =0,1,2,3). We denote the fraction of slots with more than
3 concurrent responses as X4 . From (5), we have

B 3 B 3 )\k
EXyy]=1-> EX]=1-c*) :H' (18)
k=0 k=0

Fig. 7 plots E[X}] (k = 0,1,2,3,4+) with different \.
From this figure we observe that when A is around 5.2, E[X}]
(k=0,1,2,3) can be very small and hence cannot be accu-
rately measured with a small number of slots (e.g., 32 slots).
In contrast, E[X ] spans a relatively large range and can be
a good indicator of A. In addition, F[X,] monotonically in-
creases with A, which allows us to quickly converge to the op-
timal A using the binary search method.
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In particular, in each query round, we measure F[X,.] and
compute A according to (18). If \ is smaller than 3, indicating
a large @ value, we decrease @ in the next query round; if \is
larger than 7, indicating a small § value, we increase 8 in the
next query round; once A is in the range [3,7], we terminate the
rough estimation phase and set 6* and A to the corresponding
values in the last query round. We set the optimal range for Aas
[3,7] and we can always find the 8* to let ) fall into this range.
Suppose in a certain query round we compute that A> Tor
A < 3, in the following round we can increase or decrease
accordingly until ) falls into the range [3,7].

Based on the above rules, the reader adopts a binary search
method for 8 in the range [0,32] and starts a query round with
6 = 16. Since in practice 2° < t < 232 almost always holds
and A = £/2%, we can always find the optimal 6 in [0,32] to let
A approaches A*, i.e., 5.2.

Algorithm 1 shows the pseudocode of PLACE algorithm
for the reader without considering SSDA detection error. This
algorithm includes two phases: the rough estimation phase
(Line 1-24) and the second phase which performs tag set
cardinality within high accuracy (Line 25-38). The goal of the
first phase is to tune the optimal # so that the corresponding A,
with a form of ¢ /2%, approaches the optimal A* (i.e., 5.2) at the
reader side. We adopt a binary search method. In the beginning,
the reader sets the inital value of 8 to 16 (Line 1), which is
the middle of the range [0,32]. Next the reader broadcasts a
random seed s and 8 to all tags, waits for tag replies in the
coming 32 slots, and collect the values of X (k = 0,1,2,3)
(Line 2-13). Based on collected X}, )_(4+ can be deduced
(Line 14), which in turn can be used to compute a A according
to (18) (Line 15). We check whether the obtained A falls in the
range [3,7], where \* lies. If X is not in the range, the reader
adjusts @ accordingly and restarts another query round with 32
slots to obtain another A (Line 16-19). Otherwise the readers
stops the first phase and starts the second phase (Line 20-22).

At the start of the second phase, the needed number of slots
m is computed based on accuracy requirements and  from the
first phase (Line 24). Then the reader issues a query round with
the updated # and a random seed s, waits for tag replies in the
following m slots, and collects X, values (Line 25-35). For
each X}, a {;, is computed based on (5) (Line 36). The weights
wg (k = 0,1,2,3) are computed based on (5), (13) and (14)
(Line 37). Finally # is obtained through a weighted sum of
(Line 38).

Algorithm 2 shows the pseudocode for tags. Each time when
it receives a reader command with # and s (Line 2), it creates
a random binary sequence with 32 bits » by hashing s with its
own uniform hash function (Line 3). Next it computes the index
of the right-most zero in r, which is denoted as R (Line 4).
If R > 8, the tag replies in this slot with a RN-16 sequence.
Otherwise it does not reply (Line 5-9).

D. Discussion

There exist many other ways to utilize multiple slot states in-
formation for tag set cardinaltiy estimation. One such way is a
frame-based scheme described as follows. The reader provides
a long frame consisting of f time slots. Each tag participates in
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Algorithm 1 PLACE algorithm for RFID reader

I: 8+ 16

2: while TRUE do

3 Xge0,X]«0,X50X5¢0

4: i1

5:  whilei < 32 do

6: Generate a random seed s, broadcast a query
command containing (8, ), and wait for tag

responses
7 if k tags (k = 0,1, 2, 3) respond in the time slot then
8: X« X +1/32

9: else
10: Do nothing
11: end if
12: 1 —1+1

13:  end while

14: X4+%1—X0—X1—X2—X3
15:  Solve for (18) with X4, and obtain A
16: if A < 3 then

17: 6+ 8/2

18:  else if A > 7 then
19: 0+ (6+32)/2
20:  else

21: break

22:  end if

23: end while .

24: Set m < ¢?/(c*g(A)) based on (16) and (17)

25: XO (—0,)21 <_O,X2 (—O,Xg 0

26: 1 1

27: while i < m do

28:  Generate a random seed s, broadcast a query command
containing the updated 6 and s, and wait for tag

responses

29:  k(k=0,1,2,3) tags respond in the time slot
30: Xk <—X'k+l/m

31:  else

32: Do nothing

33:  endif

34: i+ i1+4+1

35: end while

36: For each X, (k = 0,1, 2,3), compute corresponding #;,
based on (5) and X = ¢/2°

37: Compute the weights wy (k = 0,1,2, 3) based on (5),
(13) and (14)

38: Estimate ¢ as { + Ei:o Wity

this frame with probability p. If a tag decides to participate, it
randomly chooses a slot in the whole frame to reply in. The
frame-based scheme is different from what PLACE does, as
PLACE requires each tag join each slot independently with cer-
tain probability. By counting the number of time slots N in
the frame where k (k = 0,1, 2, 3) tags reply, the tag set cardi-
nality ¢ can be estimated. Compared with PLACE, this method
reduces the interaction overhead between the reader and tags:
while PLACE requires the reader to broadcast query command
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Algorithm 2 PLACE algorithm for RFID tag

1: while TRUE do
2:  Receive reader query command with parameter # and
random seed s
3. Generate a random 32-bit sequence r by hashing s with
a uniform hash function
4:  Compute R, the index of the right-most zero in
if & > 6 then
Reply to the reader with RN-16 sequence in the
coming time slot
7 else
8: Do not reply
9: endif
0: end while

AN

1

for each slot, this method allows the reader to broadcast only
one query command and wait for all subsequent tag replies.
After obtaining N, a combination method is needed for final
estimation. One straightforward combination method is to sum
up the detectable number 9f tag regplies in the frame and use this
value divided by p, i, t = ., _, kNi/p. By tuning f and
p, optimal performance can be achieved for the use-specified
accuracy requirement. However, the frame-based scheme can
only provide unbiased estimations when f is proportional to ¢,
which indicates that this scheme will incur O(#) time overhead.
We run large-scale simulations to compare the perfor-
mance of the above frame-based scheme and PLACE. For the
frame-based scheme, we fix the frame size parameter f to 9000
and vary the tag set cardinality ¢, from 103 to 10°. For each ¢ we
run the frame-based scheme for 100 times and get the averaged
value as the final estimation. For PLACE, simliar settings are
applied. The only difference is that we provide 9000 total slots
for PLACE operation. We plot both the ideal estimation curve,
i.e., y = x, and the actual estimation curves of the two schemes
in Fig. 8(a). We observe that for the frame-based scheme, the
biased estimation occurs if £ > 10% > 9000, indicating that it
is not scalable with large tag set cardinality. In other words, we
need O(¢) slots to perform an accurate estimation of ¢, which
largely increases operation overhead. In constrast, PLACE al-
ways has an accurate estimation curve that nearly overlaps with
the ideal curve. Fig. 8(b) confirms the performance constrast
from the view of CDF. In Fig. 8(b), we fix ¢ to 50000 and f
to 1500. Each scheme is operated for 100 times to plot the
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CDF graph. We find that while the estimation distribution of
PLACE is centered around 50000, the median estimation of the
frame-based scheme is only 5400, which is seriously biased
from the ground truth. This is because the frame size is too
small compared with the tag set cardinality.

V. IMPACT OF SSDA ERRORS AND ENHANCEMENT

In this section, we analyze how the SSDA detection errors in-
fluence the estimation accuracy of PLACE and study the impact
of SNR on SSDA detection error.

A. Enhanced PLACE

We denote g;; as the probability of detecting state 7 as state j,
where 7,5 = 1,2,3,44. Specifically, if i = j, ¢;; indicates
the detection accuracy of state z. As empty slots (state 0) can
be accurately differentiated from busy slots by measuring the
signal strength, we only consider the detection accuracy of
state ¢, where ¢, 5 = 1, 2, 3, 44-. We use a detection rate matrix
Q = [4ij],, 4 to represent the overall detection performance of
SSDA.

We use a vector X = (X1, X, X3, X41)7 to represent the
actual fraction of each state. As the detection results of SSDA
may contain some errors, we represent the measurement results
as XP = (XE, XE XE, Xﬂ)T. Based on the definition of @,
we have X% = Q)Z . Thus, we can obtain X , which can be used
to generate an accurate estimation of ¢, as follows:

X=Q'XP, (19)
where Q ! is the inverse matrix of Q.

To estimate }, we perform SSDA with our traces collected
from the software defined testbed, which is described in
Section II. We set the percentage threshold to be 1% and the
interception rate to be 30%. Fig. 9 plots the state detection
accuracy of SSDA. The x-axis of Fig. 9 is the ground truth of
each tag response state, and the y-axis represents the detec-
tion results. We represent the measurement results with @ as
follows:

096 004 O 0

[ 008 084 009 O
@= 0 002 09 0.02
0 0 003 0.97

From the above (), we find the SSDA method achieves high
detection accuracies. For the detection errors, we find that
state k is more likely to be mistakenly detected as adjacent
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states. In practice, () can vary due to various factors, e.g.,
reader transmission power, interference to tag responses, etc. To
understand the impact of ) on the overall estimation accuracy
of PLACE, we approximate ¢ with )y as follows:

1-4qo qo 0 0
Qo—| ® 1-2¢0 g 0
0 ) 1-29 qo ’
0 0 90 1-qo

where gy can be specified according to empirical measurement
results. With @, we can study how different detection perfor-
mance of SSDA may impact the overall counting accuracy of
PLACE. We can recover X from X7 according to (19) and use
X for tag cardinality estimation. We name the enhanced PLACE
with the error compensation as EPLACE.

B. Impact of SNR on gy

In practice, the SNR of received tag response signal has sig-
nificant impacts on ¢q. In the following, we first provide a def-
inition for received signal SNR and then study the impact of
SNR on gg.

1) Definition of SNR of Received Signal: Data samples of
the received signal form clusters in the I-Q plane, each of which
represents a signal state. For each cluster, we can define a cen-
troid and radius: the centroid is the arithmetic mean of all data
samples belonging to this cluster; the radius is the averaged Eu-
clidean distance betwee each data sample and the cluster cen-
troid over all data samples in this cluster.

The signal power can be represented by the average ampli-
tude over all data samples of the reply signal. However, there
exists a signal state shift in the reply signal due to environmental
factors like device thermal noise, multipath, channel degrada-
tion, etc. Due to this reason, we need to find another point in the
I-Q plane to replace the origin and compensate for the state shift.
We choose this point as the centroid of the reference cluster,
whose centroid has shortest distance to the origin among all
clusters. Actually the reference cluster corresponds to the signal
state with lowest power among all signal states. The following
is the signal power expression:

!
1 .
=7 E dist(z;, 20),
i=1

(20)

where zg is the centroid of the reference cluster, z;
(i=1,2,...,1) represents each data sample of the tag response
signal.

The noise power can be represented by the radius of a cluster
since it indicates the spread of signal state. If multiple clusters
exist, we should average all cluster radiuses in theory. Later we
show that we can obtain the radius of the reference cluster in a
fast way. Thus, we measure the radius of the reference cluster
as the signal strength.

From the above we find SNR is closely related to the ref-
erence cluster. We use an example in Fig. 10 to illustrate
how to obtain reference cluster inforamtion in a fast manner.
Fig. 10(a) is the constellation map of the tag response signal
with & = 2. Fig. 10(b) is the constellation map of the noise
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Fig. 10. TIllustration on how to utilize the noise before tag response signal to
obtain the noise power and reference point. (a) Constellation map of the signal.
(b) Constellation map of the noise.

that comes before the signal and after the reader query com-
mand. The corresponding trace for Fig. 10 is chosen from our
collected traces described in Section 1I-B.

We find the only cluster in Fig. 10(b) has the same area as the
cluster in the lower left corner of Fig. 10(a). Since the lower left
cluster in Fig. 10(a) has shortest distance to the origin among
all clusters, this cluster corresponds to the signal state where
no tags reply with high power level, and hence is the reference
cluster by definition.

In real-time cardinality estimation operation, the centroid and
radius of the reference cluster can be quickly computed by col-
lecting data samples that come after the reader query command
and before the tag response signal. The SNR of tag response
signal can be also quickly obtained after collected all data sam-
ples of the reply. In contrast, computing SNR by performing
clustering operation on the whole tag response signal with DB-
SCAN takes significant time overhead.

2) Impact of SNR on gy Intuitively, a higher SNR leads to
further distances between clusters in the constellation map and
hence higher SSDA detection accuracy. According to the defi-
nition of ¢y in the previous subsection, gy is monotonically de-
creasing when SSDA detection accuracy is increasing. Conse-
quently, a higher SNR leads to lower ¢, value.

In practice, offline training can be used to build a look-up
table between SNR and ¢y. (An alternative way is to establish
the relationship between SNR and SSDA detection accuracy,
from which ¢y can also be easily obtained. In our evaluation sec-
tion, we adopt this method.) From the definition of gy in the Qg
matrix, we know that for different k& values, the corresponding
SSDA detection accuracy can be either 1 —¢g or 1 —2¢,. Hence,
the prequisite of measuring ¢q is to make clear how many tags
are replying concurrently. In the offline training process, we can
set, for example, 2 tags in front of the reader and perform the
training. In this case, the SSDA detection accuracy would be
1 — 2gy. When real-time tag set cardinality estimation is run-
ning, such a look-up table can allow real-time compensation for
PLACE estimation results.

VI. EVALUATION

In the following, we first compare SSDA with the bench-
mark clustering algorithm DBSCAN [6] in terms of the slot
state detection accuracy and the execution time. We then com-
pare PLACE with previous cardinality estimation schemes in-
cluding EFNEB [8], LoF [17], ZOE [31] and SRC [4]. Next, we
evaluate the impact of SSDA detection errors on the estimation
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detection accuracy. (b) Comparison of computational overhead.

accuracy as well as the compensation for the errors. Finally, we
study the impact of SNR of tag response signal on SSDA detec-
tion accuracy.

A. SSDA Evaluation

Our traces are collected with the GNURadio/USRP testbed
and WISP tags as described in Section II. For the experimental
purpose, we program the WISP tags and control the number of
responding tags in each slot. We record the actual number of
responding tags (varying from 1 to 4) as the ground truth in the
experiment.

We expect an ideal slot state detection algorithm to efficiently
process the samples and accurately count the number of re-
sponding tags. We compare the detection accuracy and the exe-
cution time of the proposed SSDA with the benchmark scheme
DBSCAN. We set the interception rate I R to 30% and the per-
centage threshold PT to 1% for SSDA.

In DBSCAN, a circular region centered on a point p with ra-
dius ¢ is called e-neighborhood of p. If at least T" points fall into
e-Neighborhood of p, p is called a core point. Otherwise if ¢
falls into the £-neighborhood of another core point, we call ¢
border point. A noise point is a point that is neither a core point
nor a border point. If p is a core point and ¢ is in £-neighborhood
of p, we say q is directly density-reachable from p. If ¢’ is di-
rectly density-reachable from g, and g is directly density-reach-
able from p, we say ¢’ is indirectly density-reachable from p
via g, i.e, p — g — ¢. DBSCAN groups all density-reachable
points into one cluster. In the experiment, we specify the optimal
parameters (¢ = 0.01, T = 0.01 x [), which maximize the de-
tection accuracy of DBSCAN. Although DBSCAN can be used
to count the number of responding tags in each slot, it incurs a
computation overhead of O(I?), where I denotes the number of
input samples.

Fig. 11(a) compares the detection accuracy of SSDA and DB-
SCAN. We present the overall detection accuracy as well as the
accuracy for each case with different number of responding tags.
Fig. 11(a) shows the following results. First, the overall accu-
racy of SSDA is comparable with that of DBSCAN. Specifi-
cally, the overall accuracies of SSDA and DBSCAN are 91.2%
and 96.7%, respectively. Second, in the case when 4 tags re-
spond together, SSDA achieves higher accuracy compared with
DBSCAN. This is because when 4 tags respond concurrently,
the I-Q plane becomes crowded with 16 clusters. As a result, the
inter-cluster distances become smaller and the borders between

2711

neighboring clusters become blurred. Thus, the border-based
DBSCAN may cluster the neighboring clusters together. In con-
trast, the centroid-based SSDA overcomes this problem and de-
rives the number of clusters by counting the number of local
maximums after filtering out noise. Since the local maximums
lie in the center of clusters, the distance between the centers of
two neighboring clusters tend to be larger than the distance be-
tween their borders.

Fig. 11(b) compares the computational overhead of SSDA
and DBSCAN. The physical layer symbols are collected with
the USRP reader and the symbols are transferred to a laptop
for processing. We execute both algorithms on the laptop and
measure the execution time of two algorithms. The laptop is
equipped with an Intel qual-core 2.9 GHz i7 processor and 15.4
GB memory running 64-bit Ubuntu 13.04. In the figure, the
x-axis is the trace index and the y-axis is the operation time
in seconds, presented in the log scale. We find that SSDA re-
duces the operation time compared with DBSCAN by orders
of magnitude. Specifically, the average operation time of SSDA
and DBSCAN is 1.3 ms and 84.5 s, respectively. SSDA sub-
stantially outperforms DBSCAN mainly due to the fact that
while DBSCAN incurs O(I?) computational overhead, SSDA
only incurs O(l) overhead. In addition, while DBSCAN has to
perform computation-intensive operations such as multiplica-
tion and square root calculation to calculate the distance be-
tween physical layer symbols, SSDA only needs to perform
lightweight operations such as addition and comparison.

B. PLACE Evaluation

We perform extensive simulations to compare PLACE with
previous cardinality estimation schemes. As most of these pre-
vious schemes do not tolerate noisy channels, we assume no
errors in slot state detection in the performance comparison.

We measure the overall execution time as the performance
metric, which counts both communication time and the com-
putation time. The communication time mainly consists of the
transmission time of reader's command and tags responses. The
computation time is mainly consumed in the execution of SSDA
for each slot. We ignore the computation time for benchmark
schemes. In practice, as SSDA can be executed in real time, the
cluster counting operation (which takes 1.3 ms) can be executed
in parallel with the signal sampling operation for each RN 16 re-
ception (which takes 2 ms) at physical layer. Thus, SSDA incurs
little extra time overhead.

Fig. 12 compares the overall operation time to meet different
estimation accuracy requirements. The actual tag cardinality
is 50000. In Fig. 12(a), we fix 4 to 20% and vary ¢, ranging
from 1% to 5%. From Fig. 12(a), we find that like benchmark
schemes, PLACE takes less time to meet the estimation ac-
curacy requirement of relaxed confidence intervals. Results in
Fig. 12(a) demonstrate that when ¢ = 1%, PLACE improves the
operation time performance over LoF, EFNEB, ZOE and SRC
by 18.71x,17.42x,3,78x and 3.19% on average. In Fig. 12(b),
when we fix € to 1% and vary § from 1% to 10%, we also find
that PLACE substantially outperforms benchmark schemes. In
particular, Fig. 12(b) shows that when § = 1%, PLACE im-
proves the operation time over LoF, EFNEB, ZOE and SRC by
23.75%,21.91x%, 4.62x and 4.02x on average.
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We provide each estimation scheme the same amount of ex-
ecution time to estimate the number of 50000 tags. We repeat
the estimation process of each scheme for 100 times. In Fig. 13,
we plot the CDF of estimation results for each scheme. From
Fig. 13, we find that the estimation results of PLACE are more
concentrated on the actual tag cardinality. Moreover, the tail
of PLACE is much shorter than those of EFNEB, LoF, ZOE
and SRC, indicating smaller estimation variance of PLACE.
Specifically, according to the estimation results, provided the
same amount of operation time, PLACE has 99 estimation re-
sults within the confidence interval [47500,52500], while SRC,
which performs best among the benchmarks, has only 91 esti-
mation results within the interval. According to the experiment
result, we find that given the same amount of operation time,
PLACE can estimate the tag cardinality more precisely and ac-
curately compared with other schemes.

C. The Impact of SSDA Detection Errors on PLACE

To evaluate the impact of SSDA detection errors on the es-
timation accuracy of PLACE, we measure the estimation accu-
racy with the ratio of the estimated tag population ¢ over the
actual population ¢ as in [17], [28], [31]. Ideally, the accuracy
should be 1, indicating a perfect estimation result.

We run the basic PLACE and the Enhanced PLACE
(EPLACE), which compensates for the errors and adjusts the
estimation results. We use gg to represent the slot state detection
error. We average over 100 runs to obtain each estimation
result.

Fig. 15(a)—~(c) plot the estimation accuracies of PLACE
and EPLACE, with g9 of 5%, 15%, and 25%, respectively.
The y-axis and x-axis represent the estimated number and the
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actual number of tags, respectively. For illustration purposes,
we plot the ideal curve ¥y = 2. From Fig. 15(a)—(c), we find
that without the error compensation, the estimation errors of
the basic PLACE increase with both the number of tags and
the slot state detection errors. Fortunately, EPLACE is able
to compensate for the errors and achieve high accuracy. The
experiment results of Fig. 15(a)—(c) demonstrate that EPLACE
is able to leverage the knowledge about the detection errors and
adjust the estimation results accordingly.

In Fig. 15(d), we vary the error rate from 5% to 25% and
measure the corresponding estimation accuracy. We fix the tag
cardinality to 50000. We specify the (¢ = 5%, § = 1%)-accu-
racy requirement, and provide PLACE the corresponding exe-
cution time. From Fig. 15(d), we find that as gy increases, the
estimation accuracy of basic PLACE decreases dramatically.
In contrast, the estimation accuracy of EPLACE remains rela-
tively stable and fluctuates around 1. Although EPLACE cannot
achieve the ideal estimation accuracy of 1, the estimation results
are all within the targeted accuracy interval of [0.95,1.05].

D. The Impact of SNR on SSDA Detection Accuracy

In this subsection we run experiments to evaluate the impact
of SNR on SSDA detection accuracy. For each of all traces, we
first compute its SNR. Next, we divide the whole SNR range
of all traces into small bins with equivalent length. For each
bin, we compute a SSDA detection accuracy as the ratio of the
number of correctly detected traces over the total number of
traces falling into this bin. We plot the results in Fig. 14.

In Fig. 14, the x-axis represents the SNR range. Each SNR
value indicates a SNR range, e.g., 13.18 dB represents the range
[13.18,16.38]. The y-axis is the SSDA detection accuracy for
each bin. To better show the impact of SNR on detection accu-
racy, we vary the interception rate (IR) of each trace from 0.05,
0.10 to 1. From Fig. 14 we find that in general, the SSDA de-
tection accuracy increases when SNR increases. This rule is es-
pecially obvious when the interception rate is low, while when
IR is high, e.g., 1, the increasement is not that significant. This
is because a higher IR indicates more data samples are used
as SSDA input. As a result, more redundancy is available for
SSDA and hence it is more robust to low SNR.

VII. RELATED WORK

A series of probabilistic approaches have been proposed
to improve the cardinality estimation efficiency [4], [8], [11],
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Fig. 15. Impact of go on estimation accuracy of PLACE. (a) go = 0.05; (b) go = 0.15; (¢) g¢ = 0.25; (d) Accuracy with varied gq.

[12], [17], [18], [28], [31]. Kodialam et al. propose the first
probabilistic counting scheme, Unified Probabilistic Estimator
(UPE) [11], which uses the fractions of empty, singleton and
collision slots to estimate the tag population. Qian ef al. propose
the Lottery Frame (LoF) scheme [17] to reduce the frame size
and avoid the problem of replicated counting. Han et al. present
the Enhanced First Non-Zero Based estimator (EFNEB) [8],
which quickly locates the first busy slot with the binary search.
Zheng et al. design the Probabilistic Estimating Tree scheme
(PET) [28], where a binary tree is used to organize the tags
and assist the tag probing. Shahzad et al. propose the Average
Run based Tag estimator (ART) [18], which estimates the tag
population with the average run length of non-empty slots.
Zheng et al. present the Zero-One Estimator (ZOE) [31],
where all tags respond in each slot with a certain probability
and the fraction of empty slots is used to estimate the tag
cardinality. Li ef al. [13] present an energy-efficient cardinality
estimation algorithm to save power for active RFID tags.
Chen et al. [4] emphasize the importance of the two-phase
design and study the theoretical limits of RFID counting ef-
ficiency. Gong et al. [7] efficiently estimate the number of
counterfeit tags. Liu ez al. [14] estimate the number of key tags.
Unlike those works that only leverage binary or ternary states
extracted from each slot, we propose a cardinality estimation
scheme which infers the number of colliding tags in each slot
at RFID physical layer and thereby improves the estimation
efficiency.

Previous works try to read multiple RFID tags by recovering
tag collisions at physical layer [2], [10], [19]. Shen et al. [19]
propose to use software defined radios to recover collisions of
HF RFID cards. Khasgiwale ef al. [10] decode the RN16 mes-
sage of UHF RFID tags so as to improve the tag arbitration ef-
ficiency. Some works [2], [5] present the theoretical analysis
on tag collisions and read a small number of tags in parallel.
Nevertheless, such deterministic identification schemes cannot
efficiently estimate the tag cardinality for large-scale RFID sys-
tems. Inspired by those works, we present a probabilistic es-
timation scheme which is able to extract and synthesize more
information from the RFID physical layer.

Many prior works study the problem of collecting data from
RFID devices. Yue ef al. [23] present a data collection scheme
using the Bloom filter. BLINK [25] improves the link layer per-
formance with link quality measurement and rate adaptation
for RFID devices. Buzz [20] recovers tag collisions at phys-
ical layer and collects data from RFID tags in an efficient and
reliable manner. Zanetti et al. [24] identify RFID tags using

the physical layer fingerprints. P-MTI [30] detects missing tags
from a set of known tags through PHY information. Different
from PLACE, P-MTI works with prior knowledge of combined
PHY information from known RFID tags. PLACE on the other
hand counts the number of an unknown set of tags. Tagoram [22]
tracks mobile tags by leveraging the phase information available
at commodity readers.

VIII. CONCLUSION

Estimating the number of RFID tags is a fundamental oper-
ation in RFID systems. In this paper, we introduce a physical
layer based cardinality estimator to fundamentally improve the
estimation efficiency. We first propose a slot state detection al-
gorithm to accurately count the number of responding tags in
each slot. We then devise a joint estimator to combine multiple
sub-estimators each of which estimates the tag population with
the slot state measurement results. Extensive evaluation results
show that PLACE substantially outperforms prior works. The
query processes for the RFID reader and tag in our proposed
algorithms do not completely follow the C1G2 standard. Nev-
ertheless, our proposed query process incurs less overhead than
the standard does. Similar slight modification to the C1G2 stan-
dard has been popular in most existing schemes [4], [8], [17],
[18], [31].
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