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Abstract—Event detection is a crucial task for wireless sensor network applications, especially environment monitoring. Existing

approaches for event detection are mainly based on some predefined threshold values and, thus, are often inaccurate and incapable of

capturing complex events. For example, in coal mine monitoring scenarios, gas leakage or water osmosis can hardly be described by

the overrun of specified attribute thresholds but some complex pattern in the full-scale view of the environmental data. To address this

issue, we propose a nonthreshold-based approach for the real 3D sensor monitoring environment. We employ energy-efficient

methods to collect a time series of data maps from the sensor network and detect complex events through matching the gathered data

to spatiotemporal data patterns. Finally, we conduct trace-driven simulations to prove the efficacy and efficiency of this approach on

detecting events of complex phenomena from real-life records.

Index Terms—Distributed applications, data compaction and compression, query processing, wireless sensor networks.

Ç

1 INTRODUCTION

WIRELESS sensor networks (WSNs) have been widely
studied for environment monitoring. In such mon-

itoring applications, automatically detecting events is quite
essential, e.g., for detecting vehicles or forest fires. Cur-
rently, the typical event detection method [12] relies on
decisions made at the sensor node(s) based on predefined
data thresholds for normal environments. The rationale
behind such threshold-based approaches is that when
events occur, there will be detectable changes in environ-
mental data. Thus, an event can be captured once the
observed sensory data exceed the predefined thresholds.

Our motivating scenario comes from the field study in a

coal mine [15], where environment surveillance is carried out

to ensure miners’ safety. The amount of oxygen, gas, dust,

temperature, humidity, and watery regions are monitored in

a 3D space of underground tunnels in the mine. Several event

detection tasks are essential to secure the safety of the miners,

such as detecting gas leakage, oxygen-enriched spots, and water

seepage. Gas leakage often occurs when the digging machines

expose a source of gas in the mining process, and it often

leads to a local increase in gas density. If a certain district of

gas accumulates to critical explosive density, explosions

could occur. Oxygen-enriched spots exist at the ventilative

places where high oxygen density creates healthy environ-

mental conditions for human beings. Indicating such areas

provides important guidelines for the miners patrolling in

the coal mine. Water seepage brings water into the coal mine

tunnels, which corrodes the tunnel surfaces and threatens

the tunnel’s structural integrity.

The events described above share the common char-
acteristics that their occurrence results in trends in the
development of environmental data rather than some
instantaneous overrun of specified thresholds in individual
sensor nodes. Hence, the threshold-based approaches work
well for detecting simple events, but the complex events
with spatiotemporal variety in the environment can hardly
be captured by a simple cutoff method. An integrative view
of the environment has to be established to extract the
features of such events. For example, gas leakage usually
leads to an expanding area of high gas density over time,
which spatially follows a degrading form where the gas
density decreases from the source of the leak. The water
seepage can be categorized as a “fault event” with an
apparent observation on the advances of the frontier
between the dry area and the flooded area.

In order to accurately detect complicated events, we need
a nonthreshold-based event detection approach. We intend
to describe complex phenomena with certain spatiotempor-
al data patterns and detect events through matching the
gathered data to such data patterns. The challenges for such
a design are as follows: First, differing from threshold-based
approaches, the environment data map has to be continu-
ously maintained from real-time sensor readings, while
conserving energy for battery-powered sensors [5], [6], [23],
[25], [27] is a very critical issue. We need to restrain the data
traffic and maintain the data map in an energy-efficient
manner. Second, the communication quality of WSNs is
poor, especially in the underground monitoring environ-
ments, such as a coal mine. We have to develop robust
methods of data map construction so that the accuracy of
the obtained data map could be preserved in a high loss rate
network. Third, the 3D monitoring field raises nontrivial
issues in abstracting the environment, which are not faced
by previous works in 2D cases. Efficient data structures and
modeling methods are required in a point of 3D view.

In this paper, we propose a 3D gradient data map using
the space orthogonal polyhedra (OP) model. We build a
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multipath routing architecture to provide robust data
delivery for the map construction. Instead of directly
routing raw data to the sink before processing, a novel
3D aggregation algorithm is designed for map construction
and update. We demonstrate the efficacy and efficiency of
the proposed approach in trace-driven simulations using
synthetic data sets derived from the raw data collected in
our study in the real coal mine environment.

The rest of this paper is organized as follows: We briefly
review the related work in Section 2. In Section 3, we
describe the network architecture and construction of the
gradient data map. The aggregation criteria and incre-
mental data map construction techniques are also intro-
duced. In Section 4, we describe the event feature patterns
and illustrate how pattern-based event detection is per-
formed on the data map. Experimental studies of our
approach are given in Section 5. Finally, we conclude this
work in Section 6.

2 RELATED WORK

Event detection remains an essential task in various WSN
applications. There are a number of recent works on event-
oriented query processing in sensor networks. The
COUGAR project [3] introduces a sensor database system
and deals with three types of event queries: historical
queries, snapshot queries, and long-running queries. The
system employs threshold-based detection logic and en-
capsulates it into a set of asynchronous functions provided
for users. Directed Diffusion [14] aims at addressing the
event-based real-time queries by diffusing different event
interests into the monitoring network and letting sensors
report when occurrences of some specified events are
detected. The Directed Diffusion approach does not explore
the spatial or temporal correlations among the sensory data,
and it relies on individual reports of sensor nodes according
to the disseminated event interests. TinyDB [12] defines the
event by a composition of various specified attribute
thresholds. The event detection is carried out by comparing
sensory readings of attributes with predetermined thresh-
old values. TinyDB provides a distributed mapping method
to construct contour maps of sensor network readings.
Differing from our approach, the mapping process in
TinyDB is only done in 2D fields and their work does
not aim to provide event detection based on the data
spatiotemporal patterns. DSWare [16] explores the correla-
tion among different sensor observations for event detec-
tion. Events are grouped into two different types: atomic
events and compound events. Confidence functions are
employed to address compound events. Above works all
focus on 2D scenarios.

In-network data aggregation has been intensively studied
as an effective method to provide energy-efficient data
collection [4], [17], [18], [19], [21]. LEACH [11] protocol
constructs clustering hierarchy on the network and achieves
data fusion at the cluster heads to reduce transmitted
information. By rotating the cluster heads, energy dissipa-
tion is evenly distributed over the network. The TAG
approach [19] builds a routing tree in the sensor network
and statistical data are aggregated in the intermediate nodes.
In [17], network tomography techniques have been applied

to solve the problem of loss inference in data aggregation.
Different from the approaches above, our approach explores
the spatial correlations on the sensory data and achieves

data aggregation through the combination of OP in the
gradient data maps. Recently proposed contour mapping
methods [12], [20], [24] share similar ideas with this work in

visualizing the monitored fields for event detection. While
those works utilize aggregation-based approaches to effi-
ciently approximate the 2D field in contour maps, they
provide no means to extend for 3D scenarios.

The multipath routing strategy has recently been

suggested to provide robust data deliveries in sensor

networks. Robust aggregation on it needs duplicate-insen-

sitive data structures to carry information [7], [22]. In our

work, we propose the space OP model as such a duplicate-

insensitive data structure.

3 THREE-DIMENSIONAL GRADIENT DATA MAP

CONSTRUCTION

This section is organized as follows: In Section 3.1, we

briefly describe the sensor network architecture and

deployment of sensors in a 3D space. Then, in Section 3.2,

we present the concept of 3D gradient data map. In

Section 3.3, we introduce the OP and describe how to

achieve in-network construction of the gradient data map

by the space OP model. Sections 3.4 and 3.5 describe the

aggregation criteria for the gradient data map construction

and its incremental update. Finally, in Section 3.6, we

extend our algorithm for random sensor deployments.

3.1 Network Architecture

In our coal mine monitoring scenario, sensor nodes are

assumed uniformly deployed in 3D monitoring space with

measured location information (later, we will release this

constraint to extend our work into random deployments).

This could be easily achieved by placing sensors along the

safety props in the tunnel. Fig. 1 shows the environment in

underground coal mine tunnels and the placement of

sensors in our underground prototype system previously

reported in [15]. A cubic grid can be established on this

network and each sensor node accounts for the environ-

ment sensing in the cubic cell it resides in (as shown in

Fig. 2a). The grid information is created at sink and

disseminated throughout the network. Each sensor node,

based on its location information, calculates the dimension

and coordinates of the cubic cell it resides in.
The whole network is organized into multipath routing

architecture. Sensor nodes are divided into different levels

from the sink. The sensor nodes closer to the sink have lower

levels. For each sensor node, the one level lower nodes are

considered as parent neighbors, and the one level higher

nodes are treated as child neighbors. Each node forwards the

query messages originated in the sink to its child neighbors

and sends the report messages to its parent neighbors. Thus,

in the message relay process at each node, multirelayers are

triggered for message forwarding. By the means of multi-

path routing, message redundancy is provided to ensure a

more reliable message delivery in the lossy sensor network.
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The multipath routing architecture is constructed by a

two-phase initialization process, DIFFUSION and ECHO. In

the DIFFUSION phase, the sink originated indicator mes-

sage is flooded into the network. Each sensor node estimates

its hop count from the sink. When the DIFFUSION phase

completes, each sensor node gets its level and discovers its

parent neighbors and child neighbors. The ECHO phase is

triggered by the highest level sensor nodes, which are

farthest from the sink. ECHO messages are created by those

nodes and flooded in the network. Hence, the total level

count is captured by all the nodes and each node calculates

its own operation schedule for each sampling cycle. Fig. 2b

shows that sensor nodes in different levels share different

schedules. Each node carries out sensing and processing at

the beginning of a data sampling cycle. Nodes in different

levels transfer data in different time slots within the same

sampling cycle. Lower level nodes need to wait for the data

from higher level nodes so that data aggregation could be

implemented in each level. The sampling cycle interval Ds,

data processing time Tp, and the total level count c determine

the duration d of data transfer and aggregation for nodes in

each level, d ¼ 2ðDs � TpÞ=c. For each node at the ith level,

its data transfer and aggregation process lies in the slot of

½ðc� i� 1Þd=2; ðc� iþ 1Þd=2�.
While more redundancy of the aggregated data has been

provided by multipath routing, data duplicates have been

introduced at the time of multiple relaying. Therefore, we

must employ duplicate-insensitive methods (such as [7] and

[22]) to prevent error during data aggregation.

3.2 Three-Dimensional Gradient Data Map

Under the network architecture described in Section 3.1,
we propose 3D gradient data map to describe the
monitored environment. As mentioned above, the sensor
nodes are deployed in a 3D space in the monitoring area
and each sensor is responsible for sensing the environ-
mental data within its unit cubic cell (we assume that the
data within a unit cube have the similar values). Thus, we
can aggregate the cubic cells with similar sensor readings
into a cube cluster and construct the gradient data map at
each sampling period within the network. The gradient
data map consists of different clusters with their own
geometric shapes and data distributions. The gradient
data map is an approximation of monitored environment
and reflects environmental data distribution at each
sampling period.

We employ data aggregation in each sampling process
and create partial gradient data maps from sensor readings.
The partial data maps are merged as much as possible
along the paths from sensors to the sink. At the sink, the
gradient data map is built from a set of partial gradient
data maps. Along with a sequence of sampling, a time
series of approximated 3D gradient data maps is con-
structed at the sink, on which event detection is performed.
Fig. 3 exhibits a partial gradient data map including three
different cube clusters. We can simply use the average
value of all sensor readings in the cube cluster to
approximate the data of this cluster during the aggregation.
However, that approach introduces large approximating
errors. In our gradient data map, we compute the data
distribution f of each cube cluster and represent each cube
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cluster by the geometric structure, called space OP. By
manipulating two parameters of OP, which can be simply
transmitted with little bandwidth, the sensor nodes are
collaborated to construct the gradient data map in an in-
network manner. The key operations in the aggregation
process are estimating the similarity of different OP and
merging the similar OP at each sensor node.

3.3 Space OP Model and Gradient Map
Construction

We use the space OP model to describe different cube
clusters. OP can capture the data distribution in 3D cubic
space and only requires few parameter settings. The OP
was first introduced in Constructive Solid Geometry (CSG).
Aguilera and Ayala investigated the characteristics of OP
[1] and presented the geometric models to represent OP as
well as some basic geometric operations, which are
summarized as follows:

Definition 3.1. OP are polyhedra with all faces oriented in three
orthogonal directions.

In OP, all planes and lines are parallel to three
orthogonal axes. The number of incident edges for each
vertex can be only three, four, or six, which is referred as
V3, V4, or V6, respectively [1]. An Extreme Vertices (EV)
model has been proposed to represent OP.

Definition 3.2. The EV model for OP is defined as a model that
only stores all V3 vertices.

Aguilera and Ayala proved that the EV model is a valid
B-Rep model, i.e., it is complete and compact in the sense of
geometry. Furthermore, they proposed the ABC-sorted EV
model, which provides computational convenience for
geometric operations.

Definition 3.3. An ABC-sorted EV model is an EV model

where V3 vertices are sorted first by coordinate A, then by B

and then by C.

Fig. 4 gives an example of the ABC-sorted EV model for
the OP. The model is stored as a series of vertices (node 1 to
node 16). Based on ABC-sorted EV models, the following
geometric operations can be efficiently performed:

1. Volume calculation—To calculate the volume of OP.
An OðnÞ algorithm exists by accumulating the
strip region between any consecutive different
sections, where n is the number of vertices of
the OP.

2. Relationship checking—To check the relationship of
two OP: overlapping, adjacent, or separated. An
OðnÞ algorithm exists by sequentially checking the
relationship of the sections of the two OP along
some axis, where n is the number of vertices of
the OP.

3. Boolean operations—To compute the union or
intersection or difference of two OP. An OðnÞ
algorithm exists, which sequentially performs
Boolean operations on the sections of the two OP
along some axis.

Since a cube cluster is composed of multiple cubic cells, the
geometric shape of clusters can be well modeled by OP,
which is described by the geometric shape of the covered
area and a data distribution function in this area. The
partial gradient data map stored in each sensor node is
represented as a list of OP depicted by the ABC-sorted EV
model. The in-network construction of the gradient data
map starts from each node sensing its environment and
generating the OP model for its own cell. Each node
receives the partial maps from all its child neighbors at the
time slot of data aggregation. The OP from different partial
maps form an active set Sp. Through investigating the
relationship among OP within Sp, the sensor node estimates
the similarity of OP and merges the mergeable OP. Fig. 5
illustrates the possible relationships between two OP.
Finally, the partial maps are aggregated into a single map
Mf , which includes disjointed OP. The lower level sensor
node transfers Mf to its parent neighbors.

Algorithm 1 presents detail steps of partial map genera-
tion for each sensor node. A min-heap H is constructed
containing possible mergers (line 1). Different OP pairs from
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the active set Sp are checked by function checkMergeable,
which verifies whether two OP are mergeable. Two OP are
mergeable when they are overlapping or adjacent and have
enough similarity (as will be defined in Section 3.4). The
function createMerge creates a merger for two mergeable OP
and adds it into H. This merger contains a key value
indicating the potential of merging the two OP. A smaller
key value indicates a higher potential of merging, and this
key value is used as the element key in H (lines 2-4). In later
sections, we will introduce how the function checkMergeable
and createMerger estimate the similarity of two OP and
calculate the key value of the merger, respectively. After all
the possible mergers have been added into H, the mergers
are extracted from H by increasing order of the key values
(line 6). The two OP in each merger are merged into a new
OP by the function merge (line 7). The two merged OP are
deleted from the active set Sp and all the merges related to
these OP are deleted from the min-heap H (lines 8-11). The
newly created OP is then inserted into the active set H and
immediately checked whether it could be further merged
(lines 12-15). After all mergeable OP are merged, we process
the overlapping but not mergeable OP pairs and remove the
intersection region from one of them so that no ambiguous
regions exist in our generated map (lines 16-18).

Algorithm 1 Partial Map Generating
Input: the active set Sp
Output: the resulting map Mf

1: construct an empty min-heap H, to contain mergers

hOP1; OP2i;
2: for each OP pair OPi and OPj ði 6¼ jÞ in Sp do

3: if checkMergeableðOPi;OPjÞ
4: H. addðcreateMergerðOPi;OPjÞÞ;
5: while not H. emptyðÞ do

6: merger mhOP1; OP2i ¼ H. extractðÞ;
7: create OP ¼ mergeðOP1; OP2Þ;
8: for any merger m containing OP1 or OP2 do

9: H. deleteðmÞ;
10: Sp. deleteðOP1Þ;
11: Sp. deleteðOP2Þ;
12: for each OPk in Sp do

13: if checkMergeableðOP;OPkÞ 1
14: H. addðcreateMergerðOP;OPkÞÞ;
15: Sp. addðOP Þ;
16: for each overlapping region R ¼ OPi \OPj in Sp do

17: OPi ¼ OPi �R or OPj ¼ OPj �R;

18: return Mf ¼ Sp;

3.4 Aggregation Criteria

To aggregate different partial maps, we need to adopt
effective criteria for measuring the similarity of OP so that
the resulting partial data map well approximates the actual
data map.

The OP model used in our system represents a cluster of
cubic cells with similar environmental data. We can use a
specific data value to represent the data in the whole OP
region, e.g., the average value of all the sensor readings in
the OP. In such case, to check the similarity of two OP, we
only need to check their representing values. However, a
single data value can hardly reflect full-scale environmental
conditions in the OP. Moreover, only investigating the
representative value of OP will miss the important spatial
information. For example, with the same value, OP
occupying a larger space is still different from OP holding
a smaller space. Thus, we can merge a tiny OP (OP with
small space) into a much larger OP (OP with large space)
even though their representative data values differ a lot,
because the merging simplifies the data map representation
without losing much accuracy. However, for the case in
which two OP both occupy large spaces, merging them
may greatly reduce the accuracy of the resulting gradient
data map.

In our design, each OP is associated with a data
distribution model, which describes the environmental data
within this OP. There have been several techniques
proposed to represent the data distribution with compres-
sion, such as wavelet transformation [26], histogram-based
model [8], [10], and so forth. In this work, we choose to
adopt linear regression (LR) model, which incurs constant
communication overhead and facilitates the aggregation of
OP. A function v ¼ fðx; y; zÞ is employed to approximate the
data value in each spot in the OP, where x, y, and z
correspond to the spot coordinate in the 3D space.
Polynomial models can be utilized to formulate this
approximation function. To reduce the computational over-
head for resource constraint sensor nodes, we adopt the
linear model fðx; y; zÞ ¼ c0 þ c1xþ c2yþ c3z, where the data
distribution is approximated by a hyperplane in the
4D space built on <x; y; z; v> . In the sampling period,
each node first computes its initial model for its cubic cell
from its sensor reading. During the aggregation, a
linear model is built by conducting LR over the whole
OP area. For OP containing n cubes, n values are extracted
for all cubes. Thus, we can get n 4-tuples <x1; y1; z1; v1>;
<x2; y2; z2; v2>; . . . ; <xn; yn; zn; vn> from which we com-
pute the coefficients of the linear model by solving the
following equation:
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Fig. 5. The possible relationships of two OP.
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The parameters A, w, and b of the LR model are
integrated and transmitted with the OP in the aggregation
process, which take Oð1Þ cost to represent the data
distribution over the OP. When merging two OP, OPi and
OPj, we can compute the LR model of the resulting OPij
from the LR models of OPi and OPj. By summing Ai and
Aj, we get Aij, so does bij with respect to bi and bj. The
coefficients wij can be derived from the generated Aij and
bij. Therefore, we only transmit the parameters of the two
matrices, instead of sampling the <x; y; z; v> tuples to
construct our LR model, which induces more overhead. The
similarity of two OP is estimated based on the linear models
of OP. An estimated error bound "ij is computed when
aggregating two different OP by the following formula:

"ij ¼
ð1þ "iÞ�i þ ð1þ "jÞ�j

Ri þRj
; ð2Þ

where �i represents the difference between the cumulates
of fij and fi on OPi, and �j represents the difference
between the cumulates of fij and fj on OPj, i.e.,

�i ¼
ZZZ

OPi

fijðx; y; zÞ � fiðx; y; zÞ
� �

d�

�������

�������
;

�j ¼
ZZZ

OPj

fijðx; y; zÞ � fjðx; y; zÞ
� �

d�

�������

�������
:

ð3Þ

"i and "j are the error bounds for fi on OPi and fj on OPj.
Thus, ð1þ "iÞ�i þ ð1þ "jÞ�j gives the maximum difference
when we substitute the former LR models on OPi and OPj
with the aggregated one. Ri and Rj represent the cumulates
of fi on OPi and fj on OPj, respectively, i.e.,

Ri ¼
ZZZ

OPi

fiðx; y; zÞd�; Rj ¼
ZZZ

OPj

fjðx; y; zÞd�: ð4Þ

This formula computes the error bound "ij after the
aggregation, and it is then evaluated by a user-defined error
bound ". Only when "ij is not greater than ", two OP are
mergeable. Note that, in the above formula, the error bound

is computed in a weighted manner, where the OP volume is
the weight factor.

Based on the estimation of the LR model, we consider the
data value as well as the volume of the OP when merging two
different OP regions. We list all the functions checkMergeable,
createMerger, and merge for merging two OP in Algorithm 2.
The function checkMergeable first checks the relationship of
the two OP. If they are overlapping or adjacent, the function
further checks whether the error induced by merging is
tolerable. The function createMerge computes the benefit of
merging two OP, "ij=’ij, the error bound over reduced
region, and takes it as the index key of the merger in the min-
heapH in Algorithm 1. Thus, the merging with less error and
larger reduced region will be conducted earlier. The function
merge merges two OP by combining their regions and
computing the new LR model for the resulting OP.

Algorithm 2 Merging Manipulations

Function checkMergeableðOPi;OPjÞ
1: if OPi and OPj are overlapping or adjacent

2: compute "ij;

3: if "ij � "
4: return TRUE;

Function createMergerðOPi;OPjÞ
1: ’ij ¼ volumeðOPiÞ þ volumeðOPjÞ � volumeðOPi [OPjÞ;
2: if ’ij > 0

3: return merger <OP1; OP2> with key "ij=’ij;
Function mergeðOP1; OP2Þ
1: compute OP ¼ OPi [OPj;
2: A ¼ AiþAj;
3: b ¼ biþ bj;
4: compute w by Aw ¼ b;
5: return OP with A, b, and w;

3.5 Incremental Update of Gradient Data Map

When carrying out a sequential sampling, each sensor node
needs to continuously update its partial gradient data map
to reveal environmental status in real time. An effective
and efficient criterion for map update can offer the ability
of real-time monitoring while minimizing computational
and communicational cost. Simply reconstructing a new
data map in each sampling period is an easy yet costly
approach, which may cause sensor nodes to quickly
deplete their power due to the heavy communication
traffic. Indeed, the consecutively constructed data maps
vary not much due to the rareness of environmental events
[9]. Thus, we employ an incremental method to update the
partial gradient data map.

In the aggregation process, each sensor node keeps its
previously constructed data map as Mp. The node receives
the update units U1; U2; . . . ; Un from its child neighbors in
each updating phase. The updated units are in fact OP with
different data values out of the error bound " from their
previous statuses. Upon receiving these updated units, the
node first constructs an update mapMu by aggregating these
updated units. This process is similar to the aggregation of
partial maps, with the same aggregation criteria. Before
sending out the update map Mu, the node diminishes some
reducible units to reduce the amount of sending data. In the
diminishing phase, the update mapMu is compared with the
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previous data map Mp, and the similarity estimation is
conducted for the OP in Mu, which can be enclosed by OP in
Mp. Considering OP Pi inMu enclosed by some OP Pj inMp,
we can calculate the estimated error bound "ij by (2) and
evaluate it with a predefined error bound ". If "ij � ", the OP
Pi is considered reducible and removed from Mu, since
updating this OP will not bring significant impact to the final
data map. After removing all reducible OP from Mu, the
node sends the diminished update map as an update unit U
to its parent neighbors and updates its current data map Mc

by combining Mu and Mp in the manner described in
Section 3.4.

Algorithm 3 illustrates this process. The algorithm
receives the previous data map Mp and the updating units
U1; U2; . . . ; Un from the child neighbors as inputs and
outputs the updating unit U it sends to its parent neighbors
and the current data map Mc it maintains for recording
current environment status. The current data map Mc will
be in the next round update taken as the previous
data map Mp. This algorithm contains two phases. In the
first phase (lines 1-8), the algorithm constructs the
updating unit U by generating a partial map from the
input OP of U1; U2; . . . ; Un. Specifically, the algorithm filters
the scrapped small OP generated from small environment
variations or measurement noises by merging them into
previous large and stable OP, which saves unnecessary
communication cost for representing them (lines 3-7). In
the second phase (lines 9-10), the algorithm combines the
previous data map and the update partial map by merging
their OP and obtaining the current data map Mc, reflecting
current environment status.

Algorithm 3 Data Map Updating

Input: the previous data map Mp and the updating units

U1; U2; . . . ; Un
Output: the updating unit U and the current data map Mc

1: active set Sp ¼ fall OP 2 Uiji ¼ 1; . . . ; ng;
2: generate update map Mu from Sp (Algorithm 1);

3: for each OPi in Mu do

4: for each OPj in Mp do

5: if OPi � OPj

6: if checkMergeableðOPi;OPjÞ
7: drop OPi from Mu;

8: U ¼Mu;
9: active set S0p ¼ fall OP 2Mu and Mpg;

10: generate current data map Mc from Sp (Algorithm 1);

11: return U and Mc;

The data map updating technique exploits the stabili-
zation of monitored environment where events rarely
happen, so the communication cost could be largely saved
without losing accuracy. Our experiments in Section 5
further prove this.

3.6 Adapting Random Sensor Deployments

To adapt a broader scope of WSN application scenarios, we
extend our algorithm into random deployment of sensor
networks. In such random sensor deployment, when the
cubic grid is established, some of the cubic cells may
contain multiple sensor nodes and some of them may be
empty. For the cells with multiple sensors, our aggregation

algorithm automatically aggregates their readings into the
linear function f . However, those empty cells make the
constructed gradient map incomplete, with OP of undeter-
mined values. This problem also occurs under node failures
and link losses.

We employ spatial interpolation on the server side to
recover the complete map from the collected incomplete
map. Each undetermined OP is estimated by spatial
interpolation around its surrounding OP and gets merged
into the most similar neighbor OP. By this means, we can
finally construct a complete gradient data map for the
random deployed sensor network. Algorithm 4 illustrates
this procedure. Algorithm 4 is executed on the server side
after the incomplete gradient data map has been collected
from the network. Thus, the interpolation will not influence
all in-network procedures described in previous sections.

Algorithm 4 Gradient Map Recovery

Input: the incomplete gradient data map Mic

Output: the recovered complete gradient data map Mc

1: for each undetermined OP region Pi in Mic do

2: compute wi from interpolation;

3: "i ¼ ";
4: for each adjacent OP Pj do

5: compute "ij;

6: if "ij < "i
7: "i ¼ "ij;
8: k ¼ j;
9: mergeðPi; PkÞ;

10: return Mc;

4 EVENT DETECTION

When the sink receives the aggregated data map, we can
perform the event detection based on the exhibited data
pattern from the data map. Moreover, the spatiotemporal
pattern revealed from the series of data maps provides us
the dynamic progress of the event, which helps capture the
event developments. In this section, we describe the event
feature patterns and propose a formal method of utilizing
the predefined feature patterns to detect a specific event.

In previous discussions, the term “data map” refers to
the constructed gradient data map in some sampling
period. For the purpose of event detection, the spatiotem-
poral data pattern is often investigated over a time series of
data maps. For the convenience of description, without
specification, we will later use “data map” referring to the
spatiotemporal data map consisting of a time series of
received data maps. Each data map in this series is referred
to as a data map “snapshot.”

4.1 Event Feature Patterns

The event feature pattern F is defined as a time series of
snapshots L on the data map of some environmental
attribute and a set of relationship R among them.
L ¼ fS0; S1; . . . ; Sng, where Si is a snapshot ðti;MiÞ on the
data map composed of the time label ti and current data map
Mi. Here, �t ¼ tiþ1 �ti is the sampling interval between two
consecutive snapshots and the data map Mi consists of
different OP ðPi1; Pi2; . . . ; PimÞ. Different OP are associated
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with different data values vij. The relationshipR specifies the
event feature pattern on series L. R describes the spatial
relationship RS by regulating the relationships RðPik; PilÞ
between different OP on the data map snapshot Mi and the
temporal relationship RT by regulating the relationships
RðMi;MjÞ between different data map snapshots.

The above definition of F describes the spatiotemporal
trends on the data map of the specified event. By comparing
the obtained aggregated data maps with the predefined
feature patterns, we could accurately detect the ongoing
development of certain events. We illustrate the event
feature pattern in detail by describing two sample events as
well as their specified feature patterns.

Spreading Event. For the event of gas leakage, as the gas
spreads from the source spot, the distribution of the gas
density follows the single source spreading event model in
the data map of gas density. Spatially, in the data map
snapshots, the leakage source bears the highest gas density
value and the value falls along all directions from the source
spot. Temporally, as time passes, the abnormal region
expands and the gas density rises within the whole region.
According to above observed features, we specify the
spreading event feature pattern as follows:

The spreading event feature pattern Fs is determined by
the user-specified snapshot series Ls and the relationship Rs

on them, which are customized by the users: 1) T is a user-
specified event duration, which defines the time interval
between the first snapshot S0 and last snapshot Sn in the
snapshot series Ls, i.e., T ¼ tn � t0. 2) The spatial relation-
ship Rs

S regulates a series of nesting OP fPi1; Pi2; . . . ; PiNig
for each Mi. Ni ð0 � i � nÞ is the user-specified spreading
level, which specifies the number of nesting OP. Pik
occupies the hole region in Pikþ1. The difference of data
values associated with the two OP vik � vikþ1 is bounded by
the user-specified degrading bound ½DL;DH �, and the ratio
of their volumes �k=�kþ1 is bounded by the user-specified
scaling bound ½fL; fH �, ð0 < fL < fH < 1Þ. 3) For the tempor-
al relationship Rs

T , the variation of data values between two
consecutive data mapsMi andMiþ1 is regulated by the user-
specified variation factor vf , such that the data value
variation for any spot p in the event region between Mi

and Miþ1 is vpi � vpiþ1 � vf . Another user-specified spread-
ing factor sf ð0 < sf < 1Þ constrains the ratio of the volumes
of event regions (composed of the nesting OP) in con-
secutive data maps Mi and Miþ1, such that Ei=Eiþ1 � sf .
This factor indicates the spreading speed of the source.
Fig. 6a illustrates the spreading event.

Fault Event. The fault event corresponds to those break-
ing out changes in terms of some attribute value. For
instance, the underground water seepage can be categor-
ized as a fault event, which induces a large flooded region
on the tunnel floor, disturbs the normal work, and damages
the working equipment. Moreover, in severe situations, the
water destroys the tunnel structure and threatens the life of
miners. For the fault event, the sensory readings in the fault
region largely differ from those in the normal region. So, the
event detection can be featured as a 0/1 detection on the
data map by setting appropriate thresholds for two regions.
However, this cannot be achieved by simply setting
thresholds at individual sensors, because what we need is
a big picture of the entire field and we aim to find the two

distinct regions in a macroscopic level. This can only be
achieved after a global data map of the field is obtained.
We, on the server side, thus are able to observe the data
pattern and detect the event. Any individual sensor node,
without enough information on the global data distribution,
cannot draw its local judgement about the event.

By specifying the relationship between the 0 attribute OP
and the 1 attribute OP on the data maps, we can describe the
feature pattern of fault event. The fault event feature pattern

Ff is determined by the user-specified snapshot series Lf

and the relationship Rf on them, which are customized by
the users: 1) T is a user-specified event duration, which
constrains that, in the snapshot series Lf , the time interval
between the first snapshot S0 and last snapshot Sn is
tn � t0 ¼ T . 2) The spatial relationship Rf

S regulates two
adjacent OP, Pi1 and Pi2 in each Mi. Pi1 is associated with
value vi1 in the range ½b1; b1 þ k� and Pi2 with value vi2 in the
range ½b2; b2 þ k�. b2 � b1 � �, where � is a user-specified
threshold. The volumes of both OP E1 and E2 should be
larger than a user-specified region size bound E ðE > 0Þ,
which defines the scale of the event to be detected. Another
user-specified parameter Sc sets the lower bound of the
coincident plane area shared by the two OP. 3) The temporal
relationship Rf

T regulates the event regions in consecutive
data maps overlapping at least at a percentage of �, where
0 < � < 1 is a user-specified confidence factor. Fig. 6b
illustrates the fault event.

4.2 Pattern-Based Event Detection

Once the event feature patterns have been specified, the
sink continuously processes the received data maps and
compares them with the predefined event feature patterns.
Once a match between the pattern and the data map is
found, the corresponding event is captured. Moreover, by
tracking the spatiotemporal feature of the data map series,
the development of current event could also be revealed.

We define that an instant snapshot At of the data map
A matches Si if and only if the OP in At match the OP
in Mi and share the same spatial relationships RðPik; PilÞ.
We define that the data map A matches pattern F if and
only if from time t, there exists a series of map
snapshots fAt;Atþ�t1; . . . ; Atþn�tg from A, such that any
snapshot Atþi�t matches the corresponding feature snap-
shot Si and all map snapshots obey the temporal
relationships RðAtþi�t; Atþj�tÞ.
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Algorithm 5 illustrates how the sink processes the
matching of data map series with predefined event feature
patterns. First, each map snapshot in the data map series
fAt;Atþ�t1; . . . ; Atþn�tg is compared with the feature pat-
tern snapshot according to the spatial relationship RS

(lines 2-7). Only after all snapshots match RS , the temporal
relationship RT is checked on this data map series with
event duration T (lines 8-13). If RT holds, the feature pattern
matching is achieved, and TRUE is returned (line 14). When
any mismatch appears, the starting time t of the series is slid
by �t, and a new round of checking is processed (lines 4-7
and 10-13). If no pattern matching has been detected until
the possible event time exceeds the duration TA, FALSE is
returned, which means no event is detected (lines 5, 6, 11,
and 12).

Algorithm 5 Feature Pattern Matching

Input: the specified event feature pattern F ¼<L;R> and

the received data map series A
Output: the matching result (TRUE/FALSE)

1: t ¼ 0;

2: for each snapshot Si ð0 � i � nÞ of L do

3: if not Atþi�t matches Si according to RS

4: t ¼ tþ�t;

5: if tþ T > TA
6: return FALSE;

7: goto 2;
8: for each pair of map snapshots

Atþi�t; Atþj�t ð0 � i; j � nÞ do

9: if not RðAtþi�t; Atþj�tÞ conforms to RT

10: t ¼ tþ�t;

11: if tþ T > TA
12: return FALSE;

13: goto 2;

14: return TRUE;

5 PERFORMANCE EVALUATION

We conducted a field study by investigating the various
environmental conditions in the D.L. Coal Mine. It is one of
the most automated coal mines worldwide. We collected
different sets of real data in the field and from historic
records under normal and exceptional situations. In this
section, we investigate the efficacy and efficiency of our
proposed event detection mechanism by a trace-driven
simulation using synthetic workload generated from the
collected raw data.

5.1 Simulation Setup

We simulated the event scenarios in a sensor network with
a 3D sensor deployment. The widely used Mica2 motes
[13] are presumed as the underlying hardware standard.
All numbers are 2-byte integers (including sensor readings
and all coefficients). The size limit for the simulated
packets is set to 60 bytes. Sensor nodes follow a CSMA
strategy in the link layer transmission, and according to
our experimental observations in the coal mine [15], when
the channel is heavily reused (10þ transmitters or inter-
ferers for each transmission link), the maximum through-
put for each link is limited below 16 packets per second.

Any traffic exceeding this amount will be dropped or
collided in the delivery.

An N �N �N cubical grid topology is initiated with a
sensor node placed at the center of each cubical grid. The
parameter N indicates the diameter of this cubical grid
network, ranging from 5 to 20 (default value is 10) in our
experiments to explore the system scalability under differ-
ent network sizes. Each sensor node has direct communica-
tion links with the six closest neighbor nodes surrounding it.
The link quality is measured with the link loss rate q, which
is the probability that a packet transmitted along the link
gets lost. In our experiment, this parameter varies from 0
percent to 40 percent (default value is 10 percent) to explore
the system reliability under different network conditions.

Three types of real-world historic sensory data for the
underground environment have been collected in the coal
mine as our data trace including gas density, oxygen
density, and watery regions. However, due to the constraint
on resource and environment, the original data are collected
with rough granularity of time scale and incomplete
sampling spots in the space scale. Based on the raw data
on hand, we generate more detailed synthetic data sets for
use in our experiment, which nevertheless mimic the
original data characteristics and trends under normal
conditions as well as during the period that events happen.

In the experiment, each data set contains all three kinds of
environmental data as three different environmental attri-
butes and lasts for 10,000 seconds, while each data sampling
cycle interval is 100 seconds. The sample events described in
Section 4.1 have been queried over the three different
attributes. Event E1 refers to the spreading event of gas
density, which occurs with gas leakage; Event E2 refers to
the spreading event over oxygen density, which occurs
around the oxygen-enriched spots; Event E3 refers to the
fault event in watery regions when water osmosis happens.
Note that though E1 and E2 both refer to the spreading
events, due to the different principles of gas leakage and
oxygen concentration, the two events have different spatio-
temporal data trends and their feature patterns differ in the
parameter settings. The above events are queried over the
data set with a predetermined event frequency f , which
depicts the monitoring workload. f is calculated as the
duration of events over the total monitoring duration. In our
experiment, we vary f from 0 percent to 40 percent (default
value is 10 percent) to obtain a full view of the system
efficiency under different workload.

We focus on two metrics for performance evaluation.
The event detection accuracy measures the efficacy of the
approach and the network traffic overhead tells the efficiency
on energy consumption. The event detection accuracy is
measured by two submetrics, precision and recall, which
have been widely used in IR domain [2]. Precision describes
the detection precision, which is defined as the percentage
of accurately detected real events over all reported events;
recall describes the detection completeness, which is defined
as the percentage of successfully detected events over all
occurred events. The network traffic overhead is measured by
the total amount of messages (bytes) transmitted in the
network in the monitoring duration.
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To further evaluate the performance gain of our
approach, we did a comparative study investigating three
possible approaches: 1) AGG: our proposed in-network data
map aggregation approach described in Section 3; 2) SAT:
the server side aggregation under TAG [19] framework, in
which the network is organized into a tree structure and all
data are forwarded to the sink. Data map is constructed in
the server side. In the SAT approach, each sensor sends and
relays data to only one parent node; and 3) SAM: the server
side aggregation under multipath routing strategy [22], in
which the network is organized into multipath routing style
and the data map is constructed in the server side. In the
SAM approach, each sensor sends and relays data to
multiple parent nodes. The network architecture is the
same as that in AGG.

5.2 Simulation Results

Since in all runs of experiments nearly 100 percent detection
precision is consistently achieved in different approaches
under different parameter settings, we omit this metric and
only present the performance on recall in the experiment
result part.

Before the comparative study on our AGG approach
with the other two approaches, we first evaluate the
performance gain of our approach under different settings.

5.2.1 Evaluating AGG Performance

Fig. 7 presents the recall of event detection under varied
error bound " (Section 3.4). Fig. 7a compares the recall of
the aggregation based on LR adopted in AGG approach
with the simple average value-based one. For the aggrega-
tion based on LR, the error bound refers to the user-
defined error bound " introduced in Section 3.4. For the
aggregation based on average values, the error bound
refers to the difference ratio between two OP. As the figure
shows, the aggregation based on LR provides much higher
percentage of recall, overcoming the aggregation based on
average values by more than 20 percent. The best recall
achievable in the average value-based aggregation is
78 percent when the error bound is set to be 0.15, while
the best recall achievable in the LR-based aggregation is
nearly 100 percent. This is mainly because the average
value-based aggregation does not integrate the volume
factor of OP in the aggregation process. It simply compares
the average value of two different OP and accepts the

merge if they have similar values no matter what their
sizes are. Thus, the average value-based aggregation is
vulnerable to the noises of the environment data.

Fig. 7b compares the recall in different sensor place-
ments. “Grid” placement refers to the regular placement of
sensors into 3D grids, which is the ideal case assumed in this
paper. “Perturbed Grid” places sensors into grids but with a
small random perturbation on their placement. It represents
the most possible situation of manually placing sensors in
the practical environment. “Random” placement deploys
sensors in a purely random way. For the “random”
placement, as the sensors might be deployed unbalanced,
the network might be disconnected, so we place necessary
relay nodes to connect the entire network. As Fig. 7b shows,
the “Grid” placement achieves the highest recall rate, while
the “Perturbed Grid” achieves slightly lower recall rate. The
“Random” placement suffers from the highly unbalanced
sensor samplings and, thus, has the lowest recall rate.
Nevertheless, it achieves up to 70 percent detection recall
when the error bound is properly set. We believe the
“Perturbed Grid” placement of sensors gives the most
representative results for the practical situations.

In Fig. 7c, we use DIR AGG to represent the method that
crudely does data map aggregation and aggregates the
data map in every sampling period. We use UPD AGG to
represent the refined method that adopts the technique of
data map updating described in Section 3.5. As the tolerable
error bound is enlarged, the event detection recall in both
methods varies slightly, while both strategies achieve
perfect detection recall when the error bound is set in the
range of [0.15, 0.2]. This shows that the proposed incre-
mental updating technique does not significantly degrade
the event detection accuracy.

Fig. 8 compares the network traffic overhead incurred by
the original direct aggregation approach DIR AGG and the
incremental update approach UPD AGG (see Section 3.5).

Fig. 8a plots the network traffic overhead for both
methods under different error bounds. The traffic overhead
decreases as the error bound " is enlarged, but much more
slowly when " is large. A combined view of this figure and
Fig. 7c suggests an optimal choice of the error bound " at
about 0.2, which provides perfect detection recall with
comprehensive traffic cost. We adopt this optimal setting of
" for later experiments. Compared with the DIR AGG, the
UPD AGG achieves almost the same detection recall but
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aggregation versus LR. (b) The detection recall of different sensor placement: grid, perturbed grid, and random. (c) The detection recall of direct

aggregation versus incremental update of the data map.
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with 50 percent less traffic cost than with DIR AGG for all
error bound settings.

Fig. 8b shows the traffic saving in UPD AGG method for
various event frequencies, from which we observe that
a lower event frequency leads to a larger percentage of
saving. That is because the data map updating technique
adopted in UPD AGG method reduces more unnecessary
traffic overhead when events are rare and historic data are
aggressively utilized.

Fig. 8c further shows the traffic saving in UPD AGG
method under various data dynamics. We group our data set
into three different categories: low data dynamics, medium
data dynamics, and high data dynamics. The three different
groups account for 73 percent, 21 percent, and 6 percent of
the data set separately. From the figure, we observe that the
UPD AGG method saves more than 80 percent network
traffic under low data dynamics and 54 percent network
traffic under medium data dynamics. The two situations
account for 94 percent of the whole data set.

5.2.2 Comparative Study

We broaden the comparative study among the three
different approaches AGG, SAT, and SAM under various
parameter settings. Fig. 9 plots the event detection recall of
the three approaches. In all cases, our AGG approach
achieves the best performance.

As shown in Fig. 9a, as the link loss rate increases, the
recall of SAT rapidly drops below 40 percent and tends to 0.
SAM approach also bears a bad detection recall. SAM
suffers data loss from link loss as well as packet drops and
collisions due to the heavy traffic flows. Even when the link

loss rate is set to 0, a large amount of data still get lost and
lead to a much lower recall of 87 percent, while the other
two approaches both achieve nearly 100 percent recall. Our
AGG approach demonstrates good tolerability to the net-
work quality. The recall is kept above 60 percent even in a
lossy network with up to 40 percent link loss rate.

In Fig. 9b, the network diameter is enlarged to
investigate the scalability of three approaches. Again, the
SAT approach leads to unacceptable detection recall rate.
Our AGG approach keeps high recall rate all along, while
the recall of SAM approach drops linearly as the network
diameter increases. This is largely because a larger network
generates much more network traffics in the SAM ap-
proach, leading to more packet drops and collisions.

Fig. 9c plots the detection recall of the three approaches in
cases with different event frequencies. We observe that the
parameter of event frequency hardly influences the recall
rate of the three approaches. All three approaches provide
relatively stable recall rates when event frequency is varied,
and our AGG approach outperforms the other two. The
incremental update in AGG approach provides slightly
improved performance when the event frequency decreases.

Fig. 10 plots the network traffic overhead in three
approaches. In Fig. 10a, with the increase of the link loss
rate, the traffic overhead of all three approaches decreases
because of the loss of packets. The SAM approach experi-
ences a faster decrease on the traffic overhead, but the total
amount is much larger than the SAT and AGG approaches.
The traffic overhead of the SAT approach has a skip
decrease when the link loss rate changes from 0 percent to
10 percent; however, from Fig. 9a, we know that this is
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because most of the useful information gets lost due to the
packet loss. Thus, although SAT has the lowest traffic
overhead, it provides nearly unacceptable event detection
recall. Fig. 10b shows how network traffic overhead grows
as the network size increases. We note that while the SAT
and AGG approaches maintain comparatively low traffic
overhead against the increase of network diameter, the SAM
approach has a dramatic increase of traffic overhead, which
greatly constrains its scalability. Fig. 10c shows how the
parameter of event frequency affects the three approaches.
While the event frequency has little influence on SAM and
SAT approaches, the traffic overhead of our AGG approach
is reduced as the event frequency decreases, benefiting from
the data map updating technique. According to our field
investigation in the coal mine, generally, the event fre-
quency in the real world remains low, benefiting the
application of our AGG approach.

To summarize, among the three possible approaches, the
SAT approach introduces the least traffic overhead but
provides the worst, totally unacceptable event detection
accuracy; the SAM approach provides somewhat tolerable
event detection accuracy but with the most traffic overhead
and the worst scalability; our AGG approach provides the
best event detection performance with relatively small
traffic overhead. We also achieve the best scalability to the
network size and tolerability to the network quality in the
AGG approach.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a nonthreshold-based
approach for complex event detection in 3D environment
monitoring applications. Other than threshold-based ap-
proaches, we have proposed event feature patterns to
specify complex events and developed a pattern-based
event detection method on the obtained 3D gradient data
map. We employ multipath routing architectures to provide
robust data delivery and perform in-network aggregation
on it to efficiently construct the data map. Space OP model
is proposed to describe the environment data distributions.
Partial data maps are aggregated by merging OP regions
with similar environmental data. The incremental update
for the gradient data map explores the usability of historic
data while the environment is stable with low frequency of
events and further reduces unnecessary data delivery. Our
experimental results show the performance gain of our

energy-efficient techniques. Moreover, the comparative
study with two alternative approaches exhibits that our
approach achieves great event detection accuracy with
small network traffic overhead.

The future work includes implementing a working
system in real-world environment. To carry on, pattern
recognition on the obtained gradient data maps with
machine learning techniques on historic data samples may
provide more efficient detection methods, which will also
be included in our future work.
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