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Abstract—In this paper, we study the set reconciliation problem, in which each member of a node pair has a set of objects and seeks

to deliver its unique objects to the other member. How could each node compute the set difference, however, is challenging in the set

reconciliation problem. To address such an issue, we propose a lightweight but efficient method that only requires the pair of nodes to

represent objects using a counting Bloom filter (CBF) of size OðdÞ and exchange with each other, where d denotes the total size of the

set differences. A receiving node then subtracts the received CBF from its local one via minus operation proposed in this paper. The

resultant CBF can approximately represent the union of the set differences and thus the set difference to each node can be identified

after querying the resultant CBF. In this paper, we propose a novel estimator through which each node can accurately estimate not

only the value of d but also the size of the set difference to each node. Such an estimation result can be used to optimize the parameter

setting of the CBF to achieve less false positives and false negatives. Comprehensive analysis and evaluation demonstrates that our

method is more efficient than prior BF-based methods in terms of achieving the same accuracy with less communication cost.

Moreover, our reconciliating method needs no prior context logs and it is very useful in networking and distributed applications.

Index Terms—Set reconciliation, set difference, Bloom filters

Ç

1 INTRODUCTION

CONSIDER a pair of nodes A and B, each holding a set SA
and a set SB. The goal of set reconciliation is for A and

B to compute SA [ SB with the minimum communication
cost. The set reconciliation is a fundamental task in a variety
of systems where distributed information needs to be
reconciliated. It was proposed in the literature [1] in
attempt to improve gossip protocols and has an increasing
number of applications outside of gossip protocols. For
example, in peer-to-peer networks [2], [3], any two peers
wish to receive only missing blocks from each other if they
have already received a majority of blocks of a file from
other peers. In wireless sensor networks [4], [5], each
member of any sensor pair periodically updates the out-of-
date objects at the other member using its new objects. The
sink node thus can reliably deliver data to all the nodes, for
example in remote reprogramming [6], [7]. In cloud
applications [8], [9], a user needs to synchronize across its
multiple data repositories, such as the phone, the desktop,
and in the cloud. In mobile social networks [10], [11], two
friends may wish to synchronize data when their portable
devices are connected by opportunities.

A straightforward way of the set reconciliation between
any two nodes involves wholesale exchanging their sets of
objects. The amount of data transferred would be propor-
tional to the total number of objects in the two nodes. Such a
method is inefficient when there are few actual differences
between the two nodes. This situation is common in many

applications, for example, gossip protocols, particularly
when information is introduced into the systems at a low
rate [12]. An efficient and practical way, however, is to only
exchange the objects within the set difference between the
two nodes. Thus, the set reconciliation can be modeled as a
problem of having the pair of nodes compute and exchange
their set differences. The set difference to each node denotes
all of its unique objects that are not within another one’s set.

Several prior methods for computing the set differences
between any two sets, SA and SB, have been proposed. A
possible method is to use a logging system that records the
node status at the time when the two nodes last
communicated. If they communicate again, they only
exchange the updates with each other. In such a setting,
each node has to maintain one log for every other node that
may wish to synchronize with itself. The number of such
nodes, however, is nontrivial in many applications. Gen-
erally, the use of logs requires prior context, which we seek
to avoid.

The intrinsic approach without prior context requires the
two nodes to exchange the lists of identifiers for all of their
objects. The set difference to each node can thus be found by
scanning the received list. This requires OðjSAj þ jSBjÞ
communication and OðjSAj � jSBjÞ search time. To reduce
the overhead, each node can deliver a Bloom filter (BF) that
compresses all identifiers of its objects to the other node.
Each node then queries the received BF for identifying its
set difference.

Although such an approach saves the communication
cost by a constant factor, each BF still transfers data
proportional to the size of the object sets. Moreover, such
a method lacks a way to estimate the size of the set
difference to each of SA and SB. Thus, it fails to optimize the
configurations of each BF so as to bound the resultant false
positives. Thus, some unique objects in one set may fail to
be discovered and synchronized to the other set since they
may be misidentified as common objects due to false
positives. Approximate reconciliation of the set difference
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may suffice for many applications, however, could not
sustain nontrivial number of missed unique objects.

To efficiently solve the set reconciliation problem with-
out the use of logs or other prior context, we propose a
lightweight method. It computes the set difference with
communication proportional not to the size of the sets but to
the size of the set difference between any two sets. In this
paper, we are particularly interested in optimizing the case
when the set difference is small (e.g., the two nodes have a
large amount of duplicate data blocks). Our approach will
achieve particular performance gain in such circumstances
at the cost of an approximate set reconciliation due to the
impact of false positives and false negatives. The main
contributions of this paper are summarized as follows:

1. Our first innovation is to utilize counting Bloom
filter (CBF) and introduce a subtraction operator to
compute the set difference with a round of commu-
nication of size OðdÞ, where d denotes the size of the
total set difference. In such a setting, each node
compresses all identifiers of its objects using a CBF
of size OðdÞ and exchanges it with the other node.
Each node subtracts the received CBF from its local
one via the minus operation. The set difference to
each node can thus be discovered after querying the
resultant CBF that provides an approximate repre-
sentation of the total set difference.

2. The CBF-based reconciliating method requires each
CBF to be sized appropriately so as to guarantee its
accuracy. An important component of our method is
a novel estimator through which each node can
accurately estimate not only the size of the total set
difference, d, but also the size of the set difference to
each node. Being an important part of our reconci-
liating method, the difference estimator can also be
generalized to optimize other BF-based reconciliat-
ing approaches.

3. We show that our set difference estimator is accurate
for various sizes of the total set difference between
two nodes. Comprehensive experiments show that
our set reconciliation method is more efficient than
prior BF-based methods in terms of achieving the
same accuracy with less communication cost.

The remainder of this paper is organized as follows: We
briefly describe the preliminaries of this work in Section 2.
We present the design and analysis for our set reconciliating
method based on counting Bloom filters in Section 3. We
propose the set difference estimating method in Section 4.
We comprehensively evaluate our approaches in Section 5
and conclude this work in Section 6.

2 PRELIMINARIES

2.1 Problem Formulation

Given two sets SA and SB, the relative complement of SA in
SB is DAnB ¼ SA � SB ¼ fs 2 SA j s 62 SBg and the relative
complement of SB in SA is DBnA ¼ SB � SA ¼ fs 2 SB j s 62
SAg. We assume that SA and SB are stored at two distinct
nodes A and B. We then attempt to compute the set
differences to SA and SB, denoted as DBnA and DAnB,
respectively, with the minimal communication overhead.

The union of DBnA and DAnB forms the total set difference,
denoted as D. Let dAnB and dBnA denote the cardinality of
DBnA and DAnB, respectively, while the cardinality of D is
d ¼ dAnB þ dBnA. To reconciliate the two sets, the two nodes
only need to exchange their unique objects in DAnB and
DBnA with each other so as to let each node obtain SA [ SB.

In such a setting, it is sufficient to complete the set
reconciliation if the two nodes, A and B, have computed
DAnB and DBnA, respectively. In this paper, we focus on
efficiently computing the set difference at each side of the
node pair when the size of the total set difference,
DBnA [DAnB, is small compared with SA and SB.

2.2 Bloom Filters

A standard Bloom filter is an effective data structure for
representing a set to support approximate membership
queries. A BF consists of an array of m cells, each of which is
a bit with an initial value 0, and k independent random hash
functions. We denote them by A½i�ð1 � i � mÞ and H ¼
fhið�Þg j 1 � i � k; 1 � hið�Þ � m, respectively.

Given any set denoted by S ¼ fs1; s2; . . . ; sng, every
element sj in S should be represented by the BF by setting
all bits A½hiðsjÞ� to one for 1 � i � k and 1 � j � n. In this
way, the membership information of sj in S is encoded into
the BF. After representing the total set S, we can answer the
membership query “Is x a member of S” according to the
resultant BF instead of the set. To answer the query, we
check whether all bits at A½hiðxÞ� are set to one for 1 � i � k.
If not, we derive that x is not a member of S. Otherwise, x is
considered as a member of S. A BF may yield a false positive

due to hash collisions for which it wrongly reports that an
item x belongs to the set S when it is actually not. The cause
is that all bits at A½hiðxÞ� for 1 � i � k have been set to one
by other items in the set S [13]. The probability that such a
membership query gets a false positive response can be
theoretically derived as follows [14], [15]:

f ¼ 1� 1� 1

m

� �kn !k

� ð1� e�k�n=mÞk: ð1Þ

The deletion of any item x 2 S resets all bits at A½hiðxÞ�
for 1 � i � k to 0. If other items in S also hash to one or
more bits at A½hiðxÞ� for 1 � i � k, the BF no longer reflects
the data set correctly and it may respond one or more false
negatives. To address such a problem, Fan et al. [16]
propose the CBF in which each of the m cells is replaced by
a count. The item inserting and deleting operations are
extended to increasing and decreasing the value of each
relevant count by one, respectively. To answer whether an
item x is contained in a CBF, one needs to examine if all
counts at A½hiðxÞ� for 1 � i � k are nonzero.

We define two operations of CBF, which will be used
in the remainder of this paper. Such operations follow the
assumption that two CBFs, CBF ðSAÞ and CBF ðSBÞ, use
the same configurations of hash functions and the number
of cells.

Definition 1. The minus of CBF ðSAÞ and CBF ðSBÞ is operated

by setting the ith cell as CBF ðSAÞ½i� � CBF ðSBÞ½i�, for

1 � i � m.
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Definition 2. The union of CBF ðSAÞ and CBF ðSBÞ is to set

the ith cell as CBF ðSAÞ½i� þ CBF ðSBÞ½i�j, for 1 � i � m.

It is clear that CBF ðSAÞ [ CBF ðSBÞ is equivalent to

CBF ðSA [ SBÞ.

2.3 Set Reconciliation via BF

To reconciliate two sets between two arbitrary nodes, each
node needs a method for computing the set difference to
itself so as to exchange unique objects between the two
nodes. The BF-based method is an efficient one among
existing methods. In such a setting, each node delivers a BF
that represents the identifiers of its all objects to the other
node. Upon receiving a remote BF, each node can query
with all identifiers of its objects to identify the set

difference to itself.
Although the BF-based method can save the commu-

nication cost by a constant factor compared to directly

exchanging the lists of identifiers, each BF still transfers

data proportional to the size of the sets. That is, it still

requires OðjSAj þ jSBjÞ communication. The time complex-

ity for such a method is OðjSAj þ jSBjÞ since it involves

jSAj þ jSBj BF queries and the time cost for each BF query is

a constant value. The CBF-based reconciliating method

proposed in this paper only requires OðdÞ communication.

The time complexity for our method is also OðjSAj þ jSBjÞ.
A challenging issue that arises here is that a query based

on BF may yield a false positive and thus every unique

object to one node may be identified as a common one.

Consequently, every unique object to one node may fail to

be discovered and synchronized to the other node. This

motivates the careful design of BF for each node such that

the missed unique objects at both nodes are as few as

possible. For example, we require that the total number of

missed unique objects at both sides does not exceed a

threshold, for example, at most one. Note that BFs at any

two nodes usually adopt the same settings of hash functions

and the number of cells so as to support the query and other

operations of BF at remote nodes.
To do so, we first derive from (1) that every unique object

to SA may be misidentified as a common one with

probability ð1� e�k�jSBj=mÞk by the node A. Similarly, every

unique object to SB may be misidentified as a common one

with probability ð1� e�k�jSAj=mÞk by the node B. Recall that

the number of unique objects to SA and SB are denoted by

dAnB and dBnA, respectively. Thus, we derive that the total

number of misidentified unique objects at both sides of any

node pair is given by

dAnB �
�
1� e�k�jSBj=m

�k þ dBnA � �1� e�k�jSAj=m�k: ð2Þ

Thus, given k, jSAj, jSBj, jDAnBj, and jDBnAj, both nodes A

and B can estimate the minimum value of m if we impose a

constraint that (2) is �1.
In practice, neither the node A nor the node B, is aware

of jDAnBj and jDBnAj without prior communication between

them. Thus, a method for estimating jDAnBj and jDBnAj is

essential for implementing the set reconciliation between

the two nodes.

2.4 Estimation of the Size of Set Difference

The size of set difference between two sets, SA and SB, can

be estimated by comparing a random sample from each set

[17]. The Min-wise sketches [18], [19], [20] was originally

proposed for estimating the set similarity, defined as

r ¼ jSA\SBjjSA[SBj , in a sampling way. It also can estimate the size

of the total set difference as d ¼ 1�r
1þr ðjSAj þ jSBjÞ. The

accuracy of the Min-wise method depends on the perfor-

mance of random permutations and does not suffice for

small set differences. Similarly, sketch-based methods for

estimating large differences in traffic were proposed in [21]

and [22].
Although such methods can estimate the size of the total

set difference DAnB [DBnA, they cannot be directly used to
estimate the size of its two parts, DAnB and DBnA. As
discussed later, such methods cannot support our set
reconciliating method and prior BF-based methods. On
the contrary, the novel estimating method proposed in this
paper can accurately measure not only the size of DAnB [
DBnA but also that of DAnB and DBnA.

Another related problem is the estimation of set cardin-
ality. Flajolet and Martin (FM) [23] introduced hash sketches
as a means of estimating the number of distinct items (not
differences) using a bit vector. Each bit i in the vector is set
to 1 if at least 1 element is sampled when sampling the set
with probability 1=2i. Intuitively, if there are 25 ¼ 32 distinct
values in the set, it is likely that bit 5 will be set when
sampling with probability 1/32. Thus the estimator returns
2I as the set size, where I is the highest bit such that bit I is
set to 1. Nikos et al. proposed distributed hash sketches for
accurate cardinality estimation of distributed multisets [24],
[25], [26]. Cormode et al. [27] estimated set sizes using a
hierarchy of samples by providing a method for dynamic
sampling from a data stream. Although such methods can
estimate the cardinality for each of SA and SB, it is still not
clear whether the size of DAnB [DBnA, DAnB, and DBnA can
be derived from such methods.

The most related research work revolves around the
estimation method of set cardinality based on Bloom filters
[28], [29]. For two nodes each hosting a set SA and SB, each
node delivers a Bloom filter, which compresses all items in
its set, to the other node. Moreover, the inner product of the
two Bloom filters can be used to approximate the intersec-
tion between the two sets, SA and SB. Let ZA and ZB denote
the number of zero bits in the Bloom filters for SA and SB,
respectively. Let ZAB be the number of zero bits in the inner
product of the two Bloom filters. We obtain that

1

m
1� 1

m

� ��kjSA\SBj
� ZA þ ZB � ZAB

ZAZB
:

Accordingly, each node can calculate an estimation for
jSA \ SBj and then derive DAnB and DBnA only given the
two Bloom filters for the two sets. In the state-of-the-
practice, the accuracy of such a method is still unknown,
especially for a small set difference between SA and SB.
Moreover, the settings of Bloom filters bring a significant
impact on the estimating accuracy and thus need to be
tackled well before utilizing such methods.
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The method for estimating the size of set difference
proposed in this paper incurs a round of exchange of two
CBFs between any two nodes. As we will show, the size of
each CBF is proportional to the total size of set difference,
DAnB [DBnA, between any two sets SA and SB. For the
estimating methods based on Bloom filters [28], [29], the
size of each Bloom filter is proportional to the total number
of objects in SA or SB. In this paper, we desire to
reconciliate any two large sets with a small set difference.
In such a setting, our method for estimating the size of set
difference incurs less communication overhead than the
existing methods.

3 CBF-BASED SET RECONCILIATING METHOD

We start with introducing the CBF and a subtraction
operator to compute the set difference DAnB or DBnA using
a round of communication of size OðdÞ. We then measure
the accuracy of our method in terms of the number of
resultant false negatives and false positives. Table 1 lists the
symbols and notations used in the remainder of this paper.

3.1 Reconciliating Differences

In prior methods, nodes A and B generate two BFs, BF ðSAÞ
and BF ðSBÞ, for representing the identifiers of all objects in
SA and SB by using �� jSAj and �� jSBj bits, respectively.
Here, � ¼ logf = log0:6285 and f is the false-positive prob-
ability of BF ðSBÞ or BF ðSAÞ. After exchanging the BFs, each
node can query the remote BF using the identifier for each
of its objects to answer whether a particular object is unique,
with given false-positive probability.

Consider that each node allocates only a few cells, for
example, only 100 cells, to its BF for representing the
identifiers of a large set of objects, for example, 10,000
objects. If each object is hashed to only three cells (k ¼ 3), an
average of 300 identifiers hash into each cell. What can we
do with such a small number of cells and such a large
number of collisions? Actually, the resultant BF exhibits a
false-positive probability of almost 100 percent and almost
all unique objects to a node would be wrongly identified as
the common objects. In this case, the previous method fails
to compute the set difference to each node. Contrarily, we
find that two CBFs each with OðdÞ space can be utilized to
calculate the set differences, DAnB and DBnA, by the two
nodes, respectively.

More precisely, each node represents the identifiers of all
its objects with a CBF of m cells and exchanges its CBF with
the other node. Given its local CBF ðSAÞ and a remote
CBF ðSBÞ, the node A proceeds to “subtract” the remote
CBF ðSBÞ from its CBF ðSAÞ. It repeats cell by cell, by
subtracting the counts in the corresponding cells of the two
CBFs, as shown in Fig. 1. Intuitively, the identifier, id, of
any common object between SA and SB is hashed into the
same cells in both CBF ðSAÞ and CBF ðSBÞ if both nodes
use the same hash functions and number of cells. When we
minus such cells of the two CBFs, the membership
information about id will disappear, because each of these
cells is incremented by the same value when representing
id in the two CBFs. Therefore, the resultant CBF ðSAÞ �
CBF ðSBÞ at the node A only represents the unique objects
to nodes A and B.

Fig. 1 gives an illustrative example of reconciliating two
sets, SA ¼ fu; v; w; x; y; zg and SB ¼ fu; v; w; x; s; tg. Each
element of SA and SB is hashed into 3 cells in CBF ðSAÞ
and CBF ðSBÞ, respectively. Moreover, every common
object between the two sets is hashed into the same
corresponding cells in the two CBFs. Upon exchanging
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the two CBFs, the node A achieves CBF ðSAÞ � CBF ðSBÞ
that just represents all unique objects in DAnB [DAnB ¼
fy; z; s; tg not those common objects. As shown in Fig. 1,

CBF ðSAÞ � CBF ðSBÞ provides an approximate representa-

tion for the total set difference that is exactly represented by

CBF ðDAnB [DAnBÞ.
Similarly, the node B can generate CBF ðSBÞ � CBF ðSAÞ

according to its CBF ðSBÞ and a remote CBF ðSAÞ. One can

imagine that the ith cells in CBF ðSBÞ � CBF ðSAÞ as well as

CBF ðSAÞ � CBF ðSBÞ are zero or a pair of opposite

numbers for 1 � i � m. Although CBF ðSBÞ � CBF ðSAÞ is

the opposite one of CBF ðSAÞ � CBF ðSBÞ, they appear to be

the same when answering any CBF query, which is only

sensitive to whether each related cell is nonzero. Therefore,

we will not distinguish them explicitly in the remainder of

this paper.
In this way, although the nodes A and B are aware

of neither DAnB nor DBnA, CBF ðSAÞ � CBF ðSBÞ and

CBF ðSBÞ � CBF ðSAÞ can provide them with an approx-

imation of CBF ðDAnB [DBnAÞ, respectively. So far, nodes

A and B can query the resultant CBF ðSAÞ � CBF ðSBÞ
and CBF ðSBÞ � CBF ðSAÞ with the identifier of each

object in SA and SB, respectively. Thus, the time complex-

ity for our method is OðjSAj þ jSBjÞ since it involves jSAj þ
jSBj CBF queries and the time cost for each CBF query is a

constant value. In this way, nodes A and B can discover

all objects in DAnB and DBnA and only exchange dis-

covered unique objects with each other so as to efficiently

achieve the set reconciliation.
The above procedure for identifying DAnB and DBnA may

yield false positives each of which wrongly identifies a

common object as a unique object. As a result, a few false-

positive objects may be exchanged between the two nodes.

This will not hurt the accuracy of the set reconciliation and

is not a significant problem if the number of such false-

positive objects is very limited. Another possible result of

the above procedure is that it may result in false negatives

each of which wrongly identifies a unique object as a

common object. Each node thus fails to identify and deliver

some unique objects to the other node. As discussed in [20],

if the set difference is large, the failure to send some unique

objects to the other node is not a significant problem.

Fortunately, for many applications we do not need exact

reconciliation of the set difference, for example, reconcilia-

tion of encoded content. Approximations will suffice and

allow us to determine a large portion of DAnB and DBnA
with very little communication overhead.

Although the false-positive and false-negative problems of

CBF ðSAÞ � CBF ðSBÞ are inherent features of approximate

reconciliation of the set differences, they can be controlled at a

very low level if we seek a near-exact reconciliation.

3.2 Accuracy Analysis of False-Negative Problem

In this section, we first reveal the root cause of false

negative in CBF ðSAÞ � CBF ðSBÞ and we then measure its

potential impact to the set reconciliation.
We derive from Definition 2 and the generating procedure

of CBF ðSAÞ � CBF ðSBÞ that

CBF ðSAÞ � CBF ðSBÞ
¼ CBF ðDAnB [ ðSA \ SBÞÞ � CBF ðDBnA [ ðSA \ SBÞÞ
¼ CBF ðDAnBÞ [ CBF ðSA \ SBÞ
� CBF ðDBnAÞ [ CBF ðSA \ SBÞ
¼ CBF ðDAnBÞ � CBF ðDBnAÞ:

A natural question is whether CBF ðDAnBÞ � CBF ðDBnAÞ is
the same as CBF ðDAnB [DBnAÞ. In addition, it is clear
that CBF ðDAnB [DBnAÞ ¼ CBF ðDAnBÞ [ CBF ðDBnAÞ. They
only differ in the minus and union operations of CBF
presented in Definitions 1 and 2. To measure their
similarity, we analyze the different impacts of the two
operations on the two components. We do this cell by cell
and partition the values of any given cell in the two
components as three cases as follows:

In the first case, the responses of the two different
operations are the same zero at a cell if the corresponding
cells in the two components are zero. The cells 2 and 7 of the
two CBFs in Fig. 1 belong to such a case. In the second case,
the two operations result in different nonzero outputs if the
two components have different values at that cell. For-
tunately, membership queries about objects in DAnB [DBnA
based on the CBF ðDAnBÞ � CBF ðDBnAÞ and CBF ðDAnBÞ [
CBF ðDBnAÞ would not be influenced by such different
nonzero values. The cells 1, 3, 5, and 6 of the two CBFs in
Fig. 1 belong to such a case. In the third case, the minus
operation results in zero while the union operation does not
if the two components have the same nonzero values at that
cell such as the cells 4 and 8 in Fig. 1. In this paper, such a
cell in CBF ðDAnBÞ � CBF ðDBnAÞ is called an outlier cell

compared to CBF ðDAnBÞ [ CBF ðDBnAÞ that is equivalent to
CBF ðDBnA [DAnBÞ.

In summary, only the third case among the above three
ones makes CBF ðDAnBÞ � CBF ðDBnAÞ and CBF ðDAnBÞ [
CBF ðDBnAÞ respond different results when being queried
any object in the set difference DAnB [DBnA. More precisely,
the former CBF responds a false negative due to its outlier
cells, while the latter one answers correctly. Therefore, we
need to know how many outlier cells would appear in
CBF ðDAnBÞ � CBF ðDBnAÞ. We derive the answer through
Theorem 1.

Theorem 1. Assume that CBF ðDAnBÞ and CBF ðDBnAÞ
represent two disjoint sets of size d1 and d2, respectively, by

using m cells and k hash functions. The expected number of

outlier cells in CBF ðDAnBÞ � CBF ðDBnAÞ is given by

m�
Xminfd1;d2g�k

j¼1

k� d1

j

� �
k� d2

j

� �
ð1� 1=mÞk�ðd1þd2Þ

ðm� 1Þ2j
: ð3Þ

Proof. The value of any cell in CBF ðDAnBÞ is a discrete
random variable, denoted by Y . It’s possible values are
the integers ranging from 0 to k� d1. Its probability mass
function is

PrðY ¼ jÞ ¼ k� d1

j

� �
ð1� 1=mÞk�d1�j

mj
:

Additionally, the value of any cell in CBF ðDBnAÞ is
also a discrete random variable, denoted by Z, whose
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possible values are the integers ranging from 0 to k� d2.
Its probability mass function is

PrðZ ¼ jÞ ¼ k� d2

j

� �
ð1� 1=mÞk�d2�j

mj
:

Thus, the probability that the ith cells for any 1 � i �
m in both CBF ðDAnBÞ and CBF ðDBnAÞ hold the same
nonzero value is given by

Xminfd1;d2g

j¼1

PrðY ¼ jÞ � PrðZ ¼ jÞ:

Consequently, the expected number of outlier cells in
CBF ðDAnBÞ � CBF ðDBnAÞ can be calculated by (3). tu
It is clear that the value of (3) is dominated by four

parameters, m, k, d1, and d2. We can derive that the two
parts, minfd1; d2g and ðk�d1

j Þð
k�d2

j Þ, in (3) could be maximized
only when dAnB ¼ dBnA ¼ d=2, where d is the size of the total
set difference between SA and SB. Thus, the upper bound
on the expected number of outlier cells is given by

m�
Xd�k=2

j¼1

k� d=2

j

� �2ð1� 1=mÞk�d

ðm� 1Þ2j
: ð4Þ

The expected number of resultant false negatives after
querying CBF ðDAnBÞ � CBF ðDBnAÞ is also maximized
when dAnB ¼ dBnA ¼ d=2, as discussed later.

Moreover, one can find from (3) that there exist no
outlier cells in CBF ðDAnBÞ � CBF ðDBnAÞ when dAnB or
dBnA is zero and the other one is d, i.e., one of SA and SB is
a subset of the other one. A direct result of such a setting
is that CBF ðDAnBÞ � CBF ðDBnAÞ and CBF ðDAnBÞ [
CBF ðDBnAÞ are the same. The number of false negatives
in CBF ðDAnBÞ � CBF ðDBnAÞ is thus minimized to 0. For a
general case where dAnB ranges from 0 to d, the number of
outlier cells ranges from 0 to the upper bound given by (4)
and the number of false negatives ranges from 0 to the
upper bound, as we will show in (6).

After evaluating the outlier cells under two special and
one general cases, we further measure the number of
resultant false negatives in CBF ðDAnBÞ � CBF ðDBnAÞ, an
essential metric for evaluating the accuracy of a set
reconciliating method.

Theorem 2. Assume thatd1 andd2 denote the cardinality of two set
differences, DAnB and DBnA. The expected number of resultant
false negatives by querying CBF ðDAnBÞ � CBF ðDBnAÞ with
all objects in DAnB [DBnA as inputs is given by

d1 �
�
1� ð1� f1Þk

�
þ d2 �

�
1� ð1� f2Þk

�
: ð5Þ

Proof. We first consider the number of false-negative objects
in the set difference DAnB as follows: The probability that
any given cell in CBF ðDAnBÞ is nonzero is 1� ð1 �
1=mÞk�d1 ; hence, the number of nonzero cells is
mð1� ð1� 1=mÞk�d1Þ. Additionally, the number of out-
lier cells in CBF ðDAnBÞ � CBF ðDBnAÞ is given by (3).
Given any outlier cell, for example, ith cell, the ith cells
of both CBF ðDAnBÞ and CBF ðDBnAÞ have to be nonzero.
Thus, any nonzero cell in CBF ðDAnBÞ becomes an outlier
cell in CBF ðDAnBÞ � CBF ðDBnAÞ with probability

f1 ¼
m�

Pminfd1;d2g�k
j¼1

�
k�d1

j

��
k�d2

j

� ð1�1=mÞk�ðd1þd2Þ

ðm�1Þ2j

m� ð1� ð1� 1=mÞk�d1Þ
:

An object in DAnB would be identified as a false
negative if at least one of its k nonzero cells in
CBF ðDAnBÞ becomes an outlier cell in CBF ðDAnBÞ �
CBF ðDBnAÞ. Therefore, the probability that any object in
DAnB becomes a false negative is 1� ð1� f1Þk; hence,
there exist d1 � ð1� ð1� f1ÞkÞ false negatives among d1

unique objects in DAnB.
Similarly, any nonzero cell in CBF ðDBnAÞ can

become an outlier cell in CBF ðDAnBÞ � CBF ðDBnAÞ
with probability

f2 ¼
m�

Pminfd1;d2g�k
j¼1

�
k�d1

j

��
k�d2

j

� ð1�1=mÞk�ðd1þd2Þ

ðm�1Þ2j

m� ð1� ð1� 1=mÞk�d2Þ
:

Therefore, the probability that any object in DBnA
becomes a false negative is given by 1� ð1� f2Þk; hence,

there are d2 � ð1� ð1� f2ÞkÞ false negatives among

d2 unique objects in DBnA. In summary, the total number

of false negatives in DAnB and DBnA is given by (5). Thus,

Theorem 2 holds. tu
The total number of false negatives should be as small as

possible so as to obtain a near-exact reconciliation. There-
fore, if k, d1, and d2 are known in prior, the least number of
cells required by CBF ðSAÞ and CBF ðSBÞ would be
calculated by (5), given a threshold on the number of false
negatives. If sufficient numbers of cells are allocated to
CBF ðSAÞ and CBF ðSBÞ, the number of resultant false
negatives can be very small and even near-zero. We find
that (5) is a symmetric function of d1 and d2 and is
maximized when d1 ¼ d2 ¼ d=2, as shown in Fig. 2. Thus,
the upper bound on the resultant false negatives mentioned
in Theorem 2 is given by

d� 1� 1�
m�

Pd�k=2
j¼1

�
k�d=2
j

�2 ð1�1=mÞk�d

ðm�1Þ2j

m� ð1� ð1� 1=mÞk�d=2Þ

0
@

1
A
k

0
B@

1
CA: ð6Þ

Additionally, we can see that the value of (5) can be
minimized to zero when one of d1 and d2 is zero while the
other is d. For a more general case where d1 ranges from 0 to
d but is not d=2, one has to use the upper bound given by (6)
as an estimation of the real number of resultant false
negatives since the values of d1 and d2 are not given. This
will allocate some more but unnecessary cells to CBF ðSAÞ
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Fig. 2. The number of resultant false negatives varies along with the
increase of d1, where d1 þ d2 ¼ 10 and k ¼ 4.



and CBF ðSBÞ and hurt the benefit of our method, especially
when one of d1 and d2 is zero since no false negative occurs
in practice. In addition, even the calculation of missed
unique objects in prior BF-based methods requires prior
knowledge, about both d1 and d2, which is still missing in
the state-of-the-practice. Bearing these in mind, we design a
novel method to accurately estimate not only d1 þ d2 but
also d1 and d2 in Section 4.

3.3 Accuracy Analysis of False-Positive Problem

Given any node pair, another issue of our set reconciliating
method is that each node may wrongly identify a common
object as a unique one with given probability when
querying CBF ðSAÞ � CBF ðSBÞ. Therefore, another design
metric of our method is the number of resultant false
positives at each side of the node pair. Although such false
positives do not influence the accuracy of the set reconcilia-
tion, they cause a few additional traffic cost. For this reason,
such a metric should be minimized.

Consider that CBF ðSAÞ � CBF ðSBÞ is equivalent to the
minus of CBF ðDAnBÞ to CBF ðDBnAÞ and approximately
represents the set DAnB [DBnA using m cells and k hash
functions. According to the construction process of
CBF ðSAÞ � CBF ðSBÞ, we can know that its ith cell is zero
if the corresponding cell in a CBF that exactly represents the
set DAnB [DBnA is zero for 1 � i � m. Note that the
probability that any cell in such a CBF is zero is given by
ð1� 1

mÞ
kd. Additionally, CBF ðSAÞ � CBF ðSBÞ may also

contain a few outlier cells that are also zero. The probability
that any cell in CBF ðSAÞ � CBF ðSBÞ is an outlier cell has
been presented in the proof of Theorem 1. Therefore, any
given cell in CBF ðSAÞ � CBF ðSBÞ is zero with probability

p0 ¼ 1� 1

m

� �kd
þ

Xminfd1;d2gk

j¼1

�
k�d1

j

��
k�d2

j

�
ð1� 1

mÞ
kd

ðm� 1Þ2j
:

CBF ðSAÞ � CBF ðSBÞ would yield a false-positive item x
only if all cells at A½hiðxÞ� for 1 � i � k are nonzero. The
probability that a membership query gets such a false-
positive response is ð1� p0Þk and is given by

1� 1� 1

m

� �kd
�

Xminfd1;d2gk

j¼1

�
k�d1

j

��
k�d2

j

��
1� 1

m

�kd
ðm� 1Þ2j

 !k

: ð7Þ

It is clear that such a formula is dominated by
parameters d1, d2, m, and k, where d ¼ d1 þ d2. As the
value of d1 varies from 0 to d, the false-positive probability
of CBF ðSAÞ � CBF ðSBÞ reaches an upper bound f ¼ ð1 �
ð1� 1

mÞ
kdÞk, if no outlier cells exists when d1 ¼ 0 or d1 ¼ d; it

also exhibits a lower bound

1� 1� 1

m

� �kd
�
Xd�k=2

j¼1

�
k�d=2
j

�2ð1� 1=mÞkd

ðm� 1Þ2j

 !k

; ð8Þ

if the number of outlier cells is maximized when
d1 ¼ d2 ¼ d=2.

As discussed in Section 3, CBF ðSAÞ � CBF ðSBÞ at the
nodeA andCBF ðSBÞ � CBF ðSAÞ at the nodeB appear to be
the same when answering any CBF query. Thus, they would
yield a false positive with the same probability. Since the
two nodes have number of jSAj � d1 ¼ jSBj � d2 common
objects, they would expose ðjSAj � d1Þ � ð1� p0Þk false

positives. If we limit the number of false positives at every
side of the node pair, for example, no more than one in this
paper, one can derive the minimum number of cells for
CBF ðSAÞ and CBF ðSBÞ if d1, d2, k, jSAj, and jSBj are given.

3.4 Discussions

Our set reconciliating method exhibits different features
under three scenarios for an arbitrary set pair SA and SB.

First, one of the two sets is a subset of the other set. In
this case, the unique objects to one is empty while that to the
other is of size d, i.e., dAnB ¼ 0; dBnA ¼ d or dAnB ¼ d; dBnA ¼
0. CBF ðSBÞ � CBF ðSAÞ thus provides an exact representa-
tion of the total set difference, DAnB [DBnA, although the
two nodes are unaware of both DAnB and DBnA. As a result,
the number of outlier cells and that of false negatives are
minimized to zero at each of the two nodes. In such a
setting, our method would exhibit far better performance
than prior methods, as we will show in Section 5.3.1.

Second, the two sets are nearly the same size but not the
same one. In this case, the unique objects to SA and that to
SB are about half of the total set difference between the two
sets, i.e., dAnB � dBnA ¼ d=2. Given CBF ðSBÞ � CBF ðSAÞ at
each of the two nodes, A and B, the number of outlier cells
and that of false negatives are maximized. That is, the
mismatch between CBF ðDAnB [DBnAÞ and its approxima-
tion CBF ðSBÞ � CBF ðSAÞ would be maximized in this
scenario. Our method still outperforms prior BF-based
methods in terms of many essential metrics, as we will
show in Section 5.3.2.

Third, the number of unique objects to each of the two
nodes ranges from 0 to d. In such a general scenario, the
number of outlier cells and that of false negatives are
covered by the above lower bound and upper bound,
respectively. Thus, our method achieves a better perfor-
mance in such a general scenario than in the second
scenario but with a little loss of performance than that in the
first scenario, as we will show in Section 5.3.3.

Consider that the total number of resultant false
negatives in CBF ðSAÞ � CBF ðSBÞ at both side of the node
pair should be controlled to a low level, for example, at
most only one in this paper. To meet such a constraint,
CBF ðSAÞ and CBF ðSBÞ should be allocated only necessary
cells whose size is OðdÞ and can be derived according to (5)
and (6) in the general and second cases, respectively. In the
first case, such a constraint is obviously satisfied for any
number of cells since no false negatives will happen in
CBF ðSAÞ � CBF ðSBÞ.

Additionally, we know that the number of resultant false
positives in CBF ðSAÞ � CBF ðSBÞ at each side of the node
pair should be as small as possible, for example, at most one
in this paper. To meet such a constraint, CBF ðSAÞ and
CBF ðSBÞ should be allocated only necessary cells whose
size can be derived according to formulas proposed in
Section 3.3.

In summary, it is not necessary to allocate large number
of cells for CBF ðSAÞ and CBF ðSBÞ based on the sizes of SA
and SB. The number of cells for CBF ðSAÞ and CBF ðSBÞ
should be the larger one between the two values derived
from the constraints of both false positives and false
negatives. In general, the CBF-based reconciliating method
requires OðdÞ communication.
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In this paper, we are particularly interested in optimizing
the case when d is small. Our approach will achieve a
particular performance gain in such circumstances. When d
is relatively large, our CBF-based set reconciliation method
will deteriorate to the existing BF-based method. The
difference estimator approach proposed in this paper can
provide an accurate estimation about not only d but also its
two components, dAnB and dBnA. In this way, applications
can choose to use our method or the existing method
according to the measured results. Note that both our
method and existing method need to estimate the values of
d and its two components. It, thus, does not bring additional
overhead to our method.

4 ESTIMATING METHODS FOR THE SIZE OF THE SET

DIFFERENCE

Recall that each member of any node pair, A and B, requires
OðdÞ cells to represent the identifiers of its objects so as to
accurately compute the set differences, DAnB and DBnA.
More precisely, the calculations about the number of outlier
cells, false positives, and false negatives in our method
require that not only dAnB þ dBnA but also dAnB and dBnA are
given in advance. Additionally, prior BF-based set reconci-
liating methods in [20] also has the same requirement when
evaluating its false positives. In summary, to use both our
set reconciliating method and prior ones effectively, we
have to determine the approximate size of not only DAnB [
DBnA but also DAnB and DBnA.

As aforementioned, the values of dAnB and dBnA fall into
one of three cases. In this section, we will present two
dedicated and one general methods for estimating dAnB,
dBnA, and d. The common idea of such three methods is that
the nodes A and B represent the identifiers of their objects
with CBF ðSAÞ and CBF ðSBÞ and then exchange the two
CBFs with each other at small communication overhead. A
receiving node can subtract the remote CBF from its local
CBF by invoking the minus operation in Definition 1 and
thus CBF ðSAÞ � CBF ðSBÞ could be established by the two
nodes. Therefore, each node can account the number of zero
cells, denoted as �, in CBF ðSAÞ � CBF ðSBÞ.

4.1 One of Two Arbitrary Sets Has No Unique
Objects

In such a scenario, we have dAnB ¼ 0 or dBnA ¼ 0. Conse-

quently, CBF ðSAÞ � CBF ðSBÞ is an exact representation of

the total set difference,DAnB [DBnA, although the two nodes

are unaware of both DAnB and DBnA. It is easy to derive that

any cell in CBF ðSAÞ � CBF ðSBÞ is zero with probability

ð1� 1=mÞk�d and there exist number of m� ð1� 1=mÞk�d
zero cells in theory. If we use the theoretical number of zero

cells to match the practical number of zero cells in

CBF ðSAÞ � CBF ðSBÞ, the size of the total set difference

could be simply estimated as d ¼ �ðm=kÞ � lnð�=mÞ. This

kind of estimation is called the first estimator. After

achieving an estimation of d, one has to further answer

which one of dAnB and dBnA is 0 and the other is d. This can be

done by simply comparing the sizes of SA and SB since only

the larger set has d unique objects in such a setting. If jSAj
and jSBj are not given, the two nodes A and B can compare

the number of nonzero cells in CBF ðSAÞ and CBF ðSBÞ.

Actually, a CBF that contains more nonzero cells should

represent a larger set with high probability.
The first estimator can accurately estimate the size of the

set difference when the number of cells in CBF ðSAÞ and
CBF ðSBÞ is sufficient such that CBF ðSAÞ � CBF ðSBÞ
contains at least a small percent of zero cells. As we will
show in Section 5.2.1, such a method works well even if the
number of cells allocated to the two CBFs is only 2d.

4.2 Unique Objects to a Set Pair Are the Same Size

As aforementioned, we have dAnB ¼ dBnA ¼ d=2 in this case.
According to the construction process, we know that the
zero cells inside CBF ðSAÞ � CBF ðSBÞ consist of two parts.

The first part comes from the fact that there exist some
cell pairs each of which are at the same locations in
CBF ðDAnBÞ and CBF ðDBnAÞ and are zero. Thus, the
minus of CBF ðSAÞ to CBF ðSBÞ results in zero at the
related cells in CBF ðSAÞ � CBF ðSBÞ. We can derive from
Theorem 1 that the total number of the first part zero cells
is m� PrðX ¼ 0Þ � PrðY ¼ 0Þ, i.e., m� ð1� 1=mÞk�d. If
the theoretical number of such zero cells is used to match
the practical number of zero cells in CBF ðSAÞ � CBF ðSBÞ,
we actually adopt the aforementioned first estimator. Such
a method may not accurately estimate the size of the total
set difference due to the existence of the second part of
zero cells.

The second part of zero cells involves all outlier cells,
where the corresponding cells in CBF ðDAnBÞ and
CBF ðDBnAÞ of each outlier cell have the same nonzero
value. Thus, the minus of the two CBFs results in zero at the
relevant cells in CBF ðSAÞ � CBF ðSBÞ. The number of all
outlier cells can be calculated by (3) and is upper bounded
by (4) that is just achieved in the case of dAnB ¼ dBnA ¼ d=2.

To enhance the accuracy of the first estimator, we further
propose the second estimator that utilizes the total number
of zero cells that belong to the two parts. In summary, the
expected number of zero cells in CBF ðSAÞ � CBF ðSBÞ
should be

m� 1� 1

m

� �k�d
þ m�

Xd�k=2

j¼1

�
k�d=2
j

�2ð1� 1=mÞkd

ðm� 1Þ2j
¼ �: ð9Þ

After solving (9), we achieve an accurate estimation about
the size of the total set difference even if each CBF only uses
a small number of cells, for example, only 10 cells for
estimating d ¼ 10 different objects, as shown in Fig. 4.

4.3 General Case

If the distribution of dAnB and dBnA are known to be one of
the above two cases in advance, we can choose a suitable
method to estimate them accurately. If such a distribution is
not one of the two cases or is not given, the first and second
estimators would fail to estimate with high accuracy. In
practice, a more general estimating method is essential to
support an arbitrary distribution of dAnB and dBnA. For this
reason, we further focus on a general case where dAnB and
dBnA may range from 0 to d and dAnB þ dBnA ¼ d.

In such a general case, the theoretical number of the first
part of zero cells in CBF ðSAÞ � CBF ðSBÞ is still given by
mð1� 1=mÞk�d. On the other hand, the number of outlier
cells can be calculated by (3). We adopt the second
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estimator that utilizes the total number of all zero cells of
the two parts to match the practical number of zero cells.
That is, the expected number of zero cells in CBF ðSAÞ �
CBF ðSBÞ should be

m 1� 1

m

� �kd
þ m

Xminfd1;d2gk

j¼1

�
kd1

j

��
kd2

j

��
1� 1

m

�kd
ðm� 1Þ2j

¼ �; ð10Þ

where d1 and d2 denote dAnB and dBnA, respectively. We can
see from the above equation that it generalizes the two
equations in the aforementioned special cases.

After solving the above equation given m, k, and �,
one can achieve accurate estimations about d, dAnB, and
dBnA. The challenging issue that arises here is that the
above equation is unsolvable since it has two variables d1

and d2. An intrinsic solution is to replace d1 and d2 with
d=2 so as to estimate the value of d. This can generate an
upper bound on d but cannot give any hint about dAnB
and dBnA. It is worthy noticing that those estimating
methods using random sampling [30] or Min-hash also
cannot distinguish dAnB and dBnA from d although they
can estimate the value of d.

We present a general estimator that utilizes an inherent
feature of the minus operation of CBF to address such a
challenge. That is, the nonzero cells in CBF ðSAÞ �
CBF ðSBÞ may be positive or negative integers that can be
used as hints for distinguishing dAnB and dBnA from d.

Given CBF ðSAÞ � CBF ðSBÞ, the node A can definitely
infer that dAnB ¼ 0 if no positive cells exist and dBnA ¼ 0 if
no negative cells exist. For other cases, we define the ratio of
the number of positive cells to that of negative cells as r that
can be accounted from CBF ðSAÞ � CBF ðSBÞ. Thus, it is
easy to derive that dBnA ¼ d2 ¼ d=ð1þ rÞ and dAnB ¼ d1 ¼
d� d=ð1þ rÞ. After substituting d1 and d2 into (10), the
formula only contains a single variable d and becomes
solvable. The node A can thus obtain dAnB and dBnA.

Additionally, given CBF ðSBÞ � CBF ðSAÞ, the node B
can definitely infer that dBnA ¼ 0 if the number of positive
cells is zero and dAnB ¼ 0 if the number of negative cells is
zero. For other cases, we have dBnA ¼ d� d=ð1þ rÞ and
dAnB ¼ d=ð1þ rÞ in the similar way. The node B can further
calculate the values of d, dAnB, and dBnA after solving (10).

4.4 Discussion

In our CBF-based and prior BF-based reconciliating
methods, each of the two nodes, A and B, should be aware
of not only an approximate size of DAnB [DBnA but also
that of both DAnB and DBnA. Only in this way each CBF or
BF can be appropriately sized so as to guarantee the
accuracy of the set reconciliation. Although some efforts
have been made to estimate DAnB [DBnA, existing methods
paid less attention to DAnB and DBnA. The general estimator
proposed in this paper can address such a fundamental
issue with high accuracy in a single round at the cost of
exchanging two small CBFs.

Such an estimator contributes to optimize the perfor-
mance of not only our approach but also prior BF-based set
reconciliating methods. At the same time, the reconciliating
methods involve additional communication cost due to the
estimating process for the difference size. This part of
communication cost is small since 6d cells are sufficient for

each exchanged CBF, as we will show in Section 5.2.3.
Additionally, this paper desires to reconciliate two large
sets with a small set difference, for example, no more than
300 different elements. Thus, a CBF of 1,800 cells at each
node is sufficient to support our general estimator. If the
largest value of d is underestimated such that d > 300, such
a setting of each CBF is still sufficient if there exist a fraction
of zero cells in the resultant CBF ðSAÞ � CBF ðSBÞ.

5 EVALUATION

This section will provide the performance details of our set
reconciliating and difference estimating methods. We
address two questions. First, what is the accuracy of our
estimating method for the size of the set difference between
any two sets? Second, how do our method compare with
prior BF-based set reconciliating methods.

5.1 Experimental Methodologies

We borrow the CBF implementation from one of our prior
work [13] and extend it from two aspects to support our set
reconciliating and difference estimating methods. First, we
implement the CBF and let it support the minus operation
introduced in this paper. Second, the CBF accounts the
number of positive integers and that of negative integers.
One critical issue for CBF is to generate a group of k

independent random hash functions. We address such an
issue by adopting the method used in [13] and [30]

hiðxÞ ¼ ðg1ðxÞ þ i� g2ðxÞÞ mod m;

where g1ðxÞ and g2ðxÞ are two random and independent
integers in the universe with a range f1; 2; . . . ;mg. The value
of i ranges from 0 to k� 1. We use the MersenneTwister, a
random number generator, to generate the two random
integers g1ðxÞ and g2ðxÞ for any item x. The seed of
MersenneTwister comes from the output of the BUZ hash
function.

The quality of the used hash function and random
number generator has significant impacts on the perfor-
mance of CBF. We select the BUZ hash function since it
can quickly produce a near-perfect result even with an
extremely skewed input data. As for the Mersenne twister,
it results in a fast generation of very high quality
pseudorandom numbers.

We have two degrees of freedom in creating a pair of
sets, SA and SB, each at one node: the number of objects in
SA and SB and the size of the total set difference between
the two sets. For each setting of the set difference size, we
report the average results among 200 rounds of experi-
ments. In our experiments, each CBF utilizes only three
hash functions since such a setting is sufficient to make our
method work well.

5.2 Accuracy of Estimating the Size of the Set
Difference

Given two sets SA and SB, we first evaluate the accuracy of
our two dedicated estimators that provide an estimation for
d under two special cases. We then show that our general
estimator can accurately estimate not only d but also dAnB
and dBnA under more general settings. The absolute error is
defined as that the estimated value of d minus its practical
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value. The relative error denotes the ratio of the absolute

error to the practical value of d. We use the relative error as

a metric to evaluate the accuracy of our estimating methods.

5.2.1 One of Two Arbitrary Sets Has No Unique Objects

In this case, CBF ðSAÞ � CBF ðSBÞ provides an exact repre-

sentation of the total set difference,DAnB [DBnA, since one of

dAnB and dBnA is zero in such a scenario. Fig. 3 shows the

relative errors for various sizes of the total set difference

under our two estimating methods.
We can see that the first estimator can generate an

accurate estimate for d with very low relative errors that

range from �3% to 0 when d increases from 1 to 300. As for

the second estimator, its estimate errors are considerable

large compared to the first estimator as expected, especially

for large values of d. Thus, the second estimator is not

suitable to such a scenario since it considers the impacts of

both the first and second parts of zero cells, however, only

the first part of zero cells exist in such a scenario. As a

result, the second estimator only generates an upper bound

on d while the first estimator can accurately estimate d.
We further adopt two representative settings of the

number of cells m, allocated to CBF ðSAÞ and CBF ðSBÞ, to

evaluate the impacts on the accuracy of our estimators. We

first fix m as two times of the largest one among all possible

values of d and display our results in Fig. 3a. We then

modify m such that it is always two times of d and display

our results in Fig. 3b. We can see that the first estimator

always exhibits a low relative error under the two settings,

even very few cells are used by each of the two CBFs, for

example, m ¼ 2d.

5.2.2 Unique Objects to a Set Pair Are the Same Size

We have dAnB ¼ dBnA ¼ d=2 in this case. In Fig. 4, we report
the estimated values of d when the two estimators utilize
various sizes of CBFs each of which represents a set of
6,000 elements, where d ¼ 10 and k ¼ 3. We see that the
second estimator always generates a better estimate even if
a CBF uses a small number of cells, for example, m ¼ d ¼
10 cells. The first estimator, however, causes underestima-
tions before the number of cells reaches a threshold. The
root cause is that it uses the practical number of all zero
cells to match the theoretical number of the first part of zero
cells in CBF ðSAÞ � CBF ðSBÞ. This works well only when
the proportion of outlier cells, the second part of zero cells,
to all zero cells is near to zero, as shown in Fig. 4b. On the
contrary, the second estimator always generates a good
estimate since it uses the number of observed zero cells to
match the number of both parts of zero cells in theory.

We next evaluate the relative errors of our two dedicated
estimators under two representative settings of m, when d
varies from 1 to 300. In the first case, the number of cells
allocated to each CBF is fixed to 600, which is two times of
the largest value of d. In the second case, the number of cells
allocated to each CBF is set to two times of d. As shown in
Fig. 5, the second estimator predicts d with high accuracy
and outperforms the first estimator in both cases.

5.2.3 General Settings

The above evaluation results demonstrate that the two
dedicated estimators exhibit high accuracy if the distribu-
tion of dAnB and dBnA falls into the desired working
circumstances. At the same time, Figs. 3 and 5 demonstrate
that the two estimators are no longer practical in undesired
circumstances. To support the set reconciliation in more
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Fig. 3. The relative error about d ¼ d1 þ d2, where d1 ¼ 0, k ¼ 3 and the
set is of 6,000 size at each node.

Fig. 4. The estimated size of the set difference between two sets each
with 6,000 elements, where k ¼ 3, d ¼ 10, and d1 ¼ d2 ¼ 5.

Fig. 5. The relative errors of the two estimators, where d1 ¼ d2 ¼ d=2,
k ¼ 3, and each node has a set of 6,000.

Fig. 6. The relative error and its upper bound, where k ¼ 3,
d ¼ d1 þ d2 ¼ 300, and SA and SB have 6,000 common objects but only
d1 or d2 unique ones, respectively.



general settings, we evaluate the accuracy of our general
estimator. In such a setting, dAnB and dBnA can be arbitrary
values ranging from 0 to d so long as dAnB þ dBnA ¼ d.

As shown in Fig. 6a, the three curves of our general
estimator, under different settings of m, follow the similar
trend as d1 ¼ dAnB increases from 0 to 300. The general
estimator achieves the highest accuracy when d1 ¼ 0 or d1 ¼
d and suffers the decrease of its accuracy at a certain extent
for other cases. Such a result indicates the difficulty of
estimating the size of the set difference in more general cases.
Fortunately, its accuracy can be enhanced to 12 percent for
m ¼ 2d, 4 percent for m ¼ 4d, and 3 percent for m ¼ 6d
underestimates. The resultant accuracy form ¼ 6d is usually
enough for many applications since the estimating result is
only required to provide an approximate guidance to the
upcoming set reconciliating method. Its accuracy can be
further improved if more than 6d cells are allocated, for
example, its accuracy is very close to 100 percent if m ¼ 8d.

Fig. 6b further shows that the second estimator is not a
good choice for more general settings of dAnB and dBna and
only generates an upper bound on the estimation of d
derived from the general estimator.

5.3 Our Reconciliating Method versus Prior Work

Given two arbitrary sets, SA and SB, the basic idea of our set
reconciliating method is to approximate CBF ðDAnB [DBnAÞ
with CBF ðSAÞ � CBF ðSBÞ at nodes A and B. To evaluate
such an approximation, we compare our CBF-based and
prior BF-based set reconciliating methods in terms of the
communication cost.

5.3.1 One of Two Arbitrary Sets Has No Unique Objects

In many applications, one of any two nodes, A and B, may
have no unique objects such that all objects in DBnA [DAnB
appear at one node, i.e., one of SA and SB is a subset of the
other. In such a setting, CBF ðSAÞ � CBF ðSBÞ does not
contain any outlier cell and thus is an exact representation
of DAnB [DBnA. Without loss of generality, we assume that
SB is a subset of SA. Thus, dBnA ¼ 0, dAnB ¼ d, and the
number of common objects between the sets SA and SB is
jSBj ¼ n.

Since no false negatives exist in CBF ðSAÞ � CBF ðSBÞ
and CBF ðSBÞ � CBF ðSAÞ, the only constraint that guides

the designs of CBF ðSAÞ and CBF ðSBÞ is the false positives.

Given CBF ðSBÞ � CBF ðSAÞ and CBF ðSAÞ � CBF ðSBÞ,
nodes B and A may misidentify a common object between

SA and SB as one of the unique objects, respectively. The

probability of such an event is given by ð1� ð1� 1
mÞ

kdÞk. The

number of resultant false positives at each node is thus

given by n� ð1� ð1� 1
mÞ

kdÞk due to jSBj ¼ n common

objects. Since this paper requires each node to exhibit at

most one false positive, the minimum number of cells for

CBF ðSAÞ and CBF ðSBÞ is given by m ¼ �k�d
log 1�n�1=k . To derive

the minimum size of the two CBFs, we still need to know

the minimal size of each cell such that it will not overflow.
Consider that the process of throwing n balls into m bins

uniformly at random. At the end of the process, the
maximum load denotes the maximum number of balls in
a bin. It is well known that such a process results in a

maximum load of �ðlogm= log logmÞwhen m ¼ n [31], [32].
It was also shown that for n � m logm, such a process
results in a maximum load of n=mþ�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logm=m

p
Þ with

high probability [34].
The construction of CBF ðSBÞ is equivalent to the process

of throwing kjSBj balls into m bins uniformly at random.
Consider that kjSBj � m logm is true since our method
seeks to reconciliate two large sets, which have a small set
difference, using two CBFs each with a small number of
cells. This results in a maximum load of kjSBj=m þ
�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kjSBj logm=m

p
Þ. Fig. 8c plots the experimental and

theoretical maximum loads, where the theoretical max-
imum load is given by kjSBj=mþ 1:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kjSBj logm=m

p
. We

find that the two curves match well along with the increase
of d. Thus, each cell should be at least�

log2ðkjSBj=mþ 1:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kjSBj logm=m

p �
; ð11Þ

bits and thus the total number of bits used by CBF ðSBÞ or
CBF ðSAÞ should be

�
log2ðkjSBj=mþ 1:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kjSBj logm=m

p �
� �kd

log ð1� n�1=kÞ :

As discussed in Section 2.3, prior BF-based reconciliating

methods may misidentify a unique object in the total set

difference as a common object. According to (2), the total

number of misidentified unique objects at both sides of

the node pair is d� ð1� e�k�n=mÞk since dAnB ¼ d, dBnA ¼ 0,

and jSBj ¼ n and should not exceed one. Therefore, the

minimum number of bits allocated to a BF at each node

should be �kn= log ð1� d�1=kÞ.
So far, we can compare our CBF-based method with

prior BF-based methods in terms of the communication
overhead, which is determined by the total space of two
CBFs or two BFs the two methods adopted, respectively.
Fig. 7 reports the ratio of the space of two BFs to that of two
CBFs for various sizes of d and d=n. We can see that our
method significantly outperforms prior methods since two
BFs consumes more space than two CBFs, irrespective of the
values of d and d=n. Additionally, our method can obtain
more gains along with the increase of d or the decrease of
d=n. In summary, given any two sets SA and SB one of
which has no unique objects, the benefit of our reconciliat-
ing method is very prominent when d=n is relative low or d
is relative large.
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Fig. 7. The ratio of space of BF to that of CBF, where k ¼ 3, dBnA ¼ 0,
and dAnB ¼ d, and n is the number of common objects between SA
and SB.



5.3.2 Unique Objects to a Node Pair Are the Same Size

In such a scenario, any two sets SA and SB are the same size
of nþ d=2, where dAnB ¼ dBnA ¼ d=2 and n denotes the
number of common objects between the two sets. In our
experiments, for any instance of d that ranges from 1 to 300,
we focus on three representative settings of n, including
d=n ¼ 0:01, 0.001, and 0.0001. Recall that our CBF-based and
prior BF-based reconciliating methods may misidentify a
unique object in DAnB [DBnA as a common object between
the two sets.

We start with measuring the minimum number of cells
required by each CBF such that our reconciliating method
incurs at most one such misidentification. In this case, the
upper bound on the total number of false negatives at both
sides of the node pair, defined by (6), is one. To evaluate
such an issue, we vary the value of d ranging from 1 to 300
and calculate the corresponding minimum number of cells
in each CBF. Fig. 8a indicates that a CBF at each node
requires more cells along with the increase of d. This verifies
that the number of cells in CBF ðSAÞ or CBF ðSBÞ should
scale with the size of the total set difference and not the set
size of SA or SB. Thus, given the number of required cells
under a fixed d, one may intuitively think that SA and SB can
be arbitrary large. This is not true since the two CBFs would
be constrained by the false positives, each of which means
that a common object is misidentified as a unique object.

For this reason, the number of false positives at each side
of the node pair is another design metric. Although such
false positives do not influence the accuracy of the set
reconciliation, they would cause a few unnecessary traffic
cost and hence should be minimized, for example, only one
in this paper. Recall that the false-positive probability of
CBF ðSAÞ � CBF ðSBÞ is given by (8) and there are
n common objects between the two sets. Thus, given m, k,
and d, we can derive the maximum cardinality of SA and SB

where jSAj ¼ jSBj ¼ nþ d=2. Fig. 8b shows that the max-
imum size of the set represented by each CBF increases
along with the increase of d.

Although the number of cells in CBF ðSAÞ and CBF ðSBÞ
scale with d, the total size of each CBF is also influenced by
the size of each cell. The size of each cell is determined by
the maximum load among all cells after an object set of size
nþ d=2 is represented by a CBF with m cells. So far, we are
aware of the values of m and n under any given value of d.
Fig. 8c plots the maximum load in CBF ðSAÞ and CBF ðSBÞ
with respect to the change of d, where theoretical
maximum load is�

log2ðkðnþ d=2Þ=mþ 1:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðnþ d=2Þ logm=m

p �
: ð12Þ

We can see that 10 bits per cell is always sufficient when d

ranges from 1 to 300. Thus, the total size of each CBF under
any given value of d could be calculated.

For prior BF-based methods, we also need to study the
maximum sizes of SA and SB such that the total number of
misidentified unique objects does not exceed one if each BF
and CBF occupies the same size of space. In this case, a
unique object may be misidentified as a common one with
probability ð1� e�k�ðnþd=2Þ=ð10mÞÞk, where m is the number of
cells in each CBF and each cell consists of 10 bits. Thus, the
total number of false positives at both sides of the node pair
is dð1� e�k�ðnþd=2Þ=ð10mÞÞk and should not exceed one. After
solving such an inequation, we achieve the maximum sizes
of SA and SB under various values of d if using prior BF-
based methods, as shown in Fig. 8d. Our CBF-based
reconciliating method obtains an increase of two orders of
magnitude in terms of the maximum set size compared to
prior BF-based methods when d ranges from 1 to 300. As
shown in Fig. 9, each BF utilizes more space compared to
each CBF if prior BF-based methods want to support the
same set size as our CBF-based method, irrespective of the
value of d.

Fig. 9 reports the ratio of the space of a BF to that of a
CBF for various sizes of d and d=n. The benefit of our
CBF-based method compared to prior BF-based methods
increases along with the decrease of d=n from 0.01 to
0.0001. When d=n ¼ 0:001, our method considerably out-
performs prior BF-based methods since a BF consumes at
least 10 times space than a CBF, irrespective of the value
of d. When d=n ¼ 0:0001, a BF consumes at least 30 times
space than a CBF, irrespective of the value of d. If d=n is
further reduced, our method would achieve more benefit.
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Fig. 9. The ratio of space of BF to that of CBF, where k ¼ 3, dBnA ¼ 0,
and dAnB ¼ d.

Fig. 8. Settings of m and n for our CBF-based and prior BF-based set
reconciliating methods, where k ¼ 3.



Additionally, our method can achieve more benefit as the

decrease of d when d=n is fixed, as shown in Fig. 9b. In

summary, our reconciliating method achieves far better

performance compared to prior BF-based methods when

d=n is relative small.

5.3.3 General Settings

Given any two sets SA and SB, the number of unique objects

to each of them may be any integer in the range of 0 to d in

general scenarios. Therefore, we should compare our

method with prior methods in terms of required space of

a BF and a CBF, so as to generalize the application fields of

our method.
The sizes of minimum space required by the BF and

CBF can be calculated as follows: As aforementioned in
Section 3.4, the number of cells required by the CBF
should be the larger one between two values derived
from the following constraints. The first is that at most
one unique object to SA or SB may be misidentified as a
common one between the two sets. The second is that at
most one common object may be reported as a unique one
at each side of the node pair.

To evaluate such an issue, given any value of d in a range

of 1 to 300, we vary d1 ¼ dAnB from 0 to d and d2 ¼ dBnA ¼
d� d1. For any given d, we focus on three representative

settings of n, including d=n ¼ 0:01, 0.001, and 0.0001. Thus,

given d, d=n, and k, we have d different settings of d1 and d2.

For each of such settings, the minimum number of cells

allocated to the CBF under the above two constraints can be

derived from (5) and (7), respectively. In this way one can

achieve the final number of cells allocated to the CBF in

such a setting. For any pair of d and d=n, the number of cells

for the CBF is the average value of d outputs each of which

comes from one setting of d1. Furthermore, the size of each

cell can be calculated using the same way mentioned in

Section 5.3.1 and thus the minimum space allocated to the

CBF can be derived.
For the BF-based methods, the number of cells allocated

to the BF has to guarantee that at most one unique object to

SA or SB may be misidentified as a common one between

the two sets. Similarly, given any pair of d and d=n, we have

d different settings of d1 and d2. For each of such settings,

the number of cells for the BF can be derived from (2).

Consequently, for any pair of d and d=n, the minimum

number of cells for the BF is the average value among d

results. Note that the minimum space for the BF is just the
number of cells since each cell in the BF is only one bit.

Fig. 10 plots the ratio of the minimum space for the BF to
that for the CBF under various settings of d and d=n. We see
that our reconciliating method always outperforms prior
BF-based method since the latter consumes more space than
the former as d increases from 1 to 300 and d=n decreases
from 0.01 to 0.0001. The performance of our method would
be more prominent if d=n is further reduced. Additionally,
the performance of our method in such a general scenario is
bounded by the upper bound in the first scenario and the
lower bound in the second scenario. Such experimental
results confirm our theoretical analysis, as discussed in
Section 3.4.

6 CONCLUSION

Although many solutions using logs have been proposed
recently to the set reconciliation problem, they require prior
context and suffer nontrivial update overhead and scale
poorly when many nodes need to reconciliate with each
other. In this paper, we propose an efficient method that
discovers the objects belonging to the set difference in a
single round and makes any two nodes exchange the
unique objects solely from the set difference. Such a
method only requires each node to exchange its CBF of
size OðdÞ, which represents the identifiers of all its objects.
An essential component in our method is a novel estimator
that can accurately estimate not only the value of d but also
the size of the set difference to each node. Such an
estimator not only contributes to optimize the performance
of our CBF-based approach, but also contributes to prior
BF-based reconciliating methods. Comprehensive experi-
ments demonstrate that our method is more efficient than
prior BF-based methods in terms of achieving the same
accuracy with less communication cost.
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