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Abstract—By processing a large dataset composed of daily
trajectories of thousands of students in Singapore, we find
that, instead of simply picking up students from their homes,
an optimal school shuttle planning system needs to learn the
real transportation usage and plan across all potential pickup
locations for every student to generate need-satisfying routes.
It is challenging, however, to perform route planning over a
large number of students each having multiple potential pickup
locations. We develop a graph-based data structure that embeds
potential pickup locations of all students with the awareness
of real-world constraints and existing public transits. Based on
the graph structure, we prove that the optimal last-mile school
shuttle planning problem is NP-hard and thereafter design a
Tabu-based expansion algorithm to solve the problem, which
strikes at a proper balance between the savings of students’
commute time and the total cost of operating the shuttle buses.
Extensive experiments with large-scale real-world crowdsensed
trajectory data demonstrate that our last-mile school shuttles
can save the traveling time for most students by over 20% and
the savings can be up to 65% for 10% of the students.

Index Terms—Last-mile shuttle planning, crowdsensing
systems, trajectory processing, graph-based data structure.

I. INTRODUCTION

AST-MILE shuttles have become critical for urban trans-

portation in modern cities, since they complete last legs of
individual trips by getting people from transportation networks
to their final destinations (usually where public transportation
does not reach) [22]. Intuitively, providing such services
to students would be both beneficial and low-cost due to
their common destinations (i.e., the schools) and commuting
hours. However, planning a need-satisfying last-mile school
shuttle service involves two key tasks, i.e., estimating transport
demands (locations where users may need the shuttles) and
optimizing bus routes according to the estimated demands [2].

Manuscript received January 22, 2019; revised June 20, 2019 and October 9,
2019; accepted November 18, 2019. This work was supported in part by
Singapore MOE Tier 2 under Grant MOE2016-T2-2-023, in part by NTU CoE
under Grant M4081879, and in part by Alibaba-NTU JRI under Grant AN-GC-
2018-006. The Associate Editor for this article was P. Wang. (Corresponding
author: Panrong Tong.)

P. Tong and M. Li are with the Interdisciplinary Graduate School and the
School of Computer Science and Engineering, Nanyang Technological Univer-
sity, Singapore 639798 (e-mail: tong0091@e.ntu.edu.sg; limo@ntu.edu.sg).

W. Du is with the Department of Computer Science and Engi-
neering, University of California, Merced, CA 95343, USA (e-mail:
wdu3 @ucmerced.edu).

J. Huang is with Alibaba DAMO Academy, Hangzhou 310030, China,
and also with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore 639798 (e-mail: jiangiang.hjq@
alibaba-inc.com).

W. Wang and Z. Qin are with the Institute of High Performance Computing,
Singapore (e-mail: wangweq@ihpc.a-star.edu.sg; qinz@ihpc.a-star.edu.sg).

Digital Object Identifier 10.1109/TITS.2019.2956786

Existing practices of school shuttle planning heavily
relies on offline surveys or empirical experience to estimate
transport demands, which may not be accurate and is
often inefficient. They either completely ignore the public
transportation by assuming all the transport demands start
from students’ homes(e.g., the door-to-door school shuttles,
which pick up students directly from their homes), or have
simplified approximation on how students utilizing the public
transportation (e.g., the metro school shuttles, which assumes
most of the students take metro to one or few major stations
nearest to their school and picks up them from the one
or few stations). Some recent data-driven studies learn the
true transport demands from personal mobility data (e.g.,
cellular footprints or taxi trips) [5], [6], [19], [38]. With
that, they formulate the route planning problem into classic
optimization problems such as vehicle routing problem (VRP)
[15]. For example, Feeder [38], a most recent work, plans
a last-mile shuttle route that takes commuters from a metro
station to their destinations. With the cellular data of mobile
users, Feeder learns the rough locations of their destinations,
clusters them as bus stops, and plans routes accordingly.

However, the above data-driven approaches are limited by
the granularity of their observations and thus often over-
simplify the true transport demands for the following two
reasons. First, previous works [5], [6], [19], [38] implicitly
assume only one potential pickup location for each individual,
which is often not the case in practice. Given the multiple
choices of transportation (e.g., bus, metro, walk) and their
combinations, potential pickup locations of a student could
include the home, the entries and exits of used public tran-
sits (e.g., bus stops, metro stations) and all the road seg-
ments walked. For example, Figure 1a shows a representative
home-school trip that contains 23 potential pickup locations,
including home (point A), metro stops (point B and C), bus
stops (point D and E) and all the road segments traversed
by walk (dash lines). According to our observation from
the crowdsensed trajectory data, most students have 6 to
52 potential pickup locations, as summarized in Figure 1b.
Second, previous works [5], [6], [19], [38] are based on simple
proximity model which is unaware of real-world constraints
and existing public transits. For example, simply clustering
geographically proximate transport demands and assigning
one bus stop to serve all of them has been widely used in
previous works, which however is not accurate because walk-
ing between geographically proximate locations may incur
high cost due to road constraints (e.g., crossing a street
but from a faraway pedestrian flyover). Such unawareness
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Fig. 1. Multiple pickup locations for each student.

of constraints or conveniences leads to suboptimal bus route
planning.

This paper presents last-mile school shuttle planning system
that considers multiple pickup locations for each student with
real-world constraints and existing public transits. We study
daily trajectories crowdsensed from 2809 students through a
nation-wide experiment of Singapore. The trajectories contain
students’ periodical locations and activity updates when they
commute between home and school. The granularity and scale
of our data allow us to finer profile their trips, fully exam-
ine the real transportation usage and generate more truthful
demands to the shuttle service. Data samples in our trajectories
are usually subject to a large location drift and may suffer
from sparsity in some regions (see in Section II-B). We thus
propose a trip profiling scheme to infer precise traveling paths
and transportation modes, and thus extract potential pickup
locations for all students.

With multiple pickup locations for every student, we gain
an extra dimension of optimization and can thus derive better
shuttle route plans. However, it is computational infeasible to
extend existing VRP based algorithms to process such scale
of demands. For 500 students and each having 20 potential
pickup locations, blindly applying existing algorithms would
result in the steps of selecting one possible pickup location
for each student, and then running the algorithms once for
each one out of 20°% possible combinations. Thus, this
paper further proposes a novel graph-based data structure that
embeds all transport demands on the road network. Such a
graph based data structure aggregates similar demands from
different students and provides a set of operators that facilitate
route plan and update.

With the proposed data structure, we thus develop a cus-
tomized Tabu expansion algorithm to find a proper subset of
nodes in the graph as bus stops and lay the bus routes. The
proposed solution is able to balance the commute time saved
for all students and the operating cost of the shuttle buses.

We evaluate the performance of our last-mile school shuttle
routes with the trajectories of 2809 students from 7 schools in
Singapore. According to the evaluation results, our solution is
able to save the commute time of most students by over 20%,
where 10% of the students can save up to 65% while 75% of
the students can save at least over 8%.

In summary, this paper makes the following contributions:
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Fig. 2. NSE trajectories spatial distribution.

o This is the first paper, to the best of our knowledge,
to demonstrate the necessity of considering multiple
pickup locations of each individual for more efficient
shuttle bus planning.

o This paper develops a holistic last-mile bus planning
system with a set of techniques, including trip profiling
from trajectory data, a novel graph-based data structure
for embedding travel demands, and a graph-based Tabu
expansion algorithm.

o Extensive experiments are performed on real-world
crowdsensed data to evaluate the proposed system and
compare with benchmark solutions.

II. MOTIVATION

We introduce the crowdsensing platform used in this study
and demonstrate opportunities as well as challenges to utilize
the crowdsensed data for last-mile school bus planning.

A. The National Science Experiment (NSE)

NSE [23] is a nation-wide experiment of Singapore that
mobilizes the government and social forces to experiment a
large-scale mobile crowdsensing system. A special designed
mobile device is developed and assigned to a student during
school days [32]. The device is equipped with a variety of
sensors to measure the motion and environmental parameters,
including three dimensional accelerations, light, temperature,
noise levels, air pressure, etc. The data are sensed periodically
and uploaded to the server opportunistically whenever the
device connects to the wireless@SG WiFi hotspots (15,0004
free hotspots covering major public areas in Singapore [36],
sponsored by SingTel [33] for free). In addition, the device
also scans and sends back the signal strengths (RSSIs) from
nearby WiFi hotspots and a third-party localization service
from Skyhook [34] is invoked to determine the geolocations
from its geo-WiFi database. The average time interval between
geolocation updates is 15 seconds. Figure 2 visualizes the
spatial distribution of all NSE samples (188,100,399 samples
in total in one semester).

In this study, we primarily make use of the geolocations
of each device which constitute a mobility trajectory of a
specific student. The trajectory data have the following two
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Fig. 3. Imperfection of NSE data.

distinctive advantages compared with traditional survey based
investigation or origin-destination based data profiling:

o Data representativeness. NSE trajectories consists of
independently selected students from each participating
school. The data group is representative to plan the
last-mile school shuttles for each school.

« Data richness. NSE trajectories offer detailed trip profiles
of individuals - the intermediate location updates during
the trip as well as the time taken between those loca-
tions. With detailed understanding of transport choices
of individuals, we are able to cross study the last-mile
shuttle planning together with existing public transporta-
tion alternatives.

B. Challenges

Previous works [5], [6], [19], [38] are subject to inaccurate
approximation on how and where the students may take a
school shuttle. The crowdsensed NSE trajectory data brings
opportunities to extract all potential pickup locations for each
student. Such consideration factors in the students’ route
preferences and choices of available public transits, so the
corresponding shuttle planning is based on user preference
and at the same time offers higher freedom of optimization.
Nevertheless, special challenges need to be carefully addressed
to develop an effective and efficient solution.

Challenge 1 (Trajectory Profiling From Imperfect Trajec-
tories): To extract potential pickup locations for each stu-
dent, we need a detailed profile including precise traveling
path and transportation modes on different path segments.
However, NSE data are limited in localization accuracy. The
geolocations of NSE data are estimated by WiFi hotspot based
localization, which is not released by the third-party company
[34]. The localization error is inevitable and often higher than
those of GPS based approaches. Figure 3b shows how the
derived locations (denoted as white dots) deviate from the
real traveling path (denoted in red lines). According to our
assessment, the NSE localization error ranges from a few
meters to hundreds of meters with an average of 120 meters.
At the same time, the locations are not evenly updated because
there are inadequate number of audible WiFi hotspots in
certain areas. As a result, the trajectory data have uneven
location granularity, as Figure 3c suggests.

It has been known difficult to accurately map a sequence
of coarse locations to a trajectory on the road map [21].
It is also difficult to accurately detect the transport mode
with a trajectory of low resolution location samples [37].

Trajectory Profiling Graph Construction Graph-based Route Planning
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Fig. 4. System overview.

In this paper, we develop a novel approach to generate a
representative travel profile for each student. It combines the
NSE trajectory data and public transits information via Google
Directions Service [16].

Challenge 2 (Embedding All Pickup Locations in an Effi-
cient Data Structure): Previous works implicitly assume one
specific pickup location for each student, which cannot be
extended to handle the problem that each student having
multiple potential pickup locations. Blindly applying existing
algorithms would result in unacceptable computational cost,
e.g., a problem with 500 students and each having 20 potential
pickup points incurs the steps of selecting one possible pickup
location for each student, and then running the algorithms once
for each one out of 20°°° possible combinations. In this paper,
we propose a novel graph-based data structure that embeds all
potential pickup locations of different students into the road
networks. Similar transport demands of different students can
thus be aggregated, and representative pickup locations can be
derived to facilitate bus route optimization.

Challenge 3 (Computationally Feasible Bus Route Plan-
ning): Even with the aggregated transport demands, brute force
searching for the best bus route is still infeasible, which we
prove being NP-hard (in Section III-C). We extend the idea
of Tabu search algorithm [14] - a metaheuristic originally
designed for guiding a search to overcome local optimality
in combinatorial optimization problems. The effectiveness of a
tabu-based algorithm requires an application-specific design of
its core components, however there is no graph-related design
of tabu components. With the observation of convergent mobil-
ity pattern of students, we propose a tabu-based expansion
algorithm which defines tailored tabu components under the
graph structure and can efficient yield close to optimal bus
routes.

III. DESIGN

We design a holistic system for last-mile school shuttle
planning to tackle the above three challenges. Figure 4 depicts
the architecture of proposed system which consists of three key
components, i.e., trajectory profiling, graph construction and
graph-based route planning. First, trajectory profiling learns
real transportation usage and extract potential pickup locations
for every student, which offers an extra dimension of optimiza-
tion and more need-satisfying bus routes can thus be derived.
To handle extremely large search space brought by massive
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potential pickup locations, graph construction constructs a
graph-based data structure that aggregates similar demands
with the awareness of road networks; Finally, graph-based
routing planning efficiently plans the routes that are able to
balance the commute time saved for all students and the costs
of the shuttles.

A. Trajectory Profiling

Potential pickup locations of a student include the home,
the entries and exits of used public transits (e.g., bus stops,
metro stations) and all the road segments walked. To extract
those from NSE trajectories, we need to infer the precise
traveling paths and transportation modes on different path
segments.

Conventional methods solve the above problem by combin-
ing travel mode detection [37] and map matching [20], [21].
To infer the sample-wise travel modes, a classification model
is normally trained from labeled historical data in terms of
mobility features (e.g., distance, speed and acceleration). Many
classification models can be used, such as Decision Trees,
Random Forest, Bayesian Network, Support Vector Machine
and Multilayer Perceptron. By feeding a target trajectory into
the trained model, samples lying in the interchange of different
travel modes are selected. Finally, map matching replaces the
identified samples with corresponding points projected to the
closest road segments.

However, according to our study, the above process per-
forms poorly due to the two characteristics of NSE data (as
suggested in Figure 3). First, most travel mode detection
algorithms require consistent accuracy of inferred mobility
features [37]. However, NSE data only provide coarse-grained
and inconsistent mobility information. For example, due to the
large localization error, the distance between two consecutive
samples can be as large as several hundred meters, which
results in overestimated speed. Large localization drifts also
lead to inaccurate approximations for real locations. Second,
due to the data sparsity problem, we cannot exploit potential
pickup locations in some areas without enough samples.

We propose a two-step algorithm for trajectory profiling:
1) trip identification first detects the origin (home) and des-
tination (school) of each student from NSE data; 2) trip
profiling then infers precise traveling paths, transportation
modes and thus potential pickup locations by combining the
NSE trajectories and public transits information via Google
Direction Service [16].

Trip Identification: A trip refers to a commute trajectory
between home and school. Raw NSE trajectories are highly
skewed: a small number of samples (2.1%) contains useful
trip information, but the vast majority of samples are “stay”
points, where the students stay for a long time (like at homes or
schools). These “stay” points provide little travel information,
but lead to high computational overhead and false positives
when extracting potential pickup locations. Trip identification
clusters nearby ‘“stay” points as one representative point so
that valid trips are consisted of informative points.

Conventional algorithms normally detect “stay” points by
clustering all points with either distance [39] smaller or
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TABLE I

SUCCESS RATE OF REAL ROUTE EXTRACTION BY GOOGLE DIRECTIONS
SERVICE. THE SUCCESS RATE OF THE GOOGLE PATH SET INDICATES
THE PROBABILITY THAT THE SET CONTAINS THE REAL PATH
TRAVERSED BY A STUDENT. THE SUCCESS RATE OF THE
HEURISTIC SELECTION METHODS INDICATES THE
LIKELIHOOD THAT THE METHOD
OUTPUTS THE REAL PATH

Trajectory type ~ Walking Public Transits Driving Overall

Google route set 91% 100% 89% 93%
Distance 0% 0% 44% 15%

Heuristics Duration  25% 0% 33% 19%
Walking 69% 50% 0% 40%

Transfers  69% 25% 0% 31%

density [11] larger than a threshold as one point. They do not
perform well in processing NSE trajectories, due to 1) SENSg
sensors use the received signal strengths from city-wide Wi-Fi
access points to determine the device locations. The local-
ization error is large and varies dynamically in space and
time. It is hard to decide a global distance threshold as ran-
dom noises could result in many false-positive identifications.
2) SENSg sensors automatically enter the sleep mode after
15-minute inactivity of movement. Some stay points may not
have enough samples to be clustered by the density threshold
even though the device did remain there for a long time.

Therefore, we adopt a time-weighted density clustering
algorithm. Different from conventional algorithms, we use
both density and time duration as the metric to identify “stay”
points. Specifically, points for each student are classified as
core points, reachable points or outliers based on the following
criteria: 1) A point p is a core point if the total duration
of nearby points (within 200 meters) exceeds an hour. Those
nearby points are said to be directly reachable from point p.
2) A point g is reachable from p if there is a path pl, ..., pn
with pl = p and pn = ¢, where each pi + 1 is directly
reachable from pi. 3) All points that are not reachable from
any other points are outliers. Stay point clusters are formed
by core points and all points that are reachable from them.
We use the centroid locations to represent each cluster and
identify valid trips.

2) Trip Profiling. With the home and school locations
obtained from trip identification, we use the Google Direc-
tions Service [16] to generate all possible paths for each
home-school pair. The service returns several well-segmented
paths. Each path contains travel mode (i.e. walking, driving
and taking public transits), precise intermediate locations and
the estimated trip distance and duration. For each home-school
pair, 9 paths can be suggested in general. The set of all
suggested paths contains almost all reasonable choices, and
usually includes the real path traversed by students. We man-
ually label the real paths of 20 randomly selected students
and their travel modes along the paths. The results in Table I
indicate that 93% Google sets contain the real path and it
works perfectly for students taking public transportation.

Next, we find the real path from the Google set. Google rec-
ommends the best route by 4 different heuristics, i.e., the route
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Fig. 5. Routes suggested by Google Directions Service.

with the shortest distance, minimum duration, the shortest
walking distance, or few transit transfers. As shown in Table I,
none of these heuristics can match the real routes traversed by
students with a reasonable accuracy.

Therefore, for each NSE trajectory, we find its most similar
path from the Google set by a hierarchical rule-based classifier
with following features: 1) Path shape. We implement a fast
approximation Dynamic Time Warping (DTW) algorithm [29]
to measure the similarity between two paths. 2) Time duration.
It is for situations when Google paths with different travel
modes have similar shapes. 3) Distance. For short trips,
the driving and walking Google paths tend to have similar
shape and commute time. In that case, the walking path is of
higher probability.

In this way, we infer the precise paths that are well seg-
mented by transportation modes and thus extract all potential
pickup locations for each student.

B. Graph Construction

We describe three key properties of effective last-mile bus

design and how previous works fail to address them.

o The capability of structuring multiple potential pickup
locations for each student. Previous works oversimplify
students’ demands and model each student as a single
point of VRP. When each student has multiple pickup
locations, such structure cannot select the best pickup
location for each student without calculating best routes
for all possible combinations (500 students each having
20 potential pickup points will result in 20°%° combi-
nations). Worse, changes in even one student’s demands
require recalculating all those combinations. Thus, a good
data structure should be able to simultaneously represent
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Ttraverse b
Profiles:
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Tlo ] time
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Fig. 6. The construction of the route graph.

all potential pickup locations, aggregate similar ones and
adapt to small changes.

o The awareness of road networks. Previous works
employ simple proximity models such as Euclidean-based
or grid-based model. Those models incur inaccurate dis-
tance estimations as geographically proximate locations
could be far by walk due to road constraints(e.g. high-
ways, one-way streets). The awareness of road networks
imposes those constraints on shuttle bus design.

« The awareness of existing transits. Previous works aim
at standalone services. The ignorance of existing public
transits results in high-cost or replicated services. The
awareness of existing transits ensures practical shuttle bus
design.

To address above problems, we proposed a new graph-based
data structure named the route graph, which can be built via
the following three stages.

Stage 1 (Generate a Road Graph From the Road Networks):
As shown in Figure 6a, a road graph G,oqq = (V, E) is a
directed graph built from road networks, where a vertex set
V represents all road segments and an edge set E denotes the
linkage and physical direction between road segments. We first
extract information about each road segment (i.e., locations
of origin and destination, name, length, category, accessibility
for vehicles) from OpenStreetMap [24], which is later used
to derive the linkage and walking distance between adjacent
road segments. We store these information as the attributes
of Structure Vertex and Edge (summarized in Table II). For
each road segment v; € V, attribute “student_set” stores
students that can get on our bus at »; and is initialized as
an empty list. For each edge ¢; € E, we set the edge type as
“road” indicating physical connectivity in road networks and
the “traverse_time” is estimated by the walking time from one
road segment to the other. In this way, the data structure is
aware of road networks.

Stage 2 (Build a Route Graph With Graph Annotation): A
route graph G,oure = (V, E, D) is built by annotating a road
graph Groqq With students’ demands, where three types of
information are embedded - the school vertex, potential pickup
locations and the usage of public transits. The school vertex
is learnt from all input profiles and annotated by setting the
vertex’s attribute fype to “School”. Potential pickup locations
of each student are sequentially annotated to corresponding
vertices. For each pickup location, the student ID will be added
to the attribute “student_set” of the corresponding vertex.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
Outgoing @ ' " @‘
neighbors ™ {Sl iprcﬂle.} N
V1, V3 T A ViTVaT Vs ‘-‘
OSSO
Incoming Inverted
neighbors index:
@ V1,Vg, Vs {S1: [va,val}
(a) Neighbors of va (b) Insert the profile of S1
Fig. 7. Examples of supported operators in proposed data structure Groure-
TABLE 11
SKELETON OF THE ROUTE GRAPH
Structure Attributes Description
id Vertex 1D
type Either “road” or “’school”
Vertex .
student_set Associated students
shortest_time Shortest time to the school
id Edge ID
type Either “road” or “transit”
Edge from_v Origin vertex 1D
to_v Destination vertex 1D
traverse_time Time needed to traverse through
Data inverted_index e.g. {Student 1: [v1, v2, v3]}

tabu_list tabu vertices

During this process, if consecutive pickup locations are not
connected by a direct edge, the usage of existing transits is
identified (as shown in Figure 6b). A new edge will be added
to Groad, Where the fype is “transit” and traverse_time is
estimated from the duration between corresponding pickup
locations. To facilitate an efficient search of a student on
Groute» We build an inverted index that maps students to asso-
ciated vertices. The inverted index is a dictionary organized
by student ID and stored in class Data as shown in Table II.
Figure 6b shows the annotation result of three student profiles.

Stage 3 (Estimate the Time to the School Vertex): After
graph annotation, Goyre 1S now aware of both the road net-
works and the existing transits. We thus estimate the shortest
time from each vertex to the school vertex by Dijkstra algo-
rithm, which is then stored in vertex attribute shortest_time.

Figure 8 visualizes the route graph we built for the entire
city of Singapore, which consists of 384653 vertices and
597446 edges. The route graph sketches the contours of roads
in Singapore.

The proposed Gouze supports the following operators.

Neighbor() returns one-hop neighbors of a given vertex,
where the users can specify to return incoming neighbors, out-
going neighbors, or both. This operator has O(1) complexity
as we maintain adjacency lists for each vertex. Figure 7a shows
both incoming and outgoing neighbors of vertex v5.

Insert() inserts a student’s ID into a specific vertex’s “stu-
dent_set” (duplicates can automatically be handled by set) and
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updates the inverted index accordingly. Insert() can be easily
extended to process demands. Figure 7b shows the example
of inserting S1’s demands by sequentially calling Insert() on
its potential pickup locations. In the meantime, a new record
indexed by S1 is added to the inverted index.

Remove() incurs a reversed process and is typically used
for ensuring one student can only be picked up at one vertex.
Same as Insert(), Remove() works directly on vertices and thus
is of O(1) complexity.

Locate() takes a student’s ID as input and returns all
the associated vertices by checking the inverted index. This
operator is of O(1) complexity as we maintain an inverted
index in the route graph.

Estimate() takes a shuttle route as input and estimates the
ride time to school for stops in the bus route. The ride time
is estimated by a shortest path that connects all bus stops
and thus is of O(V?) complexity. This operator is efficient
as the number of related vertices between two stops is small.
Figure 7c shows an example output of Estimate().

Allocate() estimates the best vertex for each student to
get on the bus given a certain bus route. We make two
reasonable assumptions, i.e., students will be willing to get on
the shuttle as long as the total commute time of themselves
can be reduced and they will always pick the bus stop
that results in highest commute time reduction. After calling
Allocate(), vertices in shuttle routes will sequentially check
their “student_set”. For each student in a “student_set”, all
traversed vertices will be retrieved by calling Locate(). The
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best vertex is the bus stop that results in the lowest commute
time considering all the traversed vertices and the ride time.
After that, other potential pickup locations of the student will
be deleted from corresponding vertices by calling Remove().
This operator is of O(nm) complexity, where n is the number
of bus stops and m is the size of “student_set”. The operator
is efficient as m and n are usually small compared with the
number of vertices. Figure 7d gives an allocation on the route
graph of Figure 6b: the student that origins from v chooses
to get on the bus at vy; the student origins from v4 will get
on the bus at v4; and the student that origins from vs sticks
to his/her original path.

Score() calculates the beneficial score of an allocation. In
our route planning, we aim at routes that strike a proper
balance between route gains and operating costs. Therefore,
we model these two objectives (i.e., saving more time for
students vs. having shorter ride time) into the beneficial score
¢. The basic mechanism behind is penalizing route gains
(i.e., time_saving) with operating costs (i.e., ride_time). But
instead of a reciprocal, we use an exponential function of
ride_time to offer decision makers the flexibility to adjust
their preference between the two objectives.

ride_time

¢ (routes) = time_saving * a O<a<l1l (1)

where a is a user-defined tuning parameter to set the prefer-
ence on the gain and cost according to a specific application’s
sensitivity towards the operating cost. A larger « indicates
that more preferences are given to the reduction of students’
commute time (e.g., « = 1 means that we do not care about the
system cost), while a smaller a puts emphasis on the system
cost. Given an allocation, the overall time saving can be easily
calculated via the number of students who remain in bus route
vertices and the bus ride time can be estimated by Estimate().
Thus, this operator is of O(n) complexity, where n is the
number of bus stops. For the allocation depicted in Figure 7d,
Score() returns ¢ ({v4, v2}) = (1% (20 —6) + 1% (10— 3)) xa®.

A practical Issue in Graph Annotation: The Vertex Ambigu-
ity: During the graph annotation, we aim to find a best matched
vertex v for each potential pickup location p in trip profiles.
The ambiguity stems from two facts: (1) pickup locations are
far less in granularity compared with vertices of the road
graph. (2) pickup locations returned by Google Directions
Service [16] are not always close to its corresponding vertices
of the road graph generated by OpenStreetMap [24].

In our study, we observed that location proximity between
v and p is not enough and sometimes misleading, especially
when it comes to vertex-dense regions such as intersections,
junctions, and overpasses. The key observation here is that
Google Directions Service [16] usually reports turning points
as they define the shapes of trajectories. Such a characteristic
makes the graph distance of the correct vertex sequence the
shortest. Thus, we propose finding the best match of each
p via anchor vertices that result the shortest path among all
candidates. For each pickup location, we first extract vertices
within a certain distance as its candidate set. Then the anchor
vertices are selected by calculating the shortest path among the
combination of candidates from different sets, where a Viterbi
algorithm is applied to speed up the calculation. Finally,

\'A School V3

Fig. 9. The shortsightedness of greedy expansion.

we complete the path between consecutive anchor vertices
with corresponding shortest path and the best match of each
p is the nearest vertex along the completed path.

C. Graph-Based Route Planning

With the proposed graph structure, we are now able to
efficiently evaluate a specific bus route. However, given that
enormous possible bus routes exist in city-wide route graph,
brute force searching is still infeasible.

In this subsection, we first define the graph-based route
planning problem and prove its NP-hardness. Then we propose
a computationally feasible algorithm to ensure that we find a
good route plan in limited time.

1) Problem Definition: Given the route graph Gy =
(V,E,D) with |V| = v, expected number of routes K,
a ride time distance b, we want to find a sequence of vertices
V' C V, which maximizes the total beneficial score ¢ and
fulfills two constraints: 1) V' forms exact K routes, 2) the ride
distance of each route is no more than budget b. Mathemat-
ically, we formulate this problem as an integer programming
problem, where we use binary variables x;; equal to 1 if and
only if students in vertex j is served by service route i.

K V
max}ivrlnize (N = (Z Zgijxij) *a®

i=1 j=1

1%
subject to chx,-j <b (i=1,...,K)
j=l1

K
injfl (G=1,...,V)
i=1

xije{O,l} (i=1,...,K, j=1,...,V)

where C stands for the total ride time of all routes, which
equals Z,‘K:1(Z}/:1 cjxij), gij and ¢;; denotes the saved time
and the ride time respectively. The first constraint bounds the
ride time of each route under budget b; the second constraint
ensures that the students in one road segment are served by
only one bus.

2) NP-Hardness: Finding K budget constrained last-mile
bus routes with maximal beneficial score is NP-hard. We detail
our prove in Appendix.

3) Greedy Expansion Algorithm: We propose a greedy
expansion algorithm to deal with the NP-hardness and plan the
bus routes on the graph. It is based on an important mobility
pattern of students, i.e., they eventually converge to the school
from their homes scattered in the city. We initialize a solution
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Algorithm 1 Tabu-Based Expansion

Input: G,oure, k
Output: route*

1 route < Initialization(k)

2 while not Termination do

3 | neighbors < ¢

4 | For r € G_route.neighbor(route) do
5 if r not in G_route.tabu_list then
6 | neighbors < r

7 end

8 | End

9 | candidates <— Evaluate(neighbors)
10 | if candidates.best.score > route.score then
11 | route < candidates.best

12 | end

13 end

14 Return route

15 Function Evaluate(neighbors)

16 | candidates < ¢

17 | For r € neighbors do

18 allocation <— G_route.allocate(r)
19 c.score < G_route.score(allocation)
20 coroute <—r

21 if new_score < old_score then
22 G_route.tabu_list < r

23 continue

24 end

25 candidates <« ¢

26 | End

27 | return candidates

at the school and progressively improve the solution by adding
neighbor vertices as bus stops. In each iteration, the algo-
rithm always chooses the neighbor vertex with the largest
improvement on the beneficial score. If adding the neighbor
vertices offers no improvement to current solution, the search
terminates. This heuristic is computationally efficient, but it
often results in a local optimum due to its greedy nature.
Figure 9 illustrates an example of this problem. For sim-
plicity, we set the ride time of each edge equals 2 minutes,
and tuning parameter ¢ = 0.95 in Equation 1. The search
heuristic starts at the school and chooses v as ¢({v1}) =
(50%8)%0.95% = 361 is larger than ¢ ({v3}) = (49%8)%0.95% =
354. When the greedy search continues to expand from oy,
it terminates because expanding to its only neighbor vy incurs
a decrease in the beneficial score (¢ ({v2,v1}) = (50 % 8) *
0.95* = 319). Such shortsightedness stops the algorithm from
searching further and finding the global optimal solution by
including V3 (¢ ({03, 02, 01}) = (50%8449%4)%0.956 = 438).
4) Tabu-Based Expansion Algorithm: We propose a
tabu-based expansion algorithm that integrates the idea of
tabu search [14] to explore the solution space beyond local
optimality. Generally, tabu search starts with an initial route
and searches for the best solution in a defined neighbor-
hood of current solution. It then updates current solution by
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the solutions in the neighborhood and repeats the process
until a certain termination condition is satisfied. It allows
non-improving moves, but maintains a tabu list of forbidden
moves to prevent cycling back to solutions that have already
been visited. To leverage tabu search to perform route planning
on our graph, we develop a tabu-based expansion algorithm
that includes application-specific design, including the tabu
list, neighbors and termination conditions. As depicted in
Algorithm 1, our algorithm has the following stages:

Initialization. The algorithm initializes a subgraph, k initial
routes and an empty Tabu list. The subgraph is created with
vertices that have a smaller “shortest_time” in respect to
budget b. This reduces search space and ensures that all the
planned routes within budget b. The initial routes start from
the school.

Tabu Iteration. In each iteration, the algorithm first cal-
culates the neighbor set of current solution. The neighbor set
contains the routes that can be reached from the current route
by adding an adjacent non-tabu vertex into current route or
removing a non-tabu vertex from current route. If adding or
removing a vertex results in a significant drop in the beneficial
score, we regard this vertex as a tabu vertex and append it to
the “tabu_list” of the G,,u.. Tabu vertices are not allowed
to be included in the neighbor set. The aforementioned short-
sightedness is overcame by allowing non-improving searches
until all the neighbors are tabu vertices. In each iteration,
we update the route and score when the best route formed
by neighbors has a larger score.

Termination. The algorithm terminates when either of the
following two criteria is met, i.e., the maximum iteration
number or no performance improvement in the last 5 iterations.
The best solution identified in the whole search process is
returned as the final solution.

IV. EVALUATION

In this section, we conduct extensive experiments to evaluate
our system using real-world data.

A. Experiment Settings

We use the NSE data crowdsensed from 2809 students
of 7 schools within a semester (i.e., from 11/04/2017 to
31/07/2017). During this four-month experiment period, one
SENSg device is assigned to each student to continuously
record the student’s daily trajectories for one week. A total
of 11236 trajectories that traversed ~ 80k kilometers are
extracted from the collected data. For each student, we use
four-day data to perform our last-mile bus planning and
use the remaining one-day data to evaluate the proposed
system. We extract road networks of Singapore from Open-
StreetMap [24], which contains 384653 road segments and
597446 edges.

We compare our results with the following methods.

o Door-to-Door shuttles. It offers minimum-distance
routes by solving a capacitated VRP [18] formed by
students” home locations.

o Feeder shuttles [38]. It first performs a KMeans clus-
tering over students’ home locations with the K hav-
ing the largest Bayesian information criterion, and then
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Fig. 10. NSE mobility statistics.

offers minimum-distance routes by solving a capacitated
VRP [18] formed by the centroids of obtained clusters.

o Metro shuttles. It offers routes that directly link the
largest transportation hub and the school.

We empirically set system parameters as follows: the para-
meter in objective function a = 0.995; the bus capacity is
100; the number of available buses is the minimum fleet size
required in terms of the total number of students. Each route
aims to serve a certain set of students with on waiting time
and is traversed once by a bus. As suggested by Figure 10a,
the overall trip distance of NSE students distribute almost
evenly from a few kilometers to 20 kilometers. Since it will
be hard and unfair to determine a service cut-off regarding
trip distance, we adopt the original setting of serving all the
students for Door-to-Door shuttles and Feeder shuttles.

All the algorithms are implemented and experimented with
a HP Z440 workstation with 12 3.5GHz Intel Xeon CPU cores
and 32GB memory.

B. Mobility Statistics of NSE Trajectories

In NSE data, after omitting students who traveled to schools
by private cars, we have 37% of students who walked to
school and 63% of students who commuted via public transits.
We summarize their mobility statistics.

1) Trip Distance Distribution: Figure 10a summarizes
cumulative distribution function of the trip distance. From the
figure, it is clear that the majority of transit trips have a longer
trip distance compared with walking trips, i.e., 90% of transit
trips are shorter than 16.7 KM while 90% walking trips are
under 1.8 KM. The overall average trip length is 6.9 KM.

2) Trip Duration Distribution: Figure 10b illustrates cumu-
lative distribution function of the trip duration, where 90%
of transit trips take less than 63 minutes while 90% of the
walk trips are within 23 minutes. This is because, upon a
longer commute time, students are more prone to be driven
to school by their parents. The overall average trip duration is
33 minutes.

3) Trip General Patterns: We list three general patterns we
found in NSE data: 1) Most of the students (85%) arrive at
school during 7:00 a.m. to 7:45 a.m.. This proximity reveals
the chance of finding last-mile bus routes that can benefit
the majority of students and remain cost-efficient; 2) Most
of the students’ homes are near their schools, while a certain
number of students live far from their schools. The proportion
of students who live far away varies from school to school;
3) Students rarely change their choices of transportation in

TABLE III
SUMMARY OF STUDENT COMMUTE PATTERNS

School A School B School C School D Overall

# Students - Total 448 418 472 292 2809
# Students - Walk 358 107 60 84 1052
# Students - Transit 90 311 412 289 1757
Avg distance (KM) 2.8 6.9 9.1 7.0 6.9
Avg duration (Min) 25 35 44 36 33
Avg # pickups 20 30 46 30 32

different days, which makes it plausible to use historical data
for route planning.

C. System Performance

Table III summarizes detailed information on the
schools used in our evaluation. Due to the space limit,
we list 4 schools as well as an overall summary of all
schools. The other schools have similar statistics. For each
school, we list information including the total number
of students, the number of students who walk to school,
the number of students who take public transits, the average
distance and duration of all trips, and the average number
of pickup locations. As shown in Table III, the percentage
of students who take public transits differs among schools
due to the difference in public transits accessibility. Besides,
some schools have students living relatively far away than
other schools, resulting in longer trip distance and duration.

Table IV summarizes the performance of four methods in
terms of fours metrics: the average reduction on students’
commute time (denoted as At), the total ride distance of bus
services (denoted as d), the percentage of students that got
served (denoted as %) and the beneficial score (denoted as ¢
and defined in III-B). Figure 11 visualizes the shuttle routes
planned for School A.

In Table IV and Figure 11, we can see:

« Proposed system produces routes that outperform Feeder,
Metro shuttles by 6.6x and 2.9 respectively in terms of
overall beneficial score. This is due to its awareness of
both students’ real demands and existing public transits.
By understanding how the students’ transport demands
are addressed by current public transits and locating the
stops that can help them most in a global view, proposed
system yields reasonable commute time reductions with
relatively low ride distances.

o Door-to-door routes have the largest ride distances in
all schools due to the total ignorance of existing public
transits. The long ride incurs unnecessary long ride time
for students who get on the bus on the early stage, which
further lowers the reduction on all students’ commute
time. For Feeder, although the total ride distance is
reduced by performing a clustering beforehand, the stu-
dents, on average, need to travel ~0.92 extra kilome-
ters and 11.6 minutes to nearest service station due to
its unawareness of road networks and existing transits.
Consequently, the reduction to students’ commute time
is also limited.
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TABLE IV
SUMMARY OF OVERALL PERFORMANCE

School A School B

School C School D Overall

At d % ¢ At d % ¢ At

d % ¢ At d % ¢ At d % ¢

Door-to-door -7.7 278.7 100% - -15.9 529.8 100% -
Feeder 2.7 157.0 100% 1.2 1.2 375.7 100% 0.2
Metro 1.3 08 21% 1.3 1.5

Our method 5.1 45 96% 5.0 4.0

-16.3 727.4 100% -
3.7 198.2 100% 1.4
04 42% 15 2.6
50 9% 39 94

-35.5 431.0 100% -  -12.0 479.2 100% -
3.6 187.7 100% 1.4 2.9 209.5 100% 1.0
1.5 17% 25 22 10 26% 22 24 12 24% 23
77 173% 90 71 35 8% 70 68 61 87% 6.6

AT x i “
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(b) Feeder shuttle routes
map scale = 1:1000000
total bus routes = 157.0 km

(a) Door-to-Door shuttle routes
map scale = 1:1000000
total bus routes = 278.7 km

Fig. 11. Visualization of last-mile bus routes planned for School A.
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Fig. 12.  Overall performance.

o Although fetching students from the largest transportation
station nearby possesses a small ride distance, it can
only serve a limited amount of students due to the fact
that there are not much students’ commute rely on one
specific transportation station. The lack of understanding
on students’ demands limits the percentages of students
who can benefit from metro shuttles (24% on average)
and results in small reductions on students’ commute
time.

o Overall, the proposed system can benefit the majority of
students (i.e., 87%) and offer a reasonable commute time
reduction (i.e., 6.8 minutes).

Figure 12 shows the comparison on the overall gains and
costs of routes suggested by different methods. Figure 12a
illustrates the CDF of trip duration reduction of all students,
where the right half of the figure summarizes the percentage
of students who benefit from the system. As shown, most
students receive no benefit from Door-to-Door (D2D) and
Feeder shuttles due to the long ride time. Although the CDF
of Metro shuttles locates at the right half of the figure, both
the population of served students and the time reduction for
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(d) Routes by our approach
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(c) Metro shuttle routes
map scale = 1:25000000
total bus distances: 0.8 km

them remain low. This is because Metro shuttles usually ride
short distances. In contrast, routes suggested by our method
offer a reasonable time reduction to most students. Figure 12b
shows on average routes suggested by our method serve 87%
of students with short route distances.

D. System Components

We further study the performance of the four key compo-
nents in our proposed system separately.

1) Trip Identification: It needs to identify homes and
schools by classifying trip points and stay points. We manually
labeled 77797 points from 20 randomly selected students,
which form 68 valid trips with 1598 trip points. We compare
proposed time-weighted density clustering with both threshold
and density based counterparts (introduced in Section III-A)
in terms of precision and recall. We tune parameters of above
algorithms based on grid searches over sets of empirical
values and set a fine distance threshold as 50 meters and
duration threshold as 1 hour in threshold-based algorithm,
the minimum distance as 200 meters and the minimum number
of points as 10 in DBSCAN, and the minimum distance as
200 meters and the minimum duration as 1 hour in proposed
method.

Table V shows that proposed method yields a significant
improvement on precision for identifying trip points. It is
because proposed method can 1) adapt to inconsistent localiza-
tion accuracy by leveraging density-domain information and
2) tolerate sudden drifts by exploring time-domain informa-
tion. For identifying home and school locations, our method
outperforms DBSCAN on recall because the latter cannot
identify home/school clusters with insufficient sample points
when a SENSg device enters its sleep mode.

2) Trip Profiling: We evaluate the proposed Google-based
algorithm by the accuracy of sample-wise travel mode
detection and the performance of pickup location extrac-



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TONG et al.: LAST-MILE SCHOOL SHUTTLE PLANNING WITH CROWDSENSED STUDENT TRAJECTORIES 11
g* 2.0 Greedy

=25 £80% o —e— Tabu
—_ [} o
S o ] 1.5
~ o 60% —
(¢}
g% 2 400 Lo
=] A xw 5
215 3 §§ 50.5

10 < oo 0.0

100 200 300 400 448 5% 10% 20% 0 20 40 60 80

Total profiles

(a) Computational efficiency

Changed profiles
(b) Scalability on profile changes

Iterations

(c) Effectiveness of Tabu expansion

3) Benefits of the Route Graph: We show the benefits of
proposed graph data structure by comparing it with TSP-based
route planning in terms of two aspects: computational effi-
ciency and scalability on profile changes. We conduct a
trace-driven simulation based on trips of 448 students from
School A.

Figure 13a shows that graph-based route planning scales
well in terms of CPU time as the number of profiles increases.
We omit the CPU time of TSP-based route planning as it
requires solving 20'% TSP instances for 100 profiles and this
overhead increases exponentially as the number of profiles
increases.

Figure 13b depicts that proposed graph data structure is
highly scalable towards profile changes. The reason is that
profile changes are reflected in the graph structure by modify-
ing the attributes of related vertices, which is less cumbersome
than updating distances with all the other points in TSP-based
method.

Fig. 13. Evaluation on the graph structure and Tabu-based expansion algorithm.
TABLE V
COMPARISON OF TRIP IDENTIFICATION ALGORITHMS
Trip points Home & School
Precision  Recall Precision  Recall
Threshold 4.8% 92.4% 19.3% 100%
DBSCAN 72.4% 97.0% 90.1% 88.2%
OurMethod 90.5% 97.7% 98.5% 100%
TABLE VI
THE ACCURACY OF TRAVEL MODE DETECTION
Walk  Transit Drive Overall
DT +MM  54% 40% 36% 44%
OurMethod 91% 93% 89% 91%
TABLE VII

THE PERFORMANCE OF PICKUP LOCATION EXTRACTION

Precision Recall F1 score
DT + MM 41% 63% 65%
OurMethod 91% 95% 96%

tion. We compare proposed method with the state-of-the-
art algorithms leveraging decision tree and map matching
(DT + MM), where mobility features including sample-wise
distance, duration, speed and acceleration are calculated from
consecutive samples. We manually labeled 11085 walking,
10075 transit and 7735 driving samples, where 70% of samples
are randomly selected for training the DT classifier while the
remaining samples are used for testing.

The results in Table VI reveal that proposed method yields
an overall 91% accuracy in detecting sample-wise travel
modes, while decision tree classifier achieve only 44% accu-
racy for all travel modes. Since the decision tree classifier
relies heavily on the consistency of speed and acceleration,
it suffers from large localization errors and sparsity of NSE
data. As a consequence of inferior performance in travel mode
detection, the DT + MM algorithm extract pickup locations
with only 41% precision. Table VII shows that the proposed
method has a dominated performance in terms of the precision,
recall and F1 score on extracting pickup locations.

4) Tabu Expansion: We demonstrate the effectiveness of
proposed tabu expansion algorithm with a trace-driven sim-
ulation based on 448 students from School A. As shown
in Figure 13c, the greedy algorithm stops searching too
early due to its shortsightedness. Proposed tabu-based expan-
sion algorithm exploits a bigger search space by allowing
non-improving moves and finds a route that has 3.3 x higher
beneficial score than the greedy route.

V. RELATED WORK
A. Bus Stop Selection (BSS)

Given the road network consisting of home, school, bus
depot and the origin-destination (OD) matrix, BSS seeks to
select a set of bus stops and assign students to those stops.
According to two comprehensive survey studies [10], [26],
many works assume that the potential locations of bus stops
are given. With that, BSS is then formulated as an assignment
problem to minimize the number of bus stops or the total
student walking distance. Only a few works solve BSS in
conjunction with route planning by heuristics, which can be
classified into the following three strategies: the location-
allocation-routing strategy [12], the allocation-routing-location
strategy [4] and the location-routing-allocation strategy [31].
All above studies did not take into consideration of the existing
public transits and assumed that the best pickup locations
for students are within walking distance from their homes.
This is often not the case in practice given the multiple
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choices of public transportation and diversity among students’
home-school trips. Our work learns potential pickup locations
for individual students from their daily trips with public tran-
sits, and considers all possible pickup locations with proposed
graph-based data structure to ensure a low cost of suggested
routes.

1) Bus Route Generation (BRG): Given the selected bus
stops and the number of students assigned to them, BRG
searches for the optimal routes and is very similar to the
vehicle routing problem (VRP) [18]. Due to the problems’
NP-hardness, only relatively small instances can be precisely
solved via optimization algorithms (e.g., dynamic program-
ming, branch-and-bound). Therefore, in practice, classical
heuristics that combine a construction heuristic (e.g., the sav-
ings algorithm [7], the sweep algorithm [13], and the Fisher
and Jaikumar algorithm [13]) and an improvement method
(e.g.,4 -opt) are often used to obtain a feasible solution.
More recently, a significant research effort has been dedicated
into metaheuristics such as genetic algorithm [1], simulated
annealing [25] and Tabu search [8], which are capable of
consistently producing high quality solutions at the expense of
speed and simplicity. However, those methods cannot handle
the problem considered in our paper where student have
multiple potential pickup locations. Directly applying those
methods requires constructing and solving a number of VPR
instances and results in infeasible computation cost. We thus
propose a graph-based data structure to reduce search space
and develop a customized Tabu search algorithm upon the
graph to construct proper routes.

2) Common Practices in School Bus Planning: Tradition-
ally, planners have to design school bus routes based on
costly surveys and their own expertise [17]. There are two
commercial practices regarding school bus planning: door-to-
door shuttles and transportation hub expresses. Both methods
first require that each student provides a best pickup location
(i.e. usually his/her home or a major transportation hub tra-
versed). The bus planning problem is then formulated into an
optimization problem such as TSP variants (e.g. mTSP [3])
and VRP variants (e.g. CVPR [18], DARP [8]). Different
from above approaches, we learn the best pickup locations
for individual students instead of assuming a homogeneous
pickup strategy (either homes or transportation hubs) is best
for all students. Learning from trajectories can also reveal the
system-wise optima, while surveying students can only obtain
knowledge of individual-wise optima.

3) Data-Driven Bus Route Planning: Today, there are sev-
eral recent projects that leverage information from different
data sources to facilitate bus route planning. In [27], [38],
researchers learn the metro passengers’ final destinations from
cellphone data. The bus routes are determined by solving
TSP-like optimization problems that are formulated by cluster
centers of the learned destinations. In [5], [6], taxi records
between two regions are used as an indicator of poor public
transit coverage and bus routes are generated to bridge those
regions. In [28], similar origin and destination locations of
commuters are learnt by a clustering over smart card data,
where bus routes are designed to link those locations. In [19],
researchers build a transportation mode choice model from
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both taxi records and bus transactions. With this model, region
pairs with low probability of passengers taking buses are
identified, where new bus routes are designed by maximizing
the expected utilization of public bus service. For those
works, they implicitly assume that each passenger has only
one origin and destination pair. They cannot be used in our
scenarios, because a student usually has multiple potential
pickup locations.

4) Understanding Transportation Choices From Trajecto-
ries: The closest works to us are travel mode detection
algorithms. Most existing methods share a general principle.
First, a classification model (e.g. Decision Trees, Random
Forest, Bayesian Network, Support Vector Machine and neural
network) [37] is trained from features of historical trajectories.
Then, by feeding mobility features of new traces into trained
model, sample-wised travel modes can be determined. Most
approaches regard mobility patterns like distance, speed and
IMU readings as features, while some recent works involve
new feature (e.g. barometer readings [9], [30]) or new infor-
mation (e.g. GIS information [35]) to improve accuracy. These
approaches assume that mobility features possess a consis-
tent error level across samples. However, this assumption is
not satisfied in NSE data due to its sparsity and noisiness.
Thus, directly applying those methods leads to erroneous
results.

VI. CONCLUSION

In this work, we have investigated the problem of last-mile
school shuttle planning by mining massive crowdsensed daily
trajectories. The proposed system automatically learns poten-
tial pickup locations for each individual, efficiently hosts
possible demand combinations by a graph data structure
and heuristically searches for system-wise optimal routes.
Our experiments show that proposed system is able to plan
routes that are more beneficial and low-cost than existing
solutions.

APPENDIX
PROOF OF THE NP-HARDNESS

Proof: We derive our problem by reducing a generalized
assignment problem. We can view each road segment v; € V
being assigned to a route r; as a task being assigned to an
agent. Each assigned task has a profit (i.e. students time saved)
and a cost (i.e. the route time), while each agent has a budget
(i.e. the route budget). The final decision set V' is viewed
as the task-agent assignment. In this way, for any instance of
the decision version of the generalized assignment problem,
we can find an instance of the decision version of the problem
of finding K budget constrained last-mile bus routes with
maximum beneficial score by setting budget unbound, and
their answers are the same. Thus, the generalized assignment
problem is reducible to our problem, which completes the
proof of NP-hardness. O
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