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Abstract—Estimating the number of RFID tags in the region of interest is an important task in many RFID applications. In this paper,

we propose a novel approach for efficiently estimating the approximate number of RFID tags. Compared with existing approaches, the

proposed Probabilistic Estimating Tree (PET) protocol achieves Oðlog lognÞ estimation efficiency, which remarkably reduces the

estimation time while meeting the accuracy requirement. PET also largely reduces the computation and memory overhead at RFID

tags. As a result, we are able to apply PET with passive RFID tags and provide scalable and inexpensive solutions for large-scale RFID

systems. We validate the efficacy and effectiveness of PET through theoretical analysis as well as extensive simulations. Our results

suggest that PET outperforms existing approaches in terms of estimation accuracy, efficiency, and overhead.

Index Terms—RFID systems, tag estimation, aloha networks
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1 INTRODUCTION

RADIO Frequency Identification (RFID) technology [6] has
recently attracted dramatic attentions from the research

community. A typical RFID system consists of RFID
readers, RFID tags, and the middleware software to support
proper working of the system [32]. An RFID tag is a small
microchip capable of wireless communication, which
transmits data in response to interrogation by an RFID
reader. RFID tags, each with a small size of memory to store
its unique ID number as well as other related information,
are usually attached to real objects for explicitly labeling
those objects. An RFID reader can thus identify and itemize
the objects by verifying the unique IDs of RFID tags
attached to them. Due to the simple structure, small size,
and low manufacturing cost of RFID tags, it provides us an
economic and competitive method to utilize the RFID
system for massive object management in a variety of
applications, such as localization [23], inventory control
[17], [30], [34], [37], object tracking [36], activity monitoring
[19], authentication and security [20], [29], [35], etc.

Estimating the number of RFID tags, accordingly the
number of objects, is one of the primary tasks in many such
applications, e.g., counting the number of conference or
exposition attendees with RFID badges [16], verifying the
amount of products with RFID labels in cargo shipping at
the airport [25].

The problem of estimating RFID tag number can be
easily reduced to identifying the IDs of all RFID tags and
itemizing them. As the RFID readers and tags in the area
usually share one same communication channel, a careful
scheduling mechanism must be provided for multiple
channel access and collision arbitration. There have been

already a number of works proposed for solving the tag
identification problem [3], [26], [38] and they can be directly
borrowed to compute the exact number of RFID tags when
the size of the RFID system is small. Those solutions,
however, become infeasible when the RFID system scales
up. The processing time rapidly grows as the number of
RFID tags increases.

As a matter of fact, counting the exact number of RFID
tags is not always necessary. Instead, knowing the approx-
imate amount with some guaranteed accuracy and con-
fidence level will be adequate in many application
scenarios. For example, it suffices to know the approximate
amount of products instead of the exact number in shipping
a large amount of cargoes. In accordance with that, a set of
probabilistic counting schemes have been proposed to
estimate the approximate number of RFID tags with much
reduced time slots for information exchange [12], [15], [16],
[24]. Some most recent works achieve processing efficiency
with OðlognÞ time slots for each estimation round to the
total number of RFID tags n. Nevertheless, as we will later
elaborate, most probabilistic approaches require many
independent rounds of estimation so as to reach high
accuracy and confidence level. Thus, it is yet significant to
further improve the processing efficiency such that the
system would scale up to support a larger number of RFID
tags. Besides, most existing approaches require that the
RFID tags react to the reader in a probabilistic manner with
uniform or geometric distribution hash functions imple-
mented inside. Generating randomness itself, however,
becomes already a heavy burden for resource-limited RFID
tags, especially those passive tags without self-support
energy source.

In this paper, we propose a novel approach for
efficiently estimating the approximate number of RFID
tags with arbitrarily required accuracy and confidence
level. We divide the tag set and define random estimating
paths based on a novel coding structure, Probabilistic
Estimating Tree (PET). With the help of PET, we develop an
estimation algorithm of Oðlog lognÞ processing efficiency to
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the total number of RFID tags n, which significantly
improves the state-of-the-art performance bound. By
querying on random estimating paths, PET further shifts
the overhead of generating probabilistic hash results on the
tags to random path selection on the readers, which
remarkably reduces the computational burden of RFID
tags, providing better applicability and scalability. Our
contributions can be summarized as follows:

. We propose an Oðlog lognÞ estimation approach,
PET, which significantly improves the state-of-the-
art performance bound of RFID estimation, provid-
ing the capability to support millions of RFID tags.

. PET remarkably reduces the computation and
memory overhead at RFID tags, providing us
applicable and scalable alternatives of using much
less costly but resource-limited passive RFID tags.

. Similar with some other probabilistic counting
approaches, PET is effective in handling dynamic
tag set and multiple reader environment, where
problems like tag join/leave and duplicate counts
among different readers can be easily resolved. The
privacy of RFID tags can be preserved as well.

The rest of the paper is organized as follows: we
introduce related works in Section 2. In Section 3, we give
a formal description of the RFID estimation problem and
present the design goal and requirements. In Section 4, we
give detailed description on the design and analysis of PET.
In Section 5, we do intensive simulations to evaluate PET
performance and compare with most recent works. Finally,
we conclude this work in Section 6.

2 RELATED WORK

The problem of estimating the number of RFID tags can be
directly reduced to identifying the IDs of all RFID tags and
itemizing them. Since a large number of RFID tags normally
share the same physical communication channel, unor-
dered concurrent communications may result in transmis-
sion collisions among tags. To address such a problem [18],
[21], [22], [25], [33], many time-domain anticollision
methods have been proposed [3], [26], [28], [38], which
can generally be classified into two categories: slotted
Aloha protocols [26], [28] and tree-based protocols [3], [38].
In an Aloha-based protocol, an RFID tag replies immedi-
ately to reader’s interrogation. If a collision occurs, the tag
replies again after a random delay. The process continues
until all tags are successfully recognized by the reader. The
Aloha-based protocols mitigate the negative impact of
collisions with retransmissions but cannot remove colli-
sions. With Aloha-based protocols, a specific tag may not be
identified for an excessively long time. In a Tree-based
anticollision protocol, an RFID reader interrogates tags and
detects whether or not there are any collisions. Once
collisions occur, the reader splits the tag set into two
subsets by tag IDs and queries the subsets with fewer tags.
The reader continues the splitting procedure and the
probability of collisions within each tag subset decreases
until each tag can be successfully identified.

In small-scale RFID systems, RFID identification
schemes can be directly applied to estimate the exact

number of tags by itemizing each tag within the reader’s
interrogation region. Those solutions, however, become
infeasible when the RFID system scales up. The processing
time rapidly grows as the number of RFID tags increases. In
particular, compared with tree-based anticollision protocols
for RFID identification, the PET approach proposed in this
paper only estimates the total number of tags. PET does not
aim at resolving any tag collisions.

Rather than identifying all the RFID tags, probabilistic
counting algorithms have been designed for quickly
estimating the number of distinct RFID tags. Kodialam
and Nandagopal presented Unified Simple Estimator (USE)
and Unified Probabilistic Estimator (UPE) in [15]. One
drawback of those schemes is that they are vulnerable to
replications when one tag is read by multiple readers, and
the schemes require approximate magnitude of the tag
number as a prior knowledge. In [16], an Enhanced Zero-
Based (EZB) estimator was proposed which provides
anonymous estimation and can estimate relatively larger
number of tags.

Some most recent approaches advance the estimation
efficiency, and achieve OðlognÞ processing efficiency to the
number of RFID tags n. In [12], Han et al. present an
OðlognÞ estimator by quickly positioning the first none-
mpty slot with binary search algorithm. They further
provide an adaptive shrinking algorithm to adjust the
upper bound of the tag number so as to speed up the
estimation process. Qian et al. [24] propose LoF estimating
algorithm, which leverages a geometric distribution hash-
ing process to code tags with OðlognÞ bits and by so
estimates the tags with OðlognÞ time slots. LoF [24] is able
to address the multiple reader problem as well. Both
approaches require that RFID tags react to the reader with
on-chip computations for generating some kind of random-
ness (uniform or geometric distribution hashing).

Cardinality estimation of a large volume of objects has
also been studied in other research fields. In [8], Flajolet and
Martin introduce the pioneering FM sketch to estimate the
cardinalities in a database using a small memory space.
There are some other related works for cardinality estima-
tion for applications in database [5], [9], wireless sensor
networks [4], etc. Those works, however, cannot be directly
borrowed to the RFID environment where we have much
resource-limited RFID tags and we need highly efficient
approaches to deal with the wireless communication
channel shared by thousands or millions of tags.

3 PROBLEM DESCRIPTION

A large-scale RFID system consists of one or more RFID
readers and a vast number of RFID tags attached on
physical objects. The goal of efficient RFID cardinality
estimation is to obtain the approximate number of RFID
tags in the region in a fast and accurate manner. Since the
number of RFID tags can be extremely large in meeting
large-scale application demands, like product amount
estimation in shipping cargo containers, the processing
approach needs to be designed scalable with the quantity of
RFID tags while meeting prerequired accuracy and con-
fidence level.
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Similar with [12], [15], the accuracy requirement of
estimation is defined by two parameters: a confidence
interval " and an error probability �. Assume that an
estimating result of the RFID tag number is n̂ while the
actual number is n, we consider the estimator accurate and
precise if n̂ satisfies Prfjn̂� nj � "ng � 1� �. For instance,
if the actual number of RFID tags in a region is 50,000, and
the accuracy requirement is specified as " ¼ 5% and � ¼ 1%,
an accurate estimation approach is expected to output the
estimated number within the interval [47,500, 52,500] with
more than 99 percent probability.

The underlying RFID system is assumed to work on a
slotted MAC model. The time period is divided into small
time slots. In each slot, the reader first transmits continuous
waves to energize the RFID tags as well as the command for
tags’ response and the tags then accordingly respond in the
second half of the time slot, which is denoted as Reader
Talks First mode and has been widely accepted and used in
many RFID systems [3], [12], [26], [38]. Some works also
assume that the reader sends out the command at the very
beginning of a frame of slots and RFID tags then
consequently respond at consecutive time slots. Such an
assumption, however, requires that all RFID tags synchro-
nize their frame of slots and have their own energy resource
to support their proper working for the entire frame.

Same as the previous works, we assume that the RFID
tags can perform stateful computations. As a matter of
fact, the current EPC global Class-1 Gen-2 standard [1]
requires that RFID tags are able to record intermediate
computation states.

One main requirement for a good RFID estimation
approach is efficiency, which requires a short processing
period, i.e., a small number of time slots for reader-tag
communication to achieve the desired accuracy. We want to
keep it a small order to the total number of RFID tags so as
to support scalable RFID systems.

We also want to make the approach lightweight for RFID
tags. There are two types of RFID tags, active ones and
passive ones [27]. Active tags are capable of doing complex
computations with self-energy supply but are expensive
and bulky. Passive tags are instantly energized by
the reader to carry out extremely limited computations
but are cheap and easy to be massively used. We want to
design the estimation approach lightweight so as to support
a variety of applications using passive tags.

Besides, we hope to ensure the RFID estimation process
anonymous. In some applications, the tag ID carries identity
information about the object it is associated with. Revealing
such information to the public might lead to leak of private
information. We need to design the RFID estimation
process robust as well, effective with dynamic RFID tag
set and multireader environment. In such environment, the
tags are attached to mobile objects which may move across
the coverage areas of multiple readers. Without careful
design consideration, duplicate tag counts may lead to
erroneous estimation.

4 PET DESIGN

To estimate the total number of RFID tags in the region of
interest, we code those tags and divide them into small

subgroups. We show that a probabilistic estimation tree
well organizes the coding structure. By defining an
arbitrary estimating path on PET, we get an actual querying
scheme to estimate tags across different subgroups and
approximate the total number of tags. In the following, we
first present a basic estimation algorithm of OðlognÞ
processing efficiency in Section 4.1. We present theoretical
analysis of the basic algorithm in Section 4.2 and then
develop a practical estimation protocol in Section 4.3. Based
on the basic protocol, in Section 4.4 we optimize the
algorithm and present an Oðlog lognÞ protocol that sig-
nificantly improves the processing efficiency. In Section 4.5,
we develop techniques to further reduce the computation
and memory overhead at RFID tags. In Section 4.6, we
discuss some practical issues related to PET protocol and
compare with some existing approaches.

4.1 Basic Algorithm

PET is built on top of a binary tree as shown in Fig. 1. We
call a nonleaf node as node, and a leaf node simply as leaf.
Each node has two branches, labeled as the 0-branch and
1-branch. Each top-down path from the root to a leaf thus
gives a bit string with branch labels, and such a bit string
codes that leaf. Different RFID tags are mapped to
different leaves according to the codes.

For the sake of simplicity, we use an example to illustrate
the design of PET. We assume that there are n ¼ 4 RFID
tags in the system.

First, PET uses a uniform random hash function
HðtagIDÞ ! ½0; 2H � 1� to generate a random code for each
RFID tag. In this example, we set H ¼ 4, and assume the
four RFID tags are assigned random codes 0001, 0110, 1011,
and 1110, respectively. As Fig. 1 depicts, they are mapped
to the four black leaves. For an arbitrary node in PET, if
there are no black leaves within the subtree rooted at it, we
say the subtree is white, and label the node white; otherwise
the subtree is black and the node is labeled black.

We define the height of a node as the distance of the path
between the node and a leaf in its subtree. The height of
PET, denoted as H, in this example is 4.

To estimate the number of tags, an RFID reader generates
a random bit string r, say 0011 in this example, indicating
an estimating path from the PET root down to a leaf. For
each node i, there are two subtrees along its two branches.
We denote the subtree of node i along the estimating path r
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as ST ir, and the other subtree of node i that does not follow
r as ST i�r. If node i is black, either ST ir or ST i�r is black, and
if node i is white, both ST ir and ST i�r should be white.
There is a particular black node i along the path whose ST ir
is white (all other black nodes have black ST r) and such a
node is the lowest black node along the path. We define it as
a gray node (node A in Fig. 1). The height h of the gray node,
as our later analysis in Section 4.2, implies the number of
RFID tags (black leaves in PET). Intuitively, we can imagine
that the bigger fraction of white leaves there are in PET,
the higher the gray node is. Thus, we can use h to estimate
the number of RFID tags. Table 1 summarizes the notations
used across this paper.

To find out h, the RFID reader initiates prefix query
along the selected estimating path r, for the example in
Fig. 1, 0011. First the reader requests those tags whose
random codes match prefix 0��� to respond. As the four tags
(black leaves in PET) are assigned 0001, 0110, 1011, and
1110, respectively, the ones with 0001 and 0110 will
respond to the reader at the reply slot. Though the
responses result in a collision slot, the reader detects
the existence of responsive signal and is aware of the
existence of 0��� prefix tags. The reader then goes ahead
with the estimating path and requests the response of 00��

prefix tags, and the tag with 0001 responds. The reader
continues such a process till there is no response from RFID
tags. In this example, when the reader queries 001� prefix,
as no tags are with such a prefix, no response is made and
the reader detects an idle slot. The reader can thus infer that
there must be some black leaves matching prefix 000� and
find out the only gray node A (with path prefix 00��) on the
estimating path r ¼ 0011 in PET. Consequently, the height h
of A is 2. We will show in the next section how the height of
A is used to derive the approximate number of RFID tags.

In practice, we use a relatively large H, say 32, to build a
large PET that is able to accommodate billions of black
leaves. Querying along the 32-bit estimating path will lead
us to h and thus the number of RFID tags. In some cases, we
may have a priori knowledge about the scale of the RFID
tags, and adjust H according to the rough tag cardinality.
One thing worth noting is that, the PET structure is neither
created nor maintained at the RFID reader. It is only a
conceptual data structure that illustrates the organization of
RFID tag groups as well as the reader query process over

such tag groups. As we will see in Sections 4.3 and 4.4, in a
practical protocol, the reader simply queries the tags with a
randomly selected estimating path and calculates h with
tag responses.

4.2 Algorithm Analysis

As suggested in the previous section, the height h of the
gray node plays a very important role in estimating the
number of RFID tags. We can use h to estimate the number
of black leaves in PET, accordingly the number of RFID
tags. We denote the fraction of white leaves in PET as p
and the fraction of black leaves is 1� p. We present
theoretical analysis for the estimation accuracy of PET
algorithm in the following.

We start from two extreme cases, p ¼ 1 and p ¼ 0,
respectively. p ¼ 1 corresponds to that all the leaves in PET
are white. In such a case, we can infer that the number of
tags is 0. p ¼ 0 corresponds to that all the leaves in PET are
black. In such a case, we can roughly estimate that the
number n of tags hashed to the leaves of PET

n � 2H: ð1Þ

As a matter of fact, in the case of p ¼ 0 the hashing
process can be modeled as the famous coupon collector
problem taking the hashing collision into consideration.
This paper does not try to deeply investigate such a case,
as we can always choose a sufficiently big H such that we
can make p ¼ ð1� 1

2HÞ
n � 1 for an arbitrary number of n

(H ¼ 32 can accommodate n ¼ 40;000;000 with p � 0:99),
leading to rare hashing collisions.

For the ease of analysis, we focus on the case where
both n and 2H are sufficiently large, and p � 1.

Let the random variable h be the height of the gray node i
on a randomly selected estimating path r. Then we have

PrðhÞ ¼ Pr
�
ST ir ¼ white;ST

i
�r ¼ black

�
: ð2Þ

As the PET random codes of tags are independently
assigned for the 2h�1 leaves in either ST ir or ST i�r with
uniformly random distributed hash function. So we have

Pr
�
ST ir ¼ white

�
¼ p2h�1

: ð3Þ

We can also obtain

Pr
�
ST i�r ¼ black

�
¼ 1� p2h�1

: ð4Þ

Hence, we have

PrðhÞ ¼ p2h�1�
1� p2h�1�

: ð5Þ

As a result, the expectation of h is

EðhÞ ¼
XH
k¼1

kPrðkÞ ¼ �Hp2H þ
XH�1

k¼0

p2k : ð6Þ

Since p ¼ ð1� 1
2HÞ

n � e�n2�H , we have

EðhÞ ¼ �He�n þ
XH�1

k¼0

e�n2�k�1 �
XH�1

k¼0

e�n2�k�1

: ð7Þ

We appeal to Mellin transforms to derive the asymptotic
closed form of the harmonic summation [7], [14] as follows:
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Key Notations



EðhÞ � H � log2 nþ
�

ln 2
� 1

2
þ Pðlog2 nÞ þO

1ffiffiffi
n
p
� �	 


; ð8Þ

where � is Euler’s constant, PðxÞ is a periodic and

continuous functions of x with period 1 and amplitude

bounded by 10�5. We omit the term Pðlog2 nÞ þOð 1ffiffi
n
p Þ, and

let � ¼ e�ffiffi
2
p ¼ 1:25941 . . . , then

EðhÞ � H � log2ð�nÞ: ð9Þ

Correspondingly, the standard deviation of h is

�ðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V arðhÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXH
k¼1

½k� EðhÞ�2PrðkÞ

vuut : ð10Þ

Similar to the method we derive EðhÞ, we appeal to

Mellin transforms to approximate the standard deviation [7]

�ðhÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

6ðln 2Þ2
þ 1

12

s
¼ 1:87271 . . . : ð11Þ

For detailed analysis, we refer the reader to [13], which

presents the probabilistic counting theory and can be used

to derive EðhÞ and �ðhÞ.
According to (9), the observation of h, the height of gray

node, can be used to estimate n, the number of tags.
However, there may exist variance between the observed

height of gray node and its expectation EðhÞ. According to

law of large numbers [10], [31], the average of the

observation results can be used to approximate the expecta-

tion of the value. Besides, as more trials are performed, the

average would become closer to the expectation.

We define the random process �h ¼ 1
m

Pm
i¼1 hi as the

average value of m independent observations, where hi
denotes the ith observation of random variable h. Since both

the estimating path of the reader and the PET codes at tags

are randomly generated in each round of estimation, the

trials of hið1 � i � mÞ are independent random processes.

Therefore, we have

Eð�hÞ ¼ 1

m

Xm
i¼1

EðhiÞ ¼ EðhÞ; ð12Þ

�ð�hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V arð�hÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ar

�Pm
i¼1 hi

�
m2

s
¼ �ðhÞffiffiffiffiffi

m
p : ð13Þ

According to (9) and (12), we can estimate the number of

tags as follows:

n̂ ¼ ��1 	 2H�
�h ¼ ��1 	 2H�

1
m

Pm

i¼1
hi : ð14Þ

Then, according to (13), we will be able to reduce the

variance and improve the estimating accuracy by perform-

ing m rounds of estimation. On the other hand, if m is too

small, the estimation result would be poor because of the

precision error.
Next, we show that given a particular accuracy require-

ment, e.g., Prfjn̂� nj � "ng � 1� �, how many rounds of

estimation PET should take to output satisfying results.
We define a random variable as follows:

X ¼
�h� �
�

: ð15Þ

By the central limit theorem [10], [31], we know the

random variable X is asymptotically standard normal

distribution, where � ¼ Eð�hÞ ¼ H � log2ð�nÞ and � ¼
�ð �hÞ ¼ �ðhÞffiffiffi

m
p . So, the cumulative distribution function of

variable X is

�ðxÞ ¼ 1ffiffiffiffiffiffi
2�
p

Z x

�1
e�

t2

2 dt: ð16Þ

Given a particular error probability �, we can always
find a constant range c which satisfies

1� � ¼ Prf�c � X � cg ¼ erf cffiffiffi
2
p
� �

; ð17Þ

where erf is the Gaussian error function [2]. On the other
hand, we can rewrite the accuracy requirement as follows:

Prfjn̂� nj � "ng
¼ Prfð1� "Þn � n̂ � ð1þ "Þng
¼ Prfð1� "Þn � ��1 	 2H�

�h � ð1þ "Þng
¼ PrfH � log2 �ð1þ "Þn � �h � H � log2 �ð1� "Þng:

ð18Þ

Therefore, if we have the following condition:

H � log2 �ð1þ "Þn� �
�

� �c;

H � log2 �ð1� "Þn� �
�

� c;
ð19Þ

we can guarantee the accuracy requirement Prfjn̂ �
nj � "ng � 1� �. Combining (12), (13), and (19), we have

m � max �c�ðhÞ
log2ð1� "Þ

	 
2

;
c�ðhÞ

log2ð1þ "Þ

	 
2
( )

: ð20Þ

Therefore, with such calculated m rounds of estimation,

PET can guarantee the accuracy requirement of Prfjn̂ �
nj � "ng � 1� �. Note that m is solely determined by the

accuracy requirement " and �. Given the prerequired

accuracy level, we can use a constant m that does not relate

to the scale of RFID tags.

4.3 General Protocol

As elaborated in previous sections, the number of RFID tags

is estimated based on the height of gray nodes in PET,

i.e., the idle slots when the reader query with the selected

estimating path. In this section, we formally present the

general estimation protocol, regulating both the reader

behaviors and RFID tag behaviors.
Algorithm 1 defines the behaviors of the RFID reader

during each round of estimation. The RFID reader uses

Reader Talk First mode to communicate with tags. At the

first, the reader computes the number estimation rounds

according to accuracy requirement (line 1). In each round,

the reader selects a random estimating path r and a random

seed s, and broadcast them to the tags (line 3). The reader

queries the tags with the additively increased path prefix in

the following 32 time slots (lines 4-11). In particular, at the
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jth time slot the reader queries with the j-prefix of the
selected estimating path r (line 5). At each time slot, the
reader broadcasts the prefix mask for each tag’s comparison
(line 6). The reader listens to the channel and obtains
the idle slot j when no response is received and store the
value of j� 1 (lines 7-10). Finally, the reader derives the
approximate number of RFID tags according to (14)
described in previous section (line 13).

Algorithm 1. PET algorithm for RFID readers

1: m maxf½ �c�ðhÞlog2ð1�"Þ
�2; ½ c�ðhÞ

log2ð1þ"Þ
�2g

2: for i 1 to m do

3: Select a random estimating path r and a random

seed s; Broadcast r and s

4: for j 1 to 32 do

5: Set high j bits of mask
6: Broadcast mask; Listen in the following slot

7: if there is no response in the slot then

8: hi  j� 1

9: break

10: end if

11: end for

12: end for

13: return n̂ ��1 	 2H�
1
m

Pm

i¼1
hi

Algorithm 2 defines the behaviors of RFID tags during
each round of estimation. Compared with reader behaviors,
the task of each tag is simpler. The tag receives the
estimating path r as well as the random seed s, and
generates the PET random code (lines 1-2). The tag keeps
receiving the additively increased mask for the path prefix
and compares the path prefix with the prefix of its own
generated random code. If they are the same the tag
responds to the reader and otherwise the tag simply keeps
silent (lines 3-11). With such behaviors fewer RFID
tags respond as the querying process goes on and finally
all tags will keep silent.

Algorithm 2. PET algorithm for RFID tags

1: Receive the estimating path r and the random seed s

2: Compute PET random code prc Hðs; tagIDÞ
3: while TRUE do

4: Receive mask

5: if prc ^mask ¼ r ^mask then

6: n � Check whether high mask bits of prc is equal

to that of r �n
7: Respond immediately

8: else

9: Keep silent

10: end if

11: end while

Similar with previous estimation approaches like FNEB
[12] and LoF [24], the random code of each tag is generated
with a random seed sent from the reader at the beginning
of each estimation round. In such a case, we need to use
active tags such that each tag is capable of executing the
random hashing functions to generate the random code.

4.4 O(loglogn) Algorithm

Given an estimating path r, we define the node along r with
the height of i in PET as noderi . In the basic algorithm, the
reader queries the path prefix additively, which can be
mapped to searching the gray node from the root down to
the leaf on the estimating path r in PET.

Fig. 2 gives an example to illustrate such a process. In
Fig. 2, the estimation process first probes noder5, and
searches along r with additive path prefix query until the
gray node noder3 is found. We need OðHÞ time slots for such
a sequential path prefix query in searching the height h of
the gray node in PET. When the number of RFID tags is
large, the height of PET H � log2 n, and thus the basic
estimation protocol has OðlognÞ efficiency, which is
comparable performance with the state-of-the-art ap-
proaches, such as FNEB [12] and LoF [24].

In this section, we improve the estimating efficiency by
speeding up the process of path prefix query. As a matter of
fact, the nodes along the estimating path r can be classified
as shown in Table 2. For arbitrary i > j, we have

ST jr
[
ST j�r

� �

 ST ir: ð21Þ

Thus, we have the following relations between noderi and
noderj . For i > j,

. If noderi is white or gray node, then noderj is white
node.

. If noderj is black or gray node, then noderi is black
node.

. In either case, only one gray node exists in an
estimating path.

Such an observation directly reveals the monotonic
feature of the node colors along the estimating path,
i.e., the black and white nodes are consecutively aligned
and concatenated by the only gray node. In the example
shown in Fig. 2, noder0;1;2 are white nodes, noder4;5 are black
nodes, and noder3 is the only gray node in between. Utilizing
the monotonic feature of the estimating path, we can use a
binary search algorithm to rapidly find the gray node in PET.

Mapped back to the estimation protocol, the reader no
longer conducts a sequential path prefix query. Instead, the
reader queries the path prefix with binary search. Algo-
rithm 3 gives the improved protocol for the reader. The
binary search algorithm is applied to query the path prefix
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Fig. 2. Gray node on the estimating path r. Node 3 is the gray node in
this example.

TABLE 2
Node Classification along an Estimating Path r



(lines 5-15). Instead of querying the additively increased

path prefix, the mid ¼ dðlowþ highÞ=2e bit prefix is chosen

at each time slot (line 6). The high end and low end of the

prefix range are adjusted according to whether or not

the response is received from the tags (lines 9-13). Finally,

the high end and low end converge to the height of the gray

node on the estimating path, and it is used to derive the

approximate number of RFID tags (line 17).

Algorithm 3. PET algorithm for RFID readers with binary

search

1: m maxf½ �c�ðhÞlog2ð1�"Þ
�2; ½ c�ðhÞ

log2ð1þ"Þ
�2g

2: for i 1 to m do

3: low 1; high 32

4: Select a random estimating path r; Broadcast r

5: while low < high do

6: mid dðlowþ highÞ=2e
7: Set high mid bits of mask

8: Broadcast mask; Listen in the following slot

9: if there is no response in the slot then

10: high mid� 1

11: else

12: low mid

13: end if

14: end while

15: hi  low

16: end for

17: return n̂ ��1 	 2H�
1
m

Pm

i¼1
hi

With the above new protocol, the estimation efficiency is

further improved. Only OðlogHÞ time slots are used to find

the gray nodes in PET, which finally gives us Oðlog lognÞ
estimation efficiency.

Fig. 3 uses an example to demonstrate the performance

gain of the improved protocol compared with the basic one.

The example contains one RFID reader and 16 RFID tags.

The height H of PET is chosen to be 6. Each tag generates a

random code with 6 bits and the reader selects a 6-bit

random estimating path r ¼ 000011.
Fig. 3a depicts the estimation process with the basic

protocol. At time slot 0, the reader queries the path prefix

0�����. As a result, the first four tags and the four tags with

prefix 01���� respond. The reader is aware of that and keeps

proceeding at time slot 1 with a path prefix 00����. The

query process continues until time slot 4, during which

the reader queries the path prefix 00001� and identifies an

idle slot. The entire process contains five time slots.

Fig. 3b depicts the estimation process with the improved
protocol. At time slot 0, the reader directly queries the mid
(mid ¼ dðlowþ highÞ=2e ¼ dð1þ 6Þ=2e ¼ 4) path pref ix
0000�� and one tag responds. Receiving the response, the
reader then raises the low end of the query range and at
time slot 1 queries path prefix 00001�. At this time, there is a
tag response. The reader then lowers the high end of the
query range and the estimation converges. The entire
process contains only two time slots.

4.5 Shifting the Computation Burden from RFID
Tags

With the basic protocol each tag will generate a random
PET number for mapping into the PET structure at each
round of estimation. Generating the random code at each
tag requires a fair amount of computation, which is
infeasible for passive tags. An alternative is to preload a
number of such random codes on the chip of each RFID tag
during manufacturing. At each round of estimation the tag
uses one of the preloaded random codes. As a tradeoff,
however, extra memory cost is required to store those
random codes, which is proportional to the number of
estimation rounds m. As there will be generally many
rounds of estimations for accurate results, the memory cost
for preloaded PET random codes will be high.

With the above concern, we propose to shift such
computation burden from RFID tags to the reader. We rely
on the random estimating paths generated on the reader
rather than refreshing the random codes at tags. Instead of
using new random codes at different estimating rounds, a
32-bit PET random code is preloaded on each tag during
manufacturing and used across all rounds of estimation. A
group of off-the-shelf uniformly distributed hash functions
can be used to generate the PET numbers, including
Message-Digest algorithm 5 (MD5) and Secure Hash
Algorithm (SHA-1). Note that MD5 generates a 128-bit
hash value, but we can trivially convert them to shorter
length, e.g., a 32-bit hash value, at will.

The reader generates a uniformly distributed random
number as an estimating path at each round of estimation.
By solely changing the 32-bit estimating path in the 232

combinatorial spaces at each round of estimation, even the
PET codes of tags keep unchanged, we are still expecting
near independent estimating instances [2], [11], and the
algorithm analysis in Section 4.2 still holds. Algorithm 4
defines the new behaviors of RFID tags. The tags use the
preloaded random codes through all rounds of estimation
(line 1), while in Algorithm 2, tags generate PET random
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Fig. 3. Protocol execution (a) Basic algorithm. (b) Binary search algorithm. In this example, the height H of PET is set to 6, and the estimating path r
is selected to be 000011.



codes at each round. In such a way, a tag only performs
bitwise comparison on the PET code and path prefix during
each round of estimation (lines 3-11).

Algorithm 4. PET algorithm for RFID tags with binary

search

1: PET random code prc ¼ preloaded random number
2: Receive the estimating path r

3: while TRUE do

4: Receive mask

5: if prc ^mask ¼ r ^mask then

6: n� Check whether high mask bits of prc is equal

to that of r �n
7: Respond immediately

8: else

9: Keep silent

10: end if

11: end while;

During each round, the reader needs to broadcast a
32-bit random estimating path for each estimation rounds,
and has to repeat a large number of estimation rounds for
high-accurate estimation. The 32-bit information is capsu-
lated into a packet and sent out together. Thus, the extra
overhead imposed by such a component is very limited.

4.6 Discussion

4.6.1 Processing Efficiency and Computational

Overhead

According to our analysis, PET achieves the estimation
efficiency of Oðlog lognÞ which significantly improves the
state-of-the-art performance. In PET, RFID tags are only
required to perform bitwise operations as well as to store a
32-bit PET random code. The random codes can be
preloaded to the tags by RFID manufacturers. Such cost of
implementing PET on RFID tags is negligible in terms of
both computation and memory requirement in comparison
with other probabilistic counting schemes, such as FNEB
[12] and LoF [24]. In both approaches, RFID tags need to
generate random numbers at each round of estimation, or
the random numbers are preloaded and stored at the RFID
tags during manufacturing. In order to pursue a high-
estimation accuracy, both FNEB and LoF will conduct
hundreds or even thousands of rounds of estimation. In
such a case, the computation or memory cost would be
significant and render it infeasible to work with passive tags.

4.6.2 Command Overhead

With reference to Algorithm 3, PET requires RFID readers
to broadcast the mask/prefix to the tags (a 32-bit random
number under the worst situation). The command over-
head of broadcasting such a mask is nonnegligible. One
may have noticed that only high mid bits of mask are set to
ones (line 7), while the low bits remain zeros, which means
a 32-bit mask actually carries only log2 32 ¼ 5-bit informa-
tion. Therefore, it suffices for the RFID readers to broadcast
5-bit mid. When receiving the message of mid, instead of
comparing the preloaded random number prc with the
estimating path r (Algorithm 4, line 5), the tags check
whether the high mid bits of prc and r are the same, and
respond to the readers accordingly.

With another optimization, we can further reduce the
command overhead from 5 bits to 1 bit. In Algorithm 3, the
readers update the parameters high and low according to
the responses from the tags (lines 9-13), and compute a new
value of mid (line 6). The responses from the tags only carry
1-bit information representing an empty or nonempty slot.
If tags keep high and low locally, they can compute a new
value of mid according to 1-bit information which can be
used to indicate the previous tag responses, e.g., “0” for an
empty slot and “1” for a nonempty slot, respectively.
Therefore, instead of broadcasting 5-bit information, it is
sufficient to send 1-bit information indicating the responses
from the tags. We believe that the cost of managing high
and low (5 bits for each) is small compared with the
command overhead.

4.6.3 Multiple Readers and Mobile Tags

Since the propagation range of both RFID readers and RFID
tags, especially the passive tags, are limited, we usually
deploy multiple readers to enhance the coverage for a large
number of tags in the region of interest. In such a scenario, a
back end controller coordinates multiple RFID readers. The
controller generates an estimating path r, computes the
mask for each round of estimation, and sends the estimating
path r and mask to the readers. The readers accordingly
query RFID tags with r and mask, and wait for their replies.
The controller aggregates the reports from all readers and
takes a slot as idle only when no tag response is reported
from any readers. The controller repeats the estimating
process until the height of gray node is determined. In the
multiple reader scenario, the controller functions as if there
were a single RFID reader. Even if a tag is located in the
overlapped region and responds to multiple readers, its
impact on the controller side is the same as a single
response. Thus, the PET protocol well handles the multiple
reader scenario due to the duplicate-insensitive nature in
tag responses. When RFID tags are attached to mobile
objects and moving across interrogation regions of different
readers, the responses of the same tag to different readers
will converge at the controller as well. Due to the duplicate-
insensitive nature, such a scenario is equivalent to that of
the multiple readers and can be correctly handled by PET.

4.6.4 Anonymity

In some applications, the tag ID carries private information
about the associated object. Revealing such information to
the public might lead to the leak of personal privacy. PET
fully resists such privacy threats. In PET, during the
estimating process, each RFID tag does not participate with
its own ID. Instead each tag responds to the reader’s query
according to a random code which is not directly bound to
the tag ID. During the overall estimation process, the
preloaded 32-bit random code remains unchanged which is
tightly bound to the tag ID. Such a fixed random code does
not need to be explicitly transmitted either by the tag or the
reader, and the fixed random code is not revealed directly
to the public. At each time slot, a number of tags respond to
the reader, and their responses cumulate. The readers or
any overhearing devices cannot distinguish the exact set of
tags which respond at a collision slot. As a result, the
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random PET numbers of RFID tags are not revealed to the
readers as well.

5 PERFORMANCE EVALUATION

We evaluate the performance of PET through extensive
simulations. First, we investigate the tunable estimation
accuracy and processing time of PET with different
parameter settings. We then compare PET with two most
recent estimation approaches FNEB [12] and LoF [24] in
terms of estimation accuracy and efficiency, as well as
computational overhead at RFID tags.

5.1 Simulation Setup and Performance Metrics

In the simulations, we assume that there is no transmission
loss between RFID tags and the reader. The RFID reader is
capable of detecting idle slots from singleton slots as well
as collision slots. Before estimation, each RFID tag is
assigned a 32-bit PET random code by hashing its unique
tag ID. To get each simulation result, we take 300 runs and
measure the average.

The estimation accuracy is the most important metric for
the estimation protocols. We use the same metric as that
defined in LoF [24]

Accuracy ¼ n̂
n
; ð22Þ

where n̂ is estimated number of RFID tags while n is the
actual number of tags. This parameter indicates the
estimating accuracy. The closer it is to 1, the more accurate
an estimation is. Another metric we are interested in is
the standard deviation of estimation

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðn̂� nÞ2�

q
: ð23Þ

Such a parameter measures the estimating precision.
Generally, a high-standard deviation means the estimated
values are dispersed, and a low-standard deviation means
the estimated values are concentrated about the actual tag
number. The smaller the standard deviation is, the more
precise the estimation protocol performs. Hence, an ideal
estimation protocol is expected to have an accuracy of 1
with a low-standard deviation.

Another important metric we consider is the estimating
time the protocol takes to meet a particular accuracy and
precision requirement. For each round of estimation, the

reader takes a number of time slots in interacting with tags.
Therefore, the estimating time is proportional to the
number of time slots during the estimation. We thus
abstract the estimating time as the total number of time
slots during the entire estimating process. The estimating
time reflects the protocol efficiency. The protocol with short
estimating time will be able to scale up easily.

Beside accuracy and efficiency, we also take the
computation and storage overhead on RFID tags into
consideration. We measure and compare such overhead of
PET and other protocols.

5.2 PET Investigation

First, we demonstrate that PET provides tunable estimation
accuracy at the cost of estimating time. As illustrated in
Fig. 4a, one can improve the estimation accuracy of PET by
performing more rounds of estimation. With 32 to 64
rounds of estimation, PET already maintains the accuracy
very close to 1. Such a characteristic of PET enables
modulating the estimating accuracy and efficiency accord-
ing to the distinctive application needs. Fig. 4a also suggests
that the change of the number of tags has no significant
impact on the estimation accuracy of PET, i.e., we can
accurately estimate a wide range of RFID quantities without
a priori of the tag number.

We are also interested in the standard deviation of the
estimation results. The standard deviation and normalized
standard deviation of PET estimation results are depicted in
Figs. 4b and 4c, respectively. The figures suggest that by
performing more rounds of estimation, the standard
deviation of the estimation results can be reduced. Fig. 4c
further suggests that if we take a look at the normalized
standard deviation, the number of tags will affect little.
Sixty-four rounds of estimation lead to nearly 0.2 normal-
ized standard deviation. According to the simulation
results, repeating a constant number of estimation rounds
suffices to meet the requirement of estimation accuracy
regardless of the number of tags.
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Fig. 4. Evaluation of PET protocol with different numbers of estimating rounds: (a) Estimation accuracy. (b) Standard deviation. (c) Normalized

standard deviation.

TABLE 3
Total Time Slots Needed for PET



The processing time of PET is also examined. In the
simulation, we use a fixed length of PET number H ¼ 32.
In such a setting, PET only takes five time slots to complete
each round of estimation. Therefore, the total number of
time slots needed in m rounds of estimation can be listed
in Table 3.

5.3 Performance Comparison

We compare the performance of PET with the two most
recent estimation approaches FNEB [12] and LoF [24]. Since
both FNEB and LoF assume that the tags are capable of
generating large number of random codes, for fairness, we
compare the performance of PET with the two recent
protocols based on the same assumption. We may compare
the estimation accuracies of the approaches given a certain
amount of estimating time, or compare the estimating time
given a certain estimation accuracy requirement. As we can
trade higher estimation accuracy with longer estimating
time, we only need to compare with one setting. Hereafter,
we mainly compare the estimating time of the three
approaches for particular estimation accuracy require-
ments. We measure the total time slots used in all
estimation rounds.

First, we compare the estimating time slots given a
particular estimating accuracy requirement Prfjn̂ � nj �

"ng � 1� �, where " ¼ 5%, � ¼ 1%. We keep � fixed and

change " from 5 to 20 percent, giving more error tolerance.

The number of RFID tags is 50,000.
All three approaches shall perform multiple rounds of

estimation to achieve the given accuracy requirement.

Tables 4 and 5 summarize the total time slots used by each

of the three approaches. Fig. 5a gives a more detailed

comparison with a better granularity on ". As suggested by

the simulation results, PET outperforms both FNEB and LoF

with about 35 to 43 percent of their estimating time. In

Fig. 5b, we fix the confidence interval " and vary error

probability � from 1 to 20 percent. The figure suggests similar

results that for arbitrary accuracy requirements PET con-

sumes less than half of the estimating time of FNEB and LoF.

From a different point of view, the results also indicate that
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TABLE 4
Total Time Slots Needed to Meet the Estimation
Accuracy Requirement with Different " (� ¼ 1%)

Fig. 5. Performance comparison: (a) Protocol performance with different
confidence interval ", and the same error probability � ¼ 1%. (b) Protocol
performance with different error probability �, and the same confidence
interval " ¼ 5%.

TABLE 5
Total Time Slots Needed to Meet the Estimation
Accuracy Requirement with Different � (" ¼ 5%)

Fig. 6. Estimation accuracy comparison: (a) Theoretical performance of PET versus simulated result of PET. (b) PET versus Enhanced FNEB.
(c) PET versus LoF.



given a certain amount of estimating time, the estimation

accuracy of PET will be much higher than FNEB and LoF. As

a matter of fact, since PET has Oðlog lognÞ estimation

efficiency, when the number of RFID tags scales, the

performance gain of PET over FNEB or LoF will be larger.
Fig. 6a presents the numerically analyzed performance

of PET and the simulated performance of PET in estimating

50,000 RFID tags with estimation accuracy requirement of

" ¼ 5%, � ¼ 1%. Intuitively, we expect that an ideal

approach outputs a result concentrated about the actual

number (i.e., 50,000 here). From Fig. 6a, we can observe that

1) the simulation results verify the theoretical analysis on

PET; 2) most estimated numbers fall into the confidence

interval [47,500, 52,500]; 3) for the small portion of

estimated numbers n̂ 62 ½47; 500; 52; 500�, they are still very

close to the confidence range.
We let FNEB and LoF consume the same amount of

estimating time to estimate the 50,000 tags and compare

their performance with the theoretical performance of PET

in Figs. 6b and 6c, respectively. The results of Figs. 6b and

6c clearly demonstrate that the estimated values in PET are

much more concentrated about the actual number of tags.

More importantly, the portion of those falling outside the

confidence interval [47,500, 52,500] is much smaller than

those of FNEB and LoF. In particular, with the same

processing time more than 99 percent estimated results fall

into the confidence interval in PET, while FNEB and LoF

only guarantee about 90 percent results within such an

interval. The results of Fig. 6 give us an intuitive under-

standing on the performance gain of PET.

Beside the estimation accuracy and efficiency, we

compare the computation and storage overhead of the

three approaches. For each round of estimation, FNEB or

LoF requires each tag to generate a uniformly or geometric

distributed random number. For passive tags, such ran-

dom numbers shall be preloaded and stored at each tag.

We examine the storage overhead of storing such random

numbers and compare with PET in Fig. 7. In Fig. 7a, we fix

the error probability � and vary the confidence interval "

from 5 to 20 percent. In Fig. 7b, we fix " and vary � from 1

to 15 percent. Both figures explicitly suggest that PET

outperforms both approaches with much smaller such cost.

In contrast, PET shifts computational burden to the more

powerful reader side with randomly generating the

estimating path.

6 CONCLUSION

In this paper, we propose PET for efficiently estimating a

large number of RFID tags. The theoretical analysis shows

that PET is able to estimate the number of tags with

arbitrarily required accuracy and confidence level. In

particular, PET achieves Oðlog lognÞ processing efficiency,

to the total number of RFID tags, which significantly

improves the state-of-the-art performance bound of RFID

estimation. With the estimating path dynamics, PET shifts

the computational burden from RFID tags to the reader,

which allows us to use much less costly but resource-

limited passive RFID tags in more scalable applications. We

do extensive simulations to evaluate the performance of

PET. The simulation results suggest that PET outperforms

two most recent estimation approaches FNEB and LoF in

the sense that PET achieves the same accuracy requirement

with much less processing time. The computational over-

head of PET is also much smaller at RFID tags. PET is

effective in dealing with multiple readers and mobile tag

environment as well.
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