
Think Like A Graph: Real-Time Traffic
Estimation at City-Scale

Zhidan Liu ,Member, IEEE, Pengfei Zhou, Zhenjiang Li ,Member, IEEE, and Mo Li ,Member, IEEE

Abstract—This paper presents a graph processing based traffic estimation system, GPTE, which is able to achieve high accuracy

and high scalability to support city scale traffic estimation. GPTE benefits from its non-linear traffic correlation modeling and the

graph-parallel processing framework built on clustered machines. By representing the road network as a property graph, GPTE

decomposes the numerous computations involved in non-linear models to vertices and performs traffic estimation via neural network

modeling and iterative information propagation. This paper presents our experiences in designing and implementing GPTE on top

of the Spark, an emerging cluster computing framework. Extensive experiments are performed with real-world data input from

Singapore’s transport authority. Experimental results show that GPTE achieves as high as 88 percent accuracy in traffic estimation

and up to 8� performance gain in computation efficiency with the optimization techniques applied. Comparison study demonstrates

that GPTE outperforms the baseline solutions by 34 percent on accuracy and 46 percent on processing time.

Index Terms—Traffic estimation, graph-parallel processing, non-linear correlation modeling

Ç

1 INTRODUCTION

ACCURATE and timely traffic information is of essential
importance to urban transportation, and tremendous

efforts have been put in efficiently monitoring the traffic
conditions in the past decades. Conventional methods rely
on deploying intrusive sensing infrastructures, e.g., traffic
cameras or inductive loop detectors [43], to actively detect
traffic conditions. Due to the excessive deployment and
maintenance overheads, it becomes prohibitive when adopt-
ing such intrusive solutions at city scale, and as a result the
coverage is limited to certain busy road segments or junc-
tions inmost cities. Many recent studies resort to data-driven
solutions, where location reports collected from driving
vehicles on roads are leveraged to derive traffic conditions
[23], [41], [52]. Vehicles, equipped with GPS devices, can
periodically report their instant status including locations,
travel speeds, travel directions, etc. This information can be
used to estimate instant traffic speeds of roads covered by
probe vehicles. Such passive traffic sensing methods avoid
expensive infrastructure deployment and largely extend the
coverage of traffic estimation. As an example of practice, the
Land Transport Authority (LTA) [1] of Singapore is currently
making use of the GPS reports from 12000+ taxi fleet to
derive the city wide road traffic in its TrafficScan portal

that publishes the live traffic information to all Singaporean
citizens [2], [9]. Despite these advantages, such solutions
are inherently limited by the number of probe vehicles.
In TrafficScan, even with 12000+ taxis the available GPS
reports (which are generated every 30 seconds in each
15 mins time slot) are still sparse when compared with the
58000+ road segments of the city. The Google Traffic,1 with
its combined usage of traffic data acquired from local trans-
port authority (e.g., LTA in the case of Singapore) and
crowdsourced location reports from mobile phones, shares
similar limit in data availability and coverage.

Many works were proposed to address the data sparsity
issue in passive traffic estimation. Most of them exploit the
traffic correlations among different road segments to recover
the complete traffic from incomplete road measurements
[23], [40], [52]. The traffic correlations used in those works
are explicitly or implicitlymodeled linearlymainly to reduce
computations for large road networks. The practical traffic,
however, is influenced by various factors, e.g., intricate road
network, transport regulations, mixed traffic flows, etc., and
thus are much more complex than linearly, which requires
advanced modeling for more accurate estimation. There
exist a few studies that consider non-linear traffic correlation
models [4], [16], [40], all of which, however, suffer from
poor scalability due to enormous computation overheads
involved in non-linear models, which strictly limits their
practical applicability to larger scale traffic estimation.

This paper proposes a non-linear model to characterize
the traffic correlations and derive traffic with the 12000+
taxi probes from LTA. In order to cope with the heavy com-
putations introduced by the model, we develop a graph
processing framework that can be efficiently executed in
parallel on computer cluster. In the proposed framework, the
road network is represented as a property graph, where
vertices are road segments and edges are formed between

� Z. Liu is with the College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen 518060, China.
E-mail: liuzhidan@szu.edu.cn.

� P. Zhou is with the School of Software, Tsinghua University, Beijing
100084, China. E-mail: zhoupf05@tsinghua.edu.cn.

� Z. Li is with the Department of Computer Science, City University of
Hong Kong, Hong Kong. E-mail: zhenjiang.li@cityu.edu.hk.

� M. Li is with the School of Computer Science and Engineering, Nanyang
Technological University, Singapore 639798. E-mail: limo@ntu.edu.sg.

Manuscript received 5 Apr. 2018; revised 25 Aug. 2018; accepted 19 Sept.
2018. Date of publication 4 Oct. 2018; date of current version 28 Aug. 2019.
(Corresponding author: Zhidan Liu.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2018.2873642 1. The details how Google Traffic derives live traffic are not public.

2446 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 10, OCTOBER 2019

1536-1233� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0002-3296-3392
https://orcid.org/0000-0002-3296-3392
https://orcid.org/0000-0002-3296-3392
https://orcid.org/0000-0002-3296-3392
https://orcid.org/0000-0002-3296-3392
https://orcid.org/0000-0002-6047-9709
https://orcid.org/0000-0002-6047-9709
https://orcid.org/0000-0002-6047-9709
https://orcid.org/0000-0002-6047-9709
https://orcid.org/0000-0002-6047-9709
mailto:
mailto:
mailto:
mailto:

connected road segments. By distributing the property
graph among machines, we decompose all computation
tasks at each vertex and perform complete traffic estima-
tion via information propagation among vertices. This
solution embraces non-linear traffic correlations for higher
estimation accuracy and can be highly parallelized for
city-scale traffic estimation.

The idea being attractive, developing a practical system
out of it is challenging for at least two reasons. First, it is
non-trivial to model non-linear traffic correlations within a
graph. As taxis freely travel across roads, the traffic states of
graph vertices are randomly sampled and they form a time-
evolving graph. Due to such dynamics, the vertices with
known traffic states are changing over time. As a result, it is
impossible to maintain a fixed correlation model throughout
traffic estimations. Second, a number of system details need
to be carefully addressed when implementing the full
system. In particular, when we fit our solution into a cluster
computing platform,wemust not only consider computation
cost but also minimize the communication overhead associ-
ated with data exchange and computing threads running on
different machines. This requires wise treatments to the traf-
fic data given road network structure and characteristics.

We propose Graph-parallel Processing based Traffic
Estimation - GPTE, which addresses above challenges. GPTE
represents road network data as a property graph and
annotates vertex states with real-time traffic samplings.
GPTE builds artificial neural network (ANN) models to cap-
ture the correlations and iteratively propagates traffic infor-
mation from annotated vertices to those vertices of unknown
states. To deal with dynamics in the time-evolving graph, for
each unannotated vertex GPTE dynamically selects corre-
lated vertices from its annotated neighbors, and builds an
instant ANN model to infer its traffic state. We build GPTE
based on the latest cluster computing framework Spark [44],
and make use of interfaces provided by the recent graph
processing engine GraphX [14]. To reduce communication
cost during the cluster execution, we propose a geography-
aware graph partitioner that optimizes the data layout on
differentmachines.We improve the efficiency of information
propagation among vertices using multi-hop message
broadcast scheme and redundant message elimination.
In addition, we incorporate a set of optimization techniques
to improve the accuracy and efficiency of data processing.

To the best of our knowledge, this is the first real-time
traffic estimation solution that incorporates advanced traffic
correlation modeling for large scale road networks. We sys-
tematically evaluate the performance of GPTE with real-
world traffic data provided by LTA. The experimental results
show that in average GPTE can accomplish the traffic estima-
tion for the entire city in every 15 mins time slot in 34 seconds
and achieve as high as 88 percent estimation accuracy.

In the rest of this paper, we present the motivation
and design in Sections 2 and 3, respectively. The system
implementation is detailed in Section 4. Optimizations
are presented in Section 5. The evaluations are described in
Section 6. We review related works in Section 7. Finally
Section 8 concludes this paper.

2 TRAFFIC ESTIMATION WITH PROBES

The Problem. The road network of an urban city is composed
of a number of roads of different types, e.g., expressways,
major roads, minor roads, etc. Each road is further divided

into smaller road segments for better granularity in traffic
estimation. The traffic condition of a road segment ri can be
measured by the average traffic speed vi within a time slot,
which used to be collected via expensive sensing infrastruc-
tures, e.g., inductive loop detectors [43], at a few important
road segments. An appealing alternative that has been
recently practiced is data-driven and based on the traffic
samplings from probe vehicles. A typical traffic sampling
contains a timestamp, location, travel speed, travel direc-
tion, etc. [38]. For each road segment ri, its traffic condition
vi can be approximated as the average travel speed of all
probe vehicles passing by [40], [52]. The approximation is
considered credible if the road segment is sampled by a suf-
ficient number, e.g., � �, of probe vehicles [39]. The objec-
tive of traffic estimation is to derive the timely, accurate, and
complete traffic conditions for all road segments based on
the available traffic samplings from probe vehicles.

A concrete practice is TrafficScan [2] that has been devel-
oped and used by the LTA of Singapore. Since 1999, LTA
has been trying to exploit the traffic samplings collected
from driving taxis to conduct traffic estimation and pro-
vided such information to the public for their route plan-
ning. More than 12000 taxis have recently been engaged in
providing traffic samplings and the LTA is planning to scale
up to include the entire taxi fleet of over 21000 taxis in the
country for improved accuracy. The LTA solution, however,
has been severely suffering from the data sparsity issue all
the time. A particular road segment may not have any taxis
passing by at certain time slots, resulting in incomplete
road coverage. According to our statistics on the Singapore
taxi dataset (short for SG dataset and see more details in
Section 6.1), in average less than 30 percent road segments
(out of 58356 in total) are covered by taxi data in 15 mins
time slot. The current LTA solution applies space interpola-
tion to infer the traffic of uncovered roads, which delivers
poor accuracy [9].

Non-Linearity in Traffic Estimation. Other than the simple
interpolation method applied by the LTA, there have been
many studies that exploit spatial correlation among road
segments in order to complete the traffic estimation. The
traffic of nearby road segments is mutually influenced, and
thus their traffic conditions are highly correlated [23], [40],
[52]. We term it as traffic correlation in this paper. Previous
works explicitly or implicitly model the traffic correlations
linearly mainly to reduce the tremendous computation
overheads, and recover the complete traffic conditions by
exploiting techniques like regression [41], [48], matrix fac-
torization [39], tensor decomposition [33], [37], and com-
pressive sensing [23], [52]. The practical traffic, however, is
affected by a number of factors, e.g., intricate road network,
traffic regulations, traffic lights, mixed traffic flows, weather
condition, etc., and far more complex than linearly.

To better capture inscrutable traffic correlations, some
recent works suggest building a non-linear model by ANN
[4], [24], [35]. The ANNmodel is remarkable in representing
complex patterns from imprecise data, and enables us to
capture detailed traffic correlations for each road segment.
Specifically, for road segment ri and its n correlated road
segments, we can build a three-layer feed-forward neural
network to model their traffic correlations. The desired out-
put of the model is traffic condition vi of ri, while the input
layer consists of traffic conditions vj of each correlated road
segment rj. The hidden layer of the model contains ðnþ 1Þ

LIU ETAL.: THINK LIKE AGRAPH: REAL-TIME TRAFFIC ESTIMATION ATCITY-SCALE 2447

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

hidden unit2 hk. Both hidden and output units can use a
standard hyperbolic tangent (i.e., tanh) activation function.
Therefore, the ANN model includes n� ðnþ 1Þ input-to-
hidden parameters, ðnþ 1Þ � 1 hidden-to-output parame-
ters. With sufficient training data of m samples, a standard
back-propagation algorithm can be adopted to train the
ANN model by minimizing the mean square error as the
optimization objective. The computation complexity to train
an ANNmodel is Oðm � n2Þ.

For example, assuming the correlated road segments of
road segment r3 as depicted in Fig. 1a are r1, r2, r4, and r5,
we can build the three-layer neural network as shown in
Fig. 1b, which includes 4 input units, 5 hidden units, and 1
output unit. We train the model using historical traffic data,
and can use the derived model to connect r3’s traffic condi-
tion v3 with the traffic conditions of r1, r2, r4, and r5.

To examine the advantage of non-linear models over
the linear ones, we compare the traffic estimation accuracy
using ANN model and using a representative linear model,
i.e., multiple linear regression (MLR) [22], based on the SG
dataset. The MLR model has been widely used for traffic cor-
relation modeling in existing works [5], [23], [31], which
represents traffic condition of one road segment as a linear
combination of correlated road segments. Specifically, for a
target road segment ri and its n correlated road segments
rj; j ¼ 1; 2; . . . ; n, we can build the MLR model to capture
their traffic correlation to predict ri’s traffic condition cri
using the following equation:

cri ¼ b0 þ
Xn

j¼1
bj � crj ;

where b0 and bj are model coefficients [22]. With sufficient
training data, we can determine the MLR model using
least-square method. Similar to the ANN model, the MLR
model also takes the traffic conditions of n correlated road
segments as input to predict ri’s traffic condition. For com-
parison, we randomly select 500 road segments for each road
type from the Singapore road network (see details in Sec-
tion 6.1). For each test road segment, we select its directly
connected road segments for building both the ANN model
and the MLR model to capture traffic correlations. The accu-
racy is derived from the estimations of ANN/MLR models

and ground truth. The statistics in Fig. 2 show that ANN
model has much higher accuracy than MLR model on both
workdays and weekends. The gap is even wider on work-
days, which experience much heavier and more complex
traffic. In addition to high-level statistics, we compare their
modeling capability on individual road segments. Specifi-
cally, for one road segment ri, if ANN delivers higher accu-
racy than MLR we consider ANN beats MLR on ri, and vice
verse. We calculate the percentage of the road segments on
which ANN wins and find that ANN outperforms MLR for
73.5 and 78.9 percent of all test road segments on workdays
and weekends, respectively. In particular, their accuracy dif-
ferences larger than 1 percent account for 69.5 and 76.9 per-
cent for workdays and weekends, respectively. Moreover,
we also analyze the other 26.5 and 21.2 percent cases where
MLR performs better than ANN. In these cases, the accuracy
differences greater than 1 percent are no more than 53 per-
cent. These results show the gain of using ANN models to
accurately capture the complex traffic correlations.

Challenges. While ANN based traffic correlation model-
ing provides clear improvement in estimation accuracy, it is
challenging to introduce the ANN modeling for large scale
estimation. First, fine ANN modeling for traffic correlations
is non-trivial. A proper model needs to determine the correct
correlated road segments, which involves various combina-
tions in the road network space and thus results in huge com-
putations. In addition, the randommovements of taxis bring
uncertain availability of traffic samplings [5], which requires
dynamic ANN modeling during the estimation stage. The
inherent complexity in building ANNmodels will inevitably
introduce tremendous computation overheads, especially
when we scale the traffic estimation to the entire city that
involves tens of thousands of road segments and the related
ANN modeling. Such computation overheads may over-
whelmingly degrade the timeliness of traffic estimation.

3 THINK LIKE A GRAPH

To address the challenges, we present Graph-parallel Proc-
essing based Traffic Estimation - GPTE. In this section,
we detail how GPTE represents road network data as a
property graph and enables non-linear correlation modeling
based traffic estimation on the property graph.

3.1 Graph Representation
We model the underlying road network for traffic estima-
tion as a property graph GðV; EÞ, where road segments are
represented as vertices and edges are formed between any
two physically connected road segments. Fig. 3 depicts the
corresponding property graph for the simple road network
presented in Fig. 1a. As the traffic conditions of connecting
road segments are mutually influenced, the edges are thus
bidirectional. In such a property graph, each vertex ri owns
static properties (e.g., road type, road name, geographic

Fig. 1. (a) A simple road network. (b) The three-layer ANN model for cap-
turing the traffic correlations between road segment r3, r1, r2, r4, and r5.

Fig. 2. CDF of MLR and ANN model accuracy on capturing the traffic
correlations.

2. In this paper, we empirically set the number of hidden units in the
hidden layer as ðnþ 1Þ to balance the computation overhead and pre-
diction accuracy. We find that if we further increase the hidden unit
number, e.g., ðnþ 2Þ, the prediction accuracy improvement is less than
0.5 percent, while the ANN training time increases at least 1 second.
However, even the 1-second time increase for each individual ANN
model training could introduce about 81 minutes overall traffic estima-
tion delay, which prohibits the near real-time traffic estimation.

2448 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

information, speed limit vmax
i , neighbor list N h

i within h
hops) and dynamic properties (e.g., flag and vertex state vi).
Specifically, geographic information contains a series of lon-
gitude and latitude coordinates to describe the locations of
one road segment, with which we can match traffic sam-
plings of taxis to appropriate road segments they traveled
on. Speed limit vmax

i is the permissible maximum travel
speed on road segment ri, which can be acquired from the
transport agency. Neighbor list N h

i stores neighboring verti-
ces of ri within h hops. Vertex state vi is current traffic condi-
tion of ri, and flag indicates whether vi is known or not. The
users can easily incorporate other properties to the vertices if
necessary. In graph-parallel processing frameworks, each
vertex is able to send (and receive) messages along edges to
(from) neighboring vertices. Each message contains source
vertex ID, destination vertex ID, and source vertex state vi.
Based onmessage propagation and local vertex computation
with messages, different correlation models and inference
algorithms can be implemented on the property graph.

3.2 Dynamic Correlation Modeling
Basic ANN Modeling. Based on the property graph, a
straightforward approach to embedding non-linear traffic
correlations into traffic estimation is to pre-learn an ANN
model for each vertex3 and use this model for online vertex
state inference. For vertex ri, we can connect traffic condi-
tion vi with its immediate neighbors in N 1

i and build an
ANNmodel to capture their traffic correlations for inferring
vi. Ideally these ANN models can be learned offline to
lessen the computation burden of online traffic estimations.
However, it cannot work in practice due to the dynamics of
the property graph. As taxis randomly sample road traffic
conditions, the vertices annotated by sufficient probe taxis
change from time to time, resulting in time-evolving graph.
Such dynamics cause uncertain availability of input vertex
states in the ANN models and as a result the fixed ANN
model may not work when the vertex states are missing.
Fig. 4 presents a comparative example. Fig. 4a plots the traf-
fic samplings collected at 9:00 AM in a 15 mins time slot,
and Fig. 4b shows the corresponding property graph, where
vertices annotated by � 5 taxis are considered credible and
colored in red. Similarly, Fig. 4c shows the property graph
at 10:00 AM, where we observe substantial differences of
the annotated vertices when compared with Fig. 4b.

Dynamic ANN Modeling. To deal with dynamics in the
time-evolving graph, we propose the dynamic correlation
modeling. Instead of maintaining fixed ANN models, GPTE
builds instant correlation models during online traffic esti-
mation stage and performs traffic estimation via iterative
message propagation and vertex state inference on the graph.

Within each time slot, GPTE associates the traffic samplings
from taxis to vertices according to their locations. For a vertex
ri visited by sufficient number, e.g.,� �, of taxis, GPTE anno-
tates its state vi as the average of all travel speeds and sets
flag as true. Otherwise, GPTE keeps vi as unannotated and
sets flag as false. GPTE iteratively infers unknown vertex
states from annotated vertex states via dynamic ANNmodel-
ing,which consists ofmessage propagation, correlated vertex
selection, and ANN based vertex state inference. These pro-
cedures are repeated for iterations until all vertex states are
updated. The final output is the set of all vertex states, which
corresponds to the traffic conditions of the entire road net-
work.We detail each procedure in the following.

(1) Message propagation. In each iteration, only annotated
vertices send messages to neighbors along edges, and all
vertices receive messages. Each vertex ri will record the
annotated neighbors in a set Ci based on the received mes-
sages. The unannotated vertices make use of these messages
to infer their own states via dynamic correlation modeling.
Specifically, for each unannotated vertex ri, it will select
several most correlated vertices from the annotated neigh-
bors that have sent messages to ri, and then build an instant
ANNmodel to infer its own state vi.

(2) Correlated vertex selection. Although we can simply
treat all items in Ci as the correlated vertices of ri to build an
ANN model, it may result in poor inference accuracy when
considering uncorrelated vertices. To balance the computa-
tion overhead and model accuracy, GPTE only selects the
most k correlated vertices from Ci for ANNmodeling.

We select correlated vertices for ri from a data perspec-
tive. Specifically, we measure the traffic characteristics of
each vertex using its historical traffic data, and determine k
most correlated vertices for ri according to the correlations
of their traffic data. In practice, one vertex may have no
direct impact on the target vertex ri’s traffic state vi, while it
may implicitly affect vi when combined with several other
vertices. Identifying such a combination of vertices from the
graph space is computationally complex. GPTE adopts a
modified feature selection algorithm, mRMR [28], to effi-
ciently approximate the optimal correlated vertex selection.
mRMR is able to maximize the relevance while minimizing
the redundancy among selected features.

We treat vertex rj 2 Ci as a feature for inferring the state vi
of ri, and use mutual information as the criteria to measure
non-linear traffic correlations between vertices. For vertex
ri, we treat its state vi as a random variable Xi. Thus
its entropy is defined as HðXiÞ ¼ �P

x2Xi
P ðxÞlog ðP ðxÞÞ,

where x denotes a specific value ofXi, and P ðxÞ denotes the
probability of x over all possible values of Xi, which can be
calculated from historical traffic data. The mutual informa-
tion between two vertices ri and rj is measured as

IðXi;XjÞ ¼
X
x2Xi

X
y2Xj

P ðx; yÞlog P ðx; yÞ
P ðxÞP ðyÞ

� �
;

where P ðx; yÞ is the joint probability of x and y. IðXi;XjÞ is
used to measure the dependency between Xi and Xj. The
mRMR algorithm can be further updated by using the
mutual information and the selection criterion in Equa-
tion (1) to evaluate each unselected feature [11], [28]:

NJðXkÞ ¼ NIðXk;XiÞ � 1

jF ij
X

Xj2F i

NIðXk;XjÞ: (1)

Fig. 3. Road network data as a property graph.

3. In the following, we use vertex and road segment interchangeably.

LIU ETAL.: THINK LIKE AGRAPH: REAL-TIME TRAFFIC ESTIMATION ATCITY-SCALE 2449

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

In particular, for a target road segment ri and the feature set
F i that has been selected, the first term in Equation (1)
measures the mutual information of an unselected feature
rk 2 Ci and target ri, which is denoted as dependence, while
the second term measures the average redundancy of rk
and the already selected features in F i, which is denoted as
redundancy. These two terms together determine whether rk
should be further included in F i.

Different from the original mRMR algorithm in [28], we
normalize the mutual information IðXk;XiÞ by HðXiÞ
according to [11] and define NIðXk;XiÞ ¼ IðXk;XiÞ

HðXiÞ , so that

the normalized mutual information NIðXk;XiÞ 2 ½0; 1�,
because the entropy of a feature itself could vary greatly.

However, HðXiÞ cannot be used to normalize IðXk;XiÞ
directly, since

IðXk;XjÞ
HðXiÞ may not fall in the range ½0; 1�. Con-

sidering 0 � IðX;Y Þ � minfHðXÞ; HðY Þg, we can further

define NIðXk;XjÞ ¼ IðXk;XjÞ
minfHðXkÞ;HðXjÞg 2 ½0; 1�. Therefore, for a

target road segment ri, we iteratively select the feature
rk 2 Ci that maximizes Equation (1), implying that rk has a
large dependency with ri and small redundancy with cur-
rent F i. We repeat this process until k features are selected
or NJðXkÞ � 0.

(3) ANN based vertex state inference. Once the correlated
verticesF i are selected, the unannotated vertex ri can locally
train an ANN model to capture its traffic correlations with
the correlated vertices in F i using their historical traffic
speeds. Specifically, we normalize the historical traffic
speeds by comparing with speed limit vmax of each vertex
respectively during the ANN training. After successfully
learning the correlation model, vertex ri feeds the normal-
ized states of vertices in F i, extracted from received mes-
sages, into the ANNmodel to infer its own state vi. Similarly,
we normalize the vertex state vj of rj 2 F i as

vj
vmax
j

using its

speed limit, and recover the state of vertex ri as the product
of model inference and speed limit vmax

i . The normalization
can unify the speed scales of road segments in different road
types and transform the input data to the range ½�1; 1�, where
the activation function tanh has the best non-linear transfor-
mation capability. Note that vertex ri only uses the built
ANN model once in current time slot and it may need to
learn a new model with different correlated vertices in next
time slot due to the evolution of property graph. Finally, ver-
tex ri updates its state as annotated and changes flag as
true. In the subsequent iterations, ri will sendmessages to its
neighbors for inferring other unknown vertex states.

4 PUTTING THINGS INTO SPARK

Ideally GPTE should implement the algorithms introduced
in previous section into an integrated computing framework

that supports both data-parallel and graph-parallel compu-
tation. The emerging cluster computing framework Spark
[44], which builds on the abstraction Resilient Distributed
Datasets (RDDs), supports such requirements. In addition to
dataflow operations, the graph processing engine GraphX
[14] is built atop of Spark, which represents graph-structured
data as a property graph including a pair of vertex RDDs and
edge RDDs and embeds graph computations as specific join-
map-group-by dataflow operators on these RDDs.

Basic Implementation. GPTE is implemented on the Spark
and makes use of some GraphX APIs. Fig. 5 illustrates the
execution flow of GPTE in a Spark cluster, which adopts the
Hadoop distributed file system (HDFS) for distributed data
storage. In the cluster, one machine is selected as the Master
to coordinate parallel computing among other machines,
i.e., Workers. GPTE first inputs the road network data from
the HDFS to construct the property graph (via Graph½V; E�ðÞ).
Without any optimization, the property graph is distributed
to worker machines using the default graph partitioner of
GraphX (via partitionBy), which exploits a hashing func-
tion to evenly distribute vertices and edges among all work-
ers for load balance. GPTE then continuously conducts
traffic estimation from each time slot of traffic samplings.
It iteratively lets annotated vertices send messages to neigh-
bors (via sendMsg) and then applies the received messages
to the property graph (via joinVertices), which allows
unannotated vertices to infer their own states (via vprog).
The vertex program vprog embeds correlated vertex selec-
tion and ANN modeling based vertex state inference, as
mentioned in Section 3.2. Finally the set of all vertex states
is dumped to the HDFS for traffic visualization.

To improve the system efficiency, we propose (1) a geogra-
phy-aware partitioner that optimizes the placement of edges/

Fig. 4. Taxis report traffic samplings periodically along their routes, which result in time-evolving property graph: (a) Traffic samplings at 9:00AM of a
typical workday, where green dots represent traffic samplings. (b) The corresponding property graph snapshot generated from (a). (c) The property
graph snapshot at 10:00AM. For (b) and (c), red dots represent annotated vertices and black dots represent vertices of unknown states.

Fig. 5. The execution flow of GPTE in a Spark cluster, which consists of
one master and some workers. The property graph is distributed to work-
ers for parallel processing. The solid lines represent command flows and
dashed lines represent data flow within the cluster.

2450 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

vertices and traffic data among machines to reduce unneces-
sary communications across different worker machines;
and (2) an efficient information propagation scheme includ-
ing multi-hop message broadcast and redundant message
elimination to optimize the information exchange. These
techniques can significantly reduce the intra-machine and
inter-machine communications and finally improve the
system efficiency.

4.1 Geography-Aware Graph Partitioning
Due to random edge/vertex assignments of hash-partitioner,
the default graph partitioning schemes of GraphX may place
neighboring vertices onto different machines, which incurs
unnecessary communications and thus results in poor perfor-
mance [19]. We thus expect a better graph partitioner tailored
to the traffic estimation. Common graph partitioning
approaches are categorized into edge-cuts and vertex-cuts [13].
The former divides vertices into disjoint clusters of nearly
equal size while minimizing the number of edges spanning
clusters, e.g., balanced edge-cuts in METIS [20]. Edge-cuts,
however, results in many edge and vertex replicas that
immensely consume memory. Vertex-cuts aims to divide
edges into clusters with nearly equal size while reducing ver-
tex replicas. Recent studies report that vertex-cuts is more
effective than edge-cuts on processing the real-world graphs
[13], [14]. Considering skewed power-law degree distribution
of natural graphs, PowerGraph [13] proposes a vertex-cuts
technique that heuristically places edges across machines to
minimize vertex replicas. PowerLyra [8] proposes a hybrid-
cuts that combines edge-cuts and vertex-cuts according to ver-
tex degrees. Road network graphs, however, do not typically
exhibit power-law degree distribution but a relatively flat dis-
tribution. These techniques thus are not directly applicable.
To balance the advantages and disadvantages of above
approaches, we choose vertex-cuts to avoid edge replicas. As
the vertices geographically close to each other are more likely
correlated in traffic and may exchange messages, we propose
a geography-aware partitioner for edge/vertex placements to
preserve spatial locality.

The partitioner used in GPTE first maps vertices to real-
world geo-coordinates using the middle points of road seg-
ments. A simple and effective approach named Hilbert
space-filling curve is used to index vertices. Space-filling
curve allows one to map multi-dimensional data, e.g,
2-dimensional locations, to 1-dimensional keys that pre-
serve spatial proximity [29]. Keys that are contiguous pres-
ent nearby locations in space. We thus assign the space-
filling curve keys to vertices based on their geographical

information. The keys are then range-partitioned into dis-
joint clusters of nearly equal size. Edges are co-partitioned
with vertices by assigning them the same keys as their
source vertices. Fig. 6a illustrates how we divide the road
network space into 4� 4 cells using Hilbert space-filling
curve and assign keys to vertices according to their location
coordinates. Based on the keys, we divide the vertices and
edges into two partitions. Fig. 6b shows the pseudocode of
key assignment. There are some other techniques, e.g.,
Quad-tree or k-means, can be used to partition the graph
while preserving the spatial proximity of vertices as well.
It is, however, difficult for them to evenly control the parti-
tion sizes, and thus cannot balance the workloads among
different machines (see the performance comparisons in
Section 6.3), whichwill finally affect the systemperformance.

As expressways interact with other roads in traffic only at
few entries and exits, we thus separately apply the spatial
indexing technique to expressway vertices and the other verti-
ces, and then unify the indexes of all vertices (and edges)
according to their space-filling keys.Wefirst re-index express-
way vertices and then the others, both following the ascend-
ing order of their original space-filling keys. Finally, we
obtain the continuous vertex keys and then range-partition
vertices (and edges) given the desired number of partitions.

4.2 Efficient Information Propagation
We propose two techniques to optimize information pro-
pagation among vertices. One allows multi-hop message
broadcast to speedup the state inferences of all vertices and
the other eliminates redundant messages to further reduce
communication costs. Fig. 7 shows the pseudocode that
implements message propagation in the Spark.

Multi-hop Message Broadcast. Since road segments distant
from each other may still be traffic correlated, it is necessary
for one vertex to propagate its messages to vertices within
multiple hops rather than only direct neighbors. To achieve
this, a simple approach is based on the hop-by-hop message
propagation, where each vertex receives a message and then
forwards the message to the next hop until desired hops
are reached. Such an approach, however, is not efficient.
In GraphX, message propagation is implemented with
triplets (a triplet contains an edge and its property, and the
two vertex properties), which are derived through join oper-
ations on vertex RDDs and edge RDDs. As join operation has
to be repeated for every hop, the hop-by-hopmessage propa-
gation introduces excessive computations. We propose
multi-hop message broadcast instead, which allows one ver-
tex to broadcast messages to vertices within h hops.

GPTE maintains a broadcast variable4 Bnb, which stores
the 1-hop neighbors for each vertex. Each vertex ri in

Fig. 6. (a) Illustration of Hilbert space-filling curve based graph partition-
ing, where the property graph in Fig. 3 is divided into two partitions (in
blue and red colors). (b) The pseudocode of key assignment for a given
vertex location coordinate ðx; yÞ.

Fig. 7. Pseudocode of message propagation in Spark.

4. A broadcast variable is a static lookup table and a copy is main-
tained in each machine to facilitate data access in the Spark.

LIU ETAL.: THINK LIKE AGRAPH: REAL-TIME TRAFFIC ESTIMATION ATCITY-SCALE 2451

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

different machine can easily access the variable Bnb and

build its h-hop neighbor list N h
i . For vertex ri, N 1

i includes
its immediate neighbors, and the h-hop (h > 1) neighbor
list N h

i is recursively built as N h
i ¼ S

rj2N h�1
i

N 1
j . Based on

N h
i , vertex ri can directly send messages to its h-hop neigh-

bors via map operator. To reduce the communication costs,
GPTE first combines all messages targeting to the same ver-
tex and then sends the aggregated message. Fig. 7 shows
that GPTE realizes the message broadcast through the map-
reduce-by operation in the Spark. GPTE applies the h-hop
messages to the vertices with join operation only once,
which completes message propagation with constant over-
head instead of being proportional to the hop count.

Eliminating Redundant Messages. By default, annotated
vertices propagate messages to their neighbors and at the
same time all vertices receive the messages. As a matter of
fact, such messages are only useful for unannotated vertices
for inferring their states but redundant for the annotated
vertices. Therefore, it is desired that the annotated vertices
only send messages to unannotated vertices so that a large
amount of unnecessary message exchanges can be saved.

We propose redundant message elimination for GPTE to
avoid unnecessary computation and communication costs.
The key idea is that each annotated vertex tracks the sta-
tuses of its h-hop neighbors and only sends messages to
those unannotated neighbors in the subsequent iterations.
Directly sending vertex status to other vertices in a distrib-
uted setting will introduce extra communication overhead,
so GPTE implicitly infers vertex status by leveraging the
fact that only annotated vertices propagate messages. If an
annotated vertex ri receives a message from vertex rj, it
means that rj’s state is already known and thus ri’s mes-
sages to rj are redundant. Each vertex ri maintains an unan-

notated neighbor list N h
i , which is initially copied from N h

i

in each time slot. For each annotated vertex ri, it removes a

neighbor rj fromN h
i once it receives a message from rj. Sim-

ilarly, ri will also be removed from N h
j by vertex rj as ri

sends messages to rj as well. In each iteration, ri only propa-

gates messages to the neighbors inN h
i . With more and more

vertices annotated in later iterations, there are much fewer
messages to be processed and thus the system efficiency is
improved. To implement this idea in the Spark, GPTE repla-

ces the neighbor list, i.e., v:nblist in Fig. 7, as N h
i and

dynamically maintains the list for vertex ri during runtime.

5 OTHER OPTIMIZATIONS

As real-world traffic data are inherently sparse and noisy,
GPTE adopts some data processing techniques to preprocess
the traffic data before putting them to the estimation stage.

Aggregate Travel Speeds to Alleviate Data Sparsity. To
derive an intact dataset for traffic correlation modeling, we
compress traffic dataset according to time of the day and
day of the week (i.e., Monday, 	 	 	, Sunday). We divide the
entire day into a series of time slots with size of 15 mins.
For each road segment ri, we map each of its associated
traffic samplings in the traffic dataset to a group according
to time slot of the day and day of the week, and then aver-
age the reported travel speeds of the same group as the gen-
eral traffic condition of ri for the specific time slot and day.
We thus obtain a compact time series Pi containing

24�60
15 �

7 ¼ 672 traffic speeds. In case there still exist missing values,

we use the average of previous 4 time slots in Pi. We name
Pi as the speed profile of road segment ri as it describes the
general traffic speeds of ri in history. To avoid expensive
data movements across machines, we save all speed profiles
as a broadcast variable Bsp in the Spark.

Smooth Traffic Speeds to Filter Out Noises. The traffic sam-
plings could be noisy due to inaccurate GPS reports of taxis,
and thus the resulting speed profiles could be noisy as
well. To filter out noises, we smooth the traffic speeds. For
road segment ri, we apply the exponential smoothing tech-
nique [32] to each day of the week for its speed profile,
Dj 2 Pi; j ¼ f1; 2; 	 	 	 ; 7g, respectively. We apply the follow-
ing equation to smooth the traffic speeds in Dj:

sj;t ¼ ai 	 xj;t þ ð1� aiÞ 	 sj;t�1 ðt ¼ 2; 3; . . . ; 96Þ;

where ai is the smoothing factor, xj;t is the raw traffic speed
of the t-th time slot in Dj, sj;t is the corresponding smoothed
speed, and sj;1 ¼ xj;1. We determine the best ai value for ri
using the least square method by solving

ai ¼ argmin0<ai�1

X7
j¼1

X96
t¼1

ðsj;t � xj;tÞ2:

Incorporate Traffic Patterns to Improve Performance. As
urban traffic is not consistent across time and days and
exhibits various patterns [5], we thus incorporate such traf-
fic patterns in the ANN modeling. Specifically, we mine
traffic patterns for each road segment ri using its speed pro-
file Pi. We first split and compress Pi into two time series
PW

i and PNW
i (both containing 96 time slots and 96 ¼

24� 60=15) according to its time slot and the type of the
day, which represent general traffic speeds of ri on work-
days and weekends, respectively. We then separately apply
the top-down time series segmentation algorithm [21] on
PW

i and PNW
i to divide the 96 time slots into consecutive

time slot groups, each of which represents a traffic pattern
and preserves similar varying trend of traffic speeds.
To guarantee that we have adequate traffic speeds in each
traffic pattern for ANN training, we set the minimum size
of a time slot group as v. The segmentation algorithm repet-
itively divides time slot series until each group cannot be
separated any more. During online traffic estimation, GPTE
builds the ANN model for each vertex only using traffic
speeds belonging to the same traffic pattern, which avoids
irrelevant training data that may lead to overfitting.

6 EVALUATION

We conduct extensive trace-driven experiments with real-
world traffic dataset to evaluate GPTE. We first describe the
experimental setup, then evaluate the estimation accuracy
of GPTE with comparisons to baseline methods, and finally
run detailed experiments to evaluate the GPTE design.

6.1 Experimental Setup
We use the road network data and two months of taxi data
provided by the LTA to evaluate GPTE in a cluster.

Road Network. The road network covers the whole main
island of Singapore and contains all road segments. In the
road network, two driving directions of a road are separately
represented. LTA divides all roads into 58356 road segments
for traffic analysis purpose. These road segments are catego-
rized according to their types as expressway (=2404), major

2452 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

(=14493), minor (=4814), collector (=11140), local (=21620),
slip links (=3234), andNCAT (non-category, =651).

SG Dataset. The dataset contains traffic samplings col-
lected from more than 12000 taxis covering the whole Singa-
pore road network in July and August of 2015. Each taxi
sends back a report every 30 seconds, which includes a time-
stamp, GPS location, travel speed, direction, status (available
or busy), etc. About 10million reports are collected each day.

To prepare a clean and correct dataset, we adopt an accu-
rate map matching algorithm [27] to match each traffic sam-
pling to the road segment a taxi actually traveled, which
filters the errant traffic samplings due to GPS noises as well.
In addition, we only keep the traffic samplings with taxi
status as busy for experiments as they reflect more represen-
tative conditions of normal traffic. We derive the road cov-
erage by the taxi data, and average the two month data into
workday and weekend in Fig. 8a. We use a time slot of size
15 mins. For each time slot, the road coverage is measured
as # of road segments with taxi samplings

of all road segments . From Fig. 8a, we see the
road coverage varies across the time of a day, and the aver-
age coverage ratios are only 32 and 29 percent for workday
and weekend, respectively. Among the road segments with-
out taxi samplings, we summarize its composition of road
types. Fig. 8b gives the profile—most of them are local
(49 percent), major (18 percent), and collector (18 percent)
roads since the three road types account for large propor-
tions among all kinds of road segments.

For evaluations, we keep the traffic data from the last
week of August for testing and all the rest as historical traf-
fic. During the testing phase, we randomly select r percents
of all taxis in each time slot as probe taxis and use their traffic
samplings for traffic estimation. GPTE makes use of the ver-
tex states annotated by � � 5 probe taxis to infer unknown
vertex states on the property graph. We perform traffic esti-
mations for 5:00 AM to 21:00 PM everyday, which is the typ-
ical time period that contains more traffic in Singapore.

Evaluation Metrics. During each time slot, we calculate
average traffic speed vi of road segment ri using all traffic
samplings and consider the speed vi annotated by � 5 taxis
as the ground truth. The estimation accuracy on ri is defined
as accuracy ¼ ð1� jvi�v̂ij

vi
Þ � 100%, where vi is the ground

truth and v̂i is the estimation. We use the execution time of
traffic estimation to measure the computation efficiency.

As Fig. 8a depicts,
 60-80 percent of road segments are
not covered by taxis in one time slot, so we want to specifi-
cally evaluate how our traffic estimation approach performs
over such uncovered roads. Because we do not have any

traffic samplings (so no ground truth) on those uncovered
roads, direct evaluation is not possible. Instead, we construct
a subset S of 100 road segments, composed of different road
types (the composition follows the percentage profiled in
Fig. 8b). We take away the taxi data on S from the original
dataset and input to traffic estimation approach, so no traffic
samplings on road segments of S are used during traffic esti-
mation. On the other hand, we can build ground truth for
those 100 road segments from the taxi data we take away,
and use that for accuracy evaluation. The estimation accu-
racy on S suggests how the estimation approach performs
on the uncovered roads (which account for
 60%-80% road
segments in each time slot). We separately report the accu-
racy results for subset S aswell as those for all road segments
in Singapore wherewe have� 5 taxi speed annotations.

The Spark Configuration. We implement GPTE on the
Spark 2.1.0 [3]. For GPTE, we set h ¼ 5 to enable each
vertex broadcast its messages to neighbors within 5 hops. We
set k ¼ 3 and thus each vertex selects at most 3 correlated ver-
tices to build the ANN model. Accordingly, we set v ¼ 30 to
guarantee sufficient traffic speeds in each traffic pattern for
ANN training. These settings are empirically determined in
order to balance the estimation accuracy and computation
overhead.

Our evaluation environment consists of 5 machines form-
ing a cluster. Each machine has 24 Intel Xeon(R) 3.07 GHz
CPU cores and 24GB ofmemory. All machines share a disk of
size 2TB. All the road network data and taxi data are stored in
the HDFS for distributed data processing. To run GPTE in the
Spark, we set onemachine as the master machine and treat all
the 5 machines as the worker machines, which will perform
the ANN modeling and traffic estimations. We have mea-
sured the resource utilizations of GPTE on the Spark. Specifi-
cally, we sample the CPU utilization and memory usage for
each machine with an interval of 1 second. Since the resource
utilizations of allmachines are quite similar, we only visualize
the CPU utilization and memory usage of one ordinary
worker machine for 5 minutes in Fig. 9 for a clear illustration
(The master machine will have slightly higher resource uti-
lizations). During the whole course of execution, the average
CPU utilization is about 73 percent while the maximum value
can even approach 100 percent. Meanwhile, the memory
usage is stable around 5 GB in Fig. 9b and the maximum
memory usage could be about 8 GB (
 34 percent of all avail-
able memory) at the last. These measurements demonstrate
that the ANN modeling based traffic estimation is computa-
tion extensive and the Spark heavily consumes CPU and
memory resources due to the storage of RDDs for quick

Fig. 8. (a) Road coverage by taxis across the time of a day. (b) Composi-
tion of uncovered road segments.

Fig. 9. The CPU utilization and memory usage of one worker machine.

LIU ETAL.: THINK LIKE AGRAPH: REAL-TIME TRAFFIC ESTIMATION ATCITY-SCALE 2453

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

computation. These results also imply that GPTE can well
exploit the cluster resources and the power of Spark.

6.2 Performance Comparison
We compare GPTE with three baselines on the estimation
accuracy and execution time. Although we cannot identify a
proper way for direct comparison with Google Traffic due to
the limit in accessing its original estimation results, we try to
perform best effort analysis based on the available Google
Traffic data and present at the end of this subsection.

kNNTE. This method enhances LTA solution [9] to
achieve complete traffic estimations via kNN based interpo-
lation, whichmeasures traffic condition vi of road segment ri
using average travel speed of all probe taxis passing by or
average traffic speed of the top 10 nearest neighboring road
segments (whose current traffic conditions are available) of
the same road type as ri [6], [35] when no probes travel on ri.

MLRTE. Some works explicitly capture the traffic correla-
tions using MLR models. The models are learned from his-
torical data, and later used for the online traffic estimation
[5], [23], [31]. We implement the state-of-the-art MLR based
method in [23] for performance comparison.

SVDTE. There exist someworks implicitly exploiting traf-
fic correlations in a traffic matrix to recover the missing traf-
fic conditions [33], [37], [52]. Specifically, they first construct
a traffic matrix consisting of traffic conditions ofm road seg-
ments in t time slots and then exploit singular value decom-
position (SVD) technique to recover missing values in the
m� t matrix. We implement a typical SVD based method in
[52] for comparison, which sets t ¼ 32 for the best results.

We implement kNNTE in the Spark and run it in the clus-
ter. As there are no cluster computing version of MLRTE and
SVDTE, we implement and run them using multi-threading
in a powerful HP Z440 Workstation that has 12 3.5 GHz Intel
Xeon CPU cores and 32 GB memory. We try our best to opti-
mize these methods to derive their best performances. For
comparison, we explore how thesemethods performwith dif-
ferent amount of traffic data (i.e., varied taxi usage ratio r as
40, 60, and 80 percent) and report estimation accuracies on
subset S and on those road segments with � 5 taxi speed
annotations in Fig. 10. All methods have lower accuracy on
subset S. This is because there is no taxi input from those
roads contained in S, and thus the traffic estimation of S is
merely inferred from traffic samplings on other road seg-
ments. The accuracy on S reflects the traffic estimation perfor-
mance on those
 60%-80% uncovered roads in each time

slot. We can see our method outperforms the three baselines
on subset S, and achieves high accuracy above 80 percent
while the others only have accuracy around 60 percent when
r � 60%. Even when r ¼ 40%with much fewer taxis for traf-
fic monitoring, our method still achieves reasonably high
accuracy about 78 percent while other methods only have
accuracy� 62%. It implies that GPTE can still work well even
in a scenario like terrible weather conditions with a reduced
number of available taxis. As a matter of fact, we do observe
some time slots with much fewer taxis than usual in the data-
set. On those road segments with � 5 taxi speed annotations,
the accuracies of all methods increase, e.g., 73, 64, 74, and 90
percent for kNNTE,MLRTE, SVDTE, andGPTE, respectively,
when r ¼ 80%. Relying on simple interpolation without con-
sidering traffic correlations among roads, kNNTE (i.e., the
enhanced LTA solution) cannot get accurate estimations.
Although MLRTE and SVDTE performs well and consider
the traffic correlations, the linear modeling cannot promise
good performances neither, with both accuracies lower than
75 percent. Benefited from non-linear traffic correlation
modeling, GPTE outperforms the baselines on accuracy by 12

 34 percent as indicated by Fig. 10.

We compare the execution times in Table 1. kNNTE runs
the fastest due to its simplicity, while MLRTE and GPTE can
accomplish traffic estimationwithin 1minute.Withmore traf-
fic data, the execution time of MLRTE and SVDTE increases
while the other two run faster. This is because more traffic
data lead to more initially annotated vertices, and the compu-
tation tasks for inferring unknown vertex states are thus
reduced for kNNTE and GPTE. Even conducting ANN
modeling with more taxi data when r ¼ 80%, GPTE still runs
much faster than MLRTE and SVDTE, improving up to 46
percent. SVDTE accumulates sufficient traffic data for t ¼ 32
time slots to perform SVD based missing traffic condition
recovery. As a result, it introduces great estimation delay (i.e.,
15� 32 ¼ 480 minutes) and cannot provide timely traffic
information. The other methods can immediately estimate
traffic conditionswith instant traffic data.

Google Traffic provides the live traffic visualization, but it
only gives 4 coarse traffic levels (from Fast to Slow) instead of
providing detailed road traffic estimation to the end users.
Besides, there is no interface5 for public access of Google
Traffic’s historical or live traffic estimation data. As a result, it
is impossible for us to directly compare it with GPTE on the
traffic estimation accuracy. We try to manually measure the
coverage of Google Traffic based on a selected region of size
7km� 5km in the downtown area of Singapore (which covers
713 road segments). We count the number of road segments
with live traffic data fromGoogle Traffic for four 15mins time
slots (during 17:30 PM - 18:30 PM) a day for oneweek, and cal-
culate the coverage ratio. According to our statistics, while all

Fig. 10. Accuracy on (a) subset S and (b) those road segments with � 5
taxi speed annotations, with varied r.

TABLE 1
Performance Comparison on Execution Time
(in Seconds) with Different Taxi Usage Ratio r

Ratio r kNNTE MLRTE SVDTE GPTE

40% 5.3 25.5 60.8 41.0
60% 4.4 35.7 61.6 37.7
80% 3.8 48.0 62.1 33.4

5. Although Google Maps Directions APIs enable the users to query
the travel routes and travel durations, these APIs do not provide the
detailed traffic estimation of any specific road segment.

2454 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

the 145 expressway and major road segments are covered,
other roads have poor coverage, with an average coverage
ratio about 37.8 percent. The overall estimation coverage of
this busy downtown district is only 50.4 percent.

6.3 Detailed Evaluation
We present the traffic visualization and then evaluate GPTE
and its design components. We fix the taxi usage ratio r as
70 percent and report the estimation accuracy on all road
segments with � 5 taxi speed annotations in this subsection.

Traffic Visualization. We visualize our traffic estimation
results to LTA through a web service. For better understand-
ing the general traffic conditions, we translate specific traffic
speed v (in km/h) into one traffic congestion level according
to LTA’s rules, i.e., Congestion (v < 40 for expressways, and
v < 20 for others), Slow (40 � v < 60 for expressways, and
20 � v < 40 for others), and Normal (v � 60 for express-
ways, and v � 40 for others). Fig. 11a depicts the traffic esti-
mation snapshot at peak hour 8:00 AM of a typical workday.
Even with a small number of probe taxis (
 2500 in each
time slot), our method can still derive the traffic conditions
of the whole road network. Fig. 11b shows the traffic condi-
tions for all roads in the downtown area, most of which are
in poor traffic conditions due to commuter traffic.

Overall Performance.According to our statistics, the number
of all taxis (probe taxis) ranges from 1388 to 4942 (972 to 3460)
in each time slot throughout the testing week. On average,
17716 road segments (
 30:4 percent of all) are traveled by
taxis in a time slot. Fig. 12a presents the average estimation
accuracy across the time of a day. GPTE achieves relatively
higher andmore stable accuracy onweekends thanworkdays.
This is possibly because the traffic on weekends is more

regular than on workdays and thus the traffic correlations are
better modeled. The average accuracies for workdays and
weekends are 87 and 88 percent, respectively. We observe
obvious accuracy decrease in the time range [6:30 AM -
9:00 AM] and [17:30 PM - 19:00 PM] on workdays, which are
the commuter rush hours in Singapore. Surprisingly, GPTE
still achieves high accuracy above 83 percent in these rush
hours that always contain heavy and complex traffic.

Weplot the statistics of execution time of traffic estimations
in Fig. 12b. The 90-percentile and 50-percentile execution time
are 37 seconds and 33 seconds for workdays, and 38 seconds
and 35 seconds for weekends, respectively. GPTE runs a bit
longer on weekends as there are less taxi data and thus more
state inference tasks. The overall average is 34 seconds, which
means that GPTE can return traffic estimation results with a
small delay. It is worthy to note that training an ANN model
in the HP Z440 Workstation takes about 1.48 seconds, and it
will need much more time to build ANN models for all road
segments due to the large computation overhead, e.g., tens of
minutes even we adopt the multi-threading technique, which
is much larger than the time budget of 15 mins. Therefore,
Fig. 12b demonstrates that GPTE can significantly improve
the computation efficiencywith high parallelism.

Accuracy Across Different Road Types. We report the accu-
racy performance of GPTE on different road types in Fig. 13.
GPTE gets the best estimations for expressways with accu-
racy higher than 92 percent, and good estimation for major
and slip roads (which bridge expressways and major roads)
with accuracy
 85 percent. The results for collector, local
and NCAT roads are with slightly low accuracy (
 80 per-
cent) and large variances. The performance gap among dif-
ferent road types is caused by following reasons. On one
hand, high-level roads, e.g., expressways, are usually

Fig. 12. Overall performance on (a) estimation accuracy across the time
of a day and (b) execution time.

Fig. 11. Traffic estimation at peak hour 8:00AM of a typical workday: (a) The whole road network. (b) Downtown area where green, yellow, and red
represent the traffic speed in Normal, Slow, and Congestion, respectively.

Fig. 13. Estimation accuracies and variances for different road types.

LIU ETAL.: THINK LIKE AGRAPH: REAL-TIME TRAFFIC ESTIMATION ATCITY-SCALE 2455

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

traveled by more vehicles and we can have sufficient traffic
data to accurately capture their traffic correlations while we
only have limited data on the low-level roads, e.g., local and
collector roads are largely uncovered by taxis as shown in
Fig. 8b. On the other hand, high-level roads tend to have
fewer external influencing factors while vehicles are gov-
erned by many factors on the low-level roads, e.g., traffic
lights exist on low-level roads but not on expressways.

Accuracy Across Different Iterations. GPTE makes use of
message propagations for iterative vertex state inferences
and we thus report the completed inference ratio (calculated

as # of verticeswith already knownstates
of all vertices) and accuracy for each itera-

tion. From Fig. 14, we see that the states of > 90% unanno-
tated vertices can be inferred within 2 iterations and we can
derive almost all (
99.9 percent) vertex states within 10 iter-
ations. In the dynamic ANN modeling, estimation errors
may be accumulated along with the message propagations.
Fig. 14 shows that the traffic estimation indeed becomes less
accurate and reliable (with a larger variance) as the iteration
increases. However, benefited from the good generalization
of the ANN model, the performance loss is limited, e.g., the
average accuracy decreases by around 4 percent merely. In
the future, we will study how to introduce a discounting
factor for the inferred states that are further used for ANN
predictions to reduce the influence of estimation error accu-
mulation along with the message propagations.

Next we will show how the proposed optimization techni-
ques helpGPTE achieve timely and accurate traffic estimation.

Benefit of Geography-Aware Graph Partitioning. To under-
stand the impact of data placement on system efficiency,
we compare our geography-aware graph partitioner using
space-filling curve technique with the Quad-tree based graph
partitioner and three default graph partitioning schemes of
GraphX, i.e., RandomVertexCut (Random), EdgePartition1D
(EP1D), and EdgePartition2D (EP2D). The Quad-tree based
method recursively subdivides a graph into four quadrants
until the number of vertices in each quadrant is smaller than a
threshold. Thismethod preserves spatial proximity of vertices
as well but it unevenly distributes vertices among partitions.
The default graph partitioner assigns edges/vertices to differ-
ent partitions by hashing source (or destination) vertex ID,
resulting in random placements of edges/vertices among
machines. In contrast, our scheme exploits vertex locations to
place nearby edges/vertices to the samemachine.

In order to compare the communication efficiency of
different schemes, we count the number of cross-partition

messages (communication overhead). During each traffic
estimation, about 153:3 k messages in total are generated for
information propagation among vertices, while there are on
average 11:8 k, 31:3 k, 145:1 k, 144:9 k, 145:2 k cross-partition
messages for the five schemes respectively, as shown in
Table 2. From the statistic, we see that space-filling method
significantly outperforms other methods, with reduction on
cross-partition messages by 4:4� than Quad-tree and 11:4�
than the three default schemes of GraphX.

In addition to the comparisons on cross-partition mes-
sages, we use execution time as another metric to compare
these five schemes since cross-partition messages could
be costly and will explicitly affect the execution time.
The comparison results are depicted in Fig. 15a. Compared
to default schemes of GraphX, the benefit of exploiting
vertex locations is clear that the proposed scheme reduces
the execution time up to 6 seconds. When vertices that are
geographically close to each other are assigned to the same
partition, the data exchanges among different partitions
are reduced. Although Quad-tree based scheme has also
exploited geographical information of vertices, it cannot
evenly assign vertices to partitions that lead to unbalanced
loads among machines. Relying on the Hilbert space-filling
curve technique, our scheme indexes vertices with consecu-
tive keys and can evenly partition vertices among machines,
which is more flexible and efficient. Besides, our scheme
makes graph processing more stable when compared with
other schemes on the variance of execution times.

Benefit of Efficient Information Propagation. Rather than
propagating messages among vertices in a hop-by-hop
manner, we propose the multi-hop message broadcast to
accelerate information propagation. Indeed we can first
learn h-hop neighbors for each vertex and then build
another graph where vertices are still the road segments
and edges are formed between each vertex and its h-hop
neighbors. In this graph, each vertex can directly send mes-
sages to its original h-hop neighbors through the triplets

in GraphX. We implement this idea using Pregel [25] API
of GraphX. We compare the three message propagation

Fig. 14. The completed ratio and accuracy of traffic estimation in differ-
ent iterations.

TABLE 2
The Cross-Partition Messages for

Different Graph Partitioning Schemes

Scheme Space-filling Quad-tree Random EP1D EP2D

Average (�103) 11.8 31.3 145.1 144.9 145.2

Fig. 15. Evaluation of (a) graph partitioning and (b) message broadcast.

2456 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

methods and plot the results in Fig. 15b. The average execu-
tion times of multi-hop message broadcast, hop-by-hop
method, and Pregel based method are 34 seconds, 110 sec-
onds, and 130 seconds, respectively. Our method signifi-
cantly outperforms the hop-by-hop method and Pregel
based method with gains of 3:2� and 3:8�, respectively.
The multi-hop message broadcast avoids repetitive join-
operations between vertex RDDs and edge RDDs when
compared to the hop-by-hop method, and meanwhile keeps
the original road network structure rather than generating a
particular graph as Pregel based method dose.

In addition, we propose redundant message elimination
to further improve the efficiency of information propaga-
tion. By avoiding redundant messages to annotated verti-
ces, GPTE can reduce communication costs. Fig. 16 shows
the execution details of one sample traffic estimation. This
job lasts for 27 iterations and we report the execution time
and number of messages in each iteration for the scenarios
with and without redundant message elimination. Without
such a mechanism, there are more and more message
exchanges as more vertex states are inferred along with
the time. The execution time per iteration maintains for
about 3 seconds. In contrast, eliminating redundant mes-
sage significantly reduces the number of messages for the
later iterations and execution time of each iteration is con-
tinuously decreased as shown in Fig. 16. According to our
statistics, redundant message elimination reduces the
average execution time from 101 seconds to 34 seconds,
providing gains of
 3�.

Benefit of Data Processing Techniques. We use a set of data
processing techniques to optimize GPTE. We adopt a modi-
fied feature selection algorithm, mRMR, to select the k
most correlated vertices during ANN modeling. For feature
selection, metrics like mutual information (MI) and Pearson
correlation coefficient (PCC) have been widely used [15].
To evaluate the effectiveness of our modified mRMR algo-
rithm, we run GPTE with different feature selection meth-
ods. For correlated vertex selection using MI or PCC, we
choose features with the k largest values. We show the com-
parisons in Fig. 17a. mRMR outperforms both MI and PCC
by
4 percent on accuracy. The gain arises because mRMR
selects correlated vertices as a whole rather than only con-
sidering individual correlation of each single vertex like MI
and PCC do. To achieve that, mRMR introduces negligible
computation costs.

In addition, we propose data compact to alleviate data
sparsity, data smoothing to filter noises, and traffic pattern

mining to avoid irrelevant training data. To evaluate perfor-
mance contributions of these techniques, we gradually
exclude these data processing techniques and run experi-
ments with various GPTE versions, i.e., GPTE excluding
traffic pattern mining (GPTE-P) and GPTE excluding both
traffic pattern mining and data smoothing (GPTE-PS).
As depicted in Fig. 17b, without such techniques the system
runs much slower and gets worse accuracy. The data
smoothing can reduce execution time from 272 seconds to
67 seconds with a gain of 4�, and traffic pattern mining can
further improve the performance by up to 8�, i.e., execution
time from 272 seconds to 34 seconds. Data smoothing
reduces the variances of training data while traffic patterns
ensure that the ANN training only uses relevant speed data.
As a result, these data processing techniques not only speed
up the ANN modeling but also together improve the esti-
mation accuracy from 85 to 88 percent.

7 RELATED WORK

Traffic Monitoring and Estimation. Previous works heavily
rely on intrusive sensing infrastructures to monitor real-
time traffic flows [24], traffic volumes [5], and traffic queues
[30]. Due to the excessive deploying and maintenance costs,
however, it is prohibitive to widely adopt them at city scale,
which largely limits the coverage. Recent studies leverage
instant location reports collected from probe vehicles as an
efficient alternative for passive traffic monitoring. They uti-
lize these reports to generate traffic map [17], [49], update
digital map [36], predict vehicle travel time [6], [34], [50],
predict taxi fare for a trip [6], monitor road surface condi-
tions [10], [43], and model human mobility [42], [45]. These
works, however, are often limited by insufficient probe
vehicles due to privacy concerns or insufficient incentives,
and thus suffer from limited monitoring coverage as well.

By exploiting traffic correlations among different road seg-
ments, some attempts weremade to recover themissing traffic
conditions through regression [41], [48], matrix factorization
[39], multichannel singular spectrum analysis [51], tensor
decomposition [33], [37], and compressive sensing [23],
[52]. Subject to the tremendous computations for large
scale traffic estimation, these methods explicitly or implic-
itly model the traffic correlations linearly and thus cannot
derive accurate results. The practical traffic is influenced
by many factors that make traffic correlations far more
complex than linearly. In addition, some recent works [26],
[46], [47] exploit multi-source data, e.g., taxi trajectory,
loop detector data, truck data, and etc, to derive the traffic

Fig. 16. The execution details of one sample traffic estimation.
Fig. 17. Evaluation of various data processing techniques.

LIU ETAL.: THINK LIKE AGRAPH: REAL-TIME TRAFFIC ESTIMATION ATCITY-SCALE 2457

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

conditions. Specifically, they build one model for each indi-
vidual data source and integrate these models for multi-
source data to obtain the final traffic estimation results,
where each traffic model essentially assumes the traffic cor-
relation to be linear. In this paper, we propose a non-linear
model to accurately capture practical traffic correlations
from taxi data and enable advanced traffic estimation at
city-scale based on the graph-parallel processing design.

There exist a few works that adopt advanced models for
traffic estimation and prediction [35]. They primarily rely
on modeling the temporal correlation of traffic for each indi-
vidual road segment using support vector machine [4], arti-
ficial neural network [24], and hidden Markov model [40].
These works, however, are mainly designed for specific
roads, e.g., expressways, and implicitly assume sufficient
amount of data can be collected. Although the emerging
deep learning technique can be used for traffic estimation
[24], it introduces a large number of extra parameters to be
estimated and thus requires much more training data,
which will greatly increase the computation complexity.
The enormous computations involved in non-linear models
strictly limit their applicability to large road networks. Our
work differs from these works by considering the data spar-
sity issue and improving computing parallelism for city
scale traffic estimation.

Graph Analysis and Processing. Various analysis can be
conducted on the road network graphs, e.g, travel route plan-
ing [12] and spatial query [7]. These works involve only small
dataset with negligible computation burdens. In contrast,
non-linear correlation modeling based large scale traffic esti-
mation requires muchmore computation efforts. The popular
cluster computing framework Spark [44] serves as a powerful
engine to handle continuously increasing graph scale and
dataset, which could be adopted for satisfying application
requirements on timeliness and efficiency [18]. Meanwhile,
emerging graph-parallel processing frameworks, e.g., Pregel
[25], GraphLab [13], and GraphX [14], show their capabilities
in settling large scale graph analysis problems, e.g., cellular
network analysis [19]. To the best of our knowledge, this is
the first work that adapts traffic data analytics to the graph-
parallel processing context. Our work implements and opti-
mizes the advanced traffic estimation for city scale road net-
works in the latest cluster computing framework.

8 CONCLUSION

This paper presents GPTE for accurate and timely traffic esti-
mation at city scale. GPTE proposes non-linear traffic correla-
tion modeling and adapts the advanced traffic estimation to
the graph-parallel processing paradigm through dynamic
ANN modeling and efficient information propagation.
A number of optimization techniques are proposed to
improve the design. Experiment results from real-world traf-
fic data demonstrate that GPTE significantly outperforms
baseline solutions and can derive traffic estimation for the
entire city in 34 secondswith accuracy as high as 88 percent.

As the future work, we could analyze mobility patterns
of taxis and augment taxi probe based traffic sensing with
crowdsourcing. Specifically, we could well design the
routes for empty taxis that will migrate some taxis from
popular road segments to those less popular ones, so as to
improve the overall data coverage of the whole road net-
work. With more initial vertex states, we can improve the
traffic estimation accuracy further.

ACKNOWLEDGMENTS

This work is supported by a China NSFC grant
(No. 61802261), a NSF grant from Shenzhen University
(No.2018061), an ECS grant from the Research Grants Coun-
cil of Hong Kong (No. CityU 21203516), and a GRF grant
from Research Grants Council of Hong Kong (No. CityU
11217817), Singapore MOE Tier 2 grant MOE2016-T2-2-023,
and NTU CoE grant M4081879.

REFERENCES

[1] LTA of Singapore. [Online]. Available: https://www.lta.gov.sg/,
Accessed on: Aug. 2018.

[2] TrafficScan portal. [Online] https://www.onemotoring.com.sg/
content/onemotoring/en/imap.html, Accessed on: Aug. 2018.

[3] Apache Spark. [Online]. Available: http://spark.apache.org/,
Accessed on: Aug. 2018.

[4] M. T. Asif, J. Dauwels, C. Y. Goh, A. Oran, E. Fathi, M. Xu,
M. M. Dhanya, N. Mitrovic, and P. Jaillet, “Spatiotemporal pat-
terns in large-scale traffic speed prediction,” IEEE Trans. Intell.
Transp. Syst., vol. 15, no. 2, pp. 794–804, Apr. 2014.

[5] J. Aslam, S. Lim, X. Pan, and D. Rus, “City-scale traffic estimation
from a roving sensor network,” in Proc. 10th ACM Conf. Embedded
Netw. Sensor Syst., 2012, pp. 141–154.

[6] R. K. Balan, K. X. Nguyen, and L. Jiang, “Real-time trip informa-
tion service for a large taxi fleet,” in Proc. 9th Int. Conf. Mobile Syst.
Appl. Serv., 2011, pp. 99–112.

[7] Z. Bolong, Z. Kai, X. Xiaokui, S. Han, Y. Hongzhi, and X. Zhou,
“Keyword-aware continuous kNN query on road networks,” in
Proc. IEEE 32nd Int. Conf. Data Eng., 2016, pp. 871–882.

[8] R. Chen, J. Shi, Y. Chen, and H. Chen, “Powerlyra: Differentiated
graph computation and partitioning on skewed graphs,” in Proc.
10th Eur. Conf. Comput. Syst., 2015, Art. no. 1.

[9] K. K. CHIN and C. W. LEE, “TrafficScan - bringing real-time travel
information to motorists,” The LTA Academy (LTAA)., vol. 1, no. 5,
pp. 7–14, 2009.

[10] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and
H. Balakrishnan, “The pothole patrol: Using a mobile sensor net-
work for road surface monitoring,” in Proc. 6th Int. Conf. Mobile
Syst. Appl. Serv., 2008, pp. 29–39.

[11] P. A. Est�evez, M. Tesmer, C. A. Perez, and J. M. Zurada,
“Normalized mutual information feature selection,” IEEE Trans.
Neural Netw., vol. 20, no. 2, pp. 189–201, Feb. 2009.

[12] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag,
“Adaptive fastest path computation on a road network: A traffic
mining approach,” in Proc. 33rd Int. Conf. Very Large Data Bases,
2007, pp. 794–805.

[13] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed graph-parallel computation on natural
graphs,” in Proc. 10th USENIX Conf. Operating Syst. Des. Implemen-
tation, 2012, pp. 17–30.

[14] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX: Graph processing in a distributed data-
flow framework,” in Proc. 11th USENIX Conf. Operating Syst. Des.
Implementation, 2014, pp. 599–613.

[15] I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” J. Mach. Learn Res., vol. 3, no. Mar, pp. 1157–
1182, 2003.

[16] R. Herring, A. Hofleitner, P. Abbeel, and A. Bayen, “Estimating
arterial traffic conditions using sparse probe data,” in Proc. 13th
Int. IEEE Conf. Intell. Transp. Syst., 2010, pp. 929–936.

[17] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C. Herrera,
A. M. Bayen, M. Annavaram, and Q. Jacobson, “Virtual trip lines
for distributed privacy-preserving traffic monitoring,” in Proc. 6th
Int. Conf. Mobile Syst. Appl. Serv., 2008, pp. 15–28.

[18] T. Hunter, T. Moldovan, M. Zaharia, S. Merzgui, J. Ma, M. J.
Franklin, P. Abbeel, and A. M. Bayen, “Scaling the mobile millen-
nium system in the cloud,” in Proc. 2nd ACM Symp. Cloud Com-
put., 2011, Art. no. 28.

[19] A. Iyer, L. E. Li, and I. Stoica, “CellIQ: Real-time cellular network
analytics at scale,” in Proc. USENIX NSDI, 2015, pp. 309–322.

[20] METIS - Serial Graph Partitioning and Fill-reducing Matrix
Ordering. [Online]. Available: http://glaros.dtc.umn.edu/
gkhome/metis/metis/overview, Accessed on: Aug. 2018.

2458 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

https://www.lta.gov.sg/
https://www.onemotoring.com.sg/content/onemotoring/en/imap.html
https://www.onemotoring.com.sg/content/onemotoring/en/imap.html
http://spark.apache.org/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

[21] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm
for segmenting time series,” in Proc. IEEE Int. Conf. Data Mining,
2001, pp. 289–296.

[22] M. H. Kutner, C. Nachtsheim, and J. Neter, Applied Linear Regres-
sion Models. New York, NY, USA: McGraw-Hill/Irwin, 2004.

[23] Z. Liu, Z. Li, M. Li, W. Xing, and D. Lu, “Mining road network
correlation for traffic estimation via compressive sensing,”
IEEE Trans. Intell. Transp. Syst., vol. 17, no. 7, pp. 1880–1893,
Jul. 2016.

[24] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow pre-
diction with big data: A deep learning approach,” IEEE Trans.
Intell. Transp. Syst., vol. 16, no. 2, pp. 865–873, Apr. 2015.

[25] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale
graph processing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2010, pp. 135–146.

[26] C. Meng, X. Yi, L. Su, J. Gao, and Y. Zheng, “City-wide traffic
volume inference with loop detector data and taxi trajectories,” in
Proc. ACM SIGSPATIAL, 2017, pp. 1–10.

[27] P. Newson and J. Krumm, “Hidden Markov map matching
through noise and sparseness,” in Proc. 17th ACM SIGSPATIAL
Int. Conf. Adv. Geographic Inf. Syst., 2009, pp. 336–343.

[28] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8,
pp. 1226–1238, Aug. 2005.

[29] H. Sagan, “Hilbert’s space-filling curve,” in Space-Filling Curves.
New York, NY, USA: Springer, 1994, pp. 9–30.

[30] R. Sen, A. Maurya, B. Raman, R. Mehta, R. Kalyanaraman,
N. Vankadhara, S. Roy, and P. Sharma, “Kyun queue: A sensor
network system to monitor road traffic queues,” in Proc. 10th
ACM Conf. Embedded Netw. Sensor Syst., 2012, pp. 127–140.

[31] Z. Shan, D. Zhao, and Y. Xia, “Urban road traffic speed estimation
for missing probe vehicle data based on multiple linear regression
model,” in Proc. 16th Int. IEEE Conf. Intell. Transp. Syst., 2013,
pp. 118–123.

[32] R. H. Shumway and D. S. Stoffer, “An approach to time series
smoothing and forecasting using the EM algorithm,” in J. Time
Series Anal., vol. 3, no. 4, pp. 253–264, 1982.

[33] H. Tan, G. Feng, J. Feng, W. Wang, Y.-J. Zhang, and F. Li,
“A tensor-based method for missing traffic data completion,”
Transp. Res. Part C: Emerging Technol., vol. 28, pp. 15–27, 2013.

[34] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden,
H. Balakrishnan, S. Toledo, and J. Eriksson, “VTrack: Accurate,
energy-aware road traffic delay estimation using mobile phones,”
in Proc. 7th ACMConf. Embedded Netw. Sensor Syst., 2009, pp. 85–98.

[35] E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, “Short-term
traffic forecasting: Where we are and where we’re going,” Transp.
Res. Part C: Emerging Technol., vol. 43, pp. 3–19, 2014.

[36] Y. Wang, X. Liu, H. Wei, G. Forman, C. Chen, and Y. Zhu,
“Crowdatlas: Self-updating maps for cloud and personal use,”
in Proc. 11th Annu. Int. Conf. Mobile Syst. Appl. Serv., 2013, pp. 469–
470.

[37] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path
using sparse trajectories,” in Proc. 20th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2014, pp. 25–34.

[38] Y. Wang, Y. Zhu, Z. He, Y. Yue, and Q. Li, “Challenges and oppor-
tunities in exploiting large-scale GPS probe data,” HP Laborato-
ries, Palo Alto, CA, USA, HP Tech. Rep. HPL-2011–109, 2011.

[39] X. Xin, C. Lu, Y. Wang, and H. Huang, “Forecasting collector road
speeds under high percentage of missing data,” in Proc. 29th
AAAI Conf. Artif. Intell., 2015, pp. 1917–1923.

[40] B. Yang, C. Guo, and C. S. Jensen, “Travel cost inference from
sparse, spatio-temporally correlated time series using Markov
models,” Proc. VLDB Endowment, vol. 6, pp. 769–780, 2013.

[41] B. Yang, M. Kaul, and C. S. Jensen, “Using incomplete information
for complete weight annotation of road networks,” IEEE Trans.
Knowl. Data Eng., vol. 26, no. 5, pp. 1267–1279, May 2014.

[42] Z. Yang, J. Hu, Y. Shu, P. Cheng, J. Chen, and T. Moscibroda,
“Mobility modeling and prediction in bike-sharing systems,” in
ACM Int. Conf. Mobile Syst. Appl. Serv., 2016.

[43] J. Yoon, B. Noble, and M. Liu, “Surface street traffic estimation,”
in Proc. 5th Int. Conf. Mobile Syst. Appl. Serv., 2007, pp. 220–232.

[44] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proc. 9th USENIX Conf. Netw. Syst. Des. Implemen-
tation, 2012, pp. 2–2.

[45] D. Zhang, J. Huang, Y. Li, F. Zhang, C. Xu, and T. He, “Exploring
human mobility with multi-source data at extremely large metro-
politan scales,” in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw.,
2014, pp. 201–212.

[46] D. Zhang, F. Zhang, and T. He, “MultiCalib: National-scale traffic
model calibration in real time with multi-source incomplete data,”
in Proc. 24th ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst.,
2016, Art. no. 19.

[47] D. Zhang, J. Zhao, F. Zhang, and T. He, “UrbanCPS: A cyber-
physical system based on multi-source big infrastructure data for
heterogeneous model integration,” in Proc. ACM/IEEE 6th Int.
Conf. Cyber-Phys. Syst., 2015, pp. 238–247.

[48] J. Zheng and L. M. Ni, “Time-dependent trajectory regression on
road networks via multi-task learning,” in Proc. 27th AAAI Conf.
Artif. Intell., 2013, pp. 1048–1055.

[49] P. Zhou, S. Jiang, and M. Li, “Urban traffic monitoring with the
help of bus riders,” in Proc. IEEE 35th Int. Conf. Distrib. Comput.
Syst., 2015, pp. 21–30.

[50] P. Zhou, Y. Zheng, and M. Li, “How long to wait?: Predicting bus
arrival time with mobile phone based participatory sensing,”
Proc. ACMMobiSys, 2012, pp. 379–392.

[51] H. Zhu, Y. Zhu, M. Li, and L. M. Ni, “SEER: Metropolitan-scale
traffic perception based on lossy sensory data,” in Proc. IEEE
INFOCOM, 2009, pp. 217–225.

[52] Y. Zhu, Z. Li, H. Zhu,M. Li, andQ. Zhang, “A compressive sensing
approach to urban traffic estimation with probe vehicles,” IEEE
Trans. Mobile Comput., vol. 12, no. 11, pp. 2289–2302, Nov. 2013.

Zhidan Liu received the BE degree in computer
science and technology from Northeastern
University, China, in 2009, and the PhD degree in
computer science and technology from Zhejiang
University, China, in 2014. He is currently an
assistant professor with Shenzhen University,
China. His research interests include distributed
sensing and mobile computing, big data analytics,
and urban computing. He is amember of the IEEE.

Pengfei Zhou received the BE degree from
the Automation Department, Tsinghua University,
Beijing, China, in 2009, and the PhD degree from
the School of Computer Science and Engineering,
Nanyang Technological University, Singapore,
in 2015. His research interests include mobile
computing and systems, localization, and cellular
network communications.

Zhenjiang Li received the BE degree in computer
science and technology from Xian Jiaotong
University, Xian, China, in 2007, the MPhil degree
in electronic and computer engineering, and the
PhD degree in computer science and engineering
from The Hong Kong University of Science
and Technology, Hong Kong, in 2009 and 2012,
respectively. He is currently an assistant professor
of the Computer Science Department, City Univer-
sity of Hong Kong. His research interests include
wearable and mobile sensing, deep learning and

datamining, distributed, and edge computing. He is amember of the IEEE.

Mo Li received the BS degree in computer sci-
ence and technology from Tsinghua University,
China, in 2004 and the PhD degree in computer
science and engineering from The Hong Kong
University of Science and Technology, Hong
Kong, in 2009. He is currently an associate pro-
fessor with Nanyang Technological University,
Singapore. His research interests include net-
worked and distributed sensing, wireless and
mobile, cyber-physical systems, smart city, and
urban computing. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIU ETAL.: THINK LIKE AGRAPH: REAL-TIME TRAFFIC ESTIMATION ATCITY-SCALE 2459

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 11,2023 at 04:08:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

