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Sea depth monitoring is a critical task for ensuring safe operation of harbors. Traditional schemes largely rely
on labor-intensive work and expensive hardware. This study explores the possibility of deploying networked
sensors on the surface of the sea, measuring and reporting the sea depth of given areas. We propose a
Restricted Floating Sensors (RFS) model in which sensor nodes are anchored to the sea bottom, floating
within a restricted area. Distinguished from traditional stationary or mobile sensor networks, the RFS
network consists of sensor nodes with restricted mobility. We construct the network model and elaborate
the corresponding localization problem. We show that by locating such RFS sensors, the sea depth can be
estimated without the help of any extra ranging devices. A prototype system with 25 Telos sensor nodes
is deployed to validate this design. We also examine the efficiency and scalability of this design through
large-scale simulations.
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1. INTRODUCTION

We conducted a field study in Huanghua Harbor which is currently the second largest
harbor for coal transportation in China. It has experienced rapid development over the
past five years, and its coal transporting capability has increased from 1.6 million tons
per year in 2002 to 6.7 million tons per year in 2006. However, this Harbor currently
suffers from the increasingly severe problem of Silt deposition along its sea route.
Huanghua Harbor has a sea route that is 19 nautical miles long and 800 m wide at
the entrance, including an inner route and an outer route. The sea route is designed
to have a water depth of 13.5 m to allow for the passage of ships that weigh over
50,000 tons. Since the sea route has been in operation, it has always been threatened
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Fig. 1. RFS network on the sea.

by the movement of silt from the shallow sea area within 14 nautical miles outside the
route entrance. In the event that the sea route is silted up, ships of large tonnage would
have to wait to enter the harbor to prevent grounding, and ships of small tonnage would
need be piloted into the harbor. Monitoring the extent of siltation reliably is critical in
order to ensure the safe operation of Huanghua Harbor.

The uncertainty and the high-instant intensity of the siltation make monitoring
the extent of siltation extremely expensive and difficult. The amount of siltation in
Huanghua Harbor is affected by many factors, among which tide and wind blow are
the most dominating. While the tides produce a periodic influence on the movement of
silt, the highly variable nature of wind brings more incidental and intensive effects. For
example, records show that strong winds with wind forces of 9 to 10 on the Beaufort
scale hit Huanghua Harbor from October 10 to October 13, 2003. The storm surge
brought 970,000 m3 of silt to the sea route, which suddenly decreased the water depth
from 9.5 m to 5.7 m and blocked most of the ships weighing more than 35,000 tons.
Harbor administration hired three boats equipped with active sonars to cruise the
380 km2 shallow sea area around the harbor for several days. Monitoring sea depth
costs this harbor more than 18 million U.S. dollars per year.

In this work, we explore the possibility of deploying networked sensors on the surface
of the sea for sea depth measurement, which would provide inexpensive alternatives to
addressing the problem. We anchor the sensor nodes by ropes and let them float on the
sea. In this case, sensor nodes, called Restricted Floating Sensors (RFS) float over the
sea but are restricted within their anchored areas. The floating area is dependent on
the sea level and the length of the rope. Figure 1 illustrates an RFS network deployed
in a sea area.

To map the sea depth, an essential problem is localizing RFS nodes. Since the sensor
nodes in the RFS network can float around, the traditional localization approaches for
stationary sensors provide inaccurate measurements or intolerable latencies. On the
other hand, simply treating the RFS network as a mobile sensor network and blindly
applying those localization approaches for mobile WSNs does not capture the special
nature of the RFS network. In the RFS network, sensor nodes float within restricted
areas, providing us possibilities for capturing their mobility models. By understanding
RFS mobility behaviors, we can achieve higher accuracy with reduced overhead.

In this article, we give an elaborate analysis on the localization problem in the
RFS network. We build network models and establish the localization objective as
locating the floating area of each sensor node in the RFS network. Unlike locating
the instant locations of each sensor in unlimited mobile networks, RFS sensors are
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anchored. Hence, locating the floating areas of sensor nodes is sufficient for obtaining
the geographic features of the RFS network. Taking snapshots of mobile sensors does
not give the desired result of their floating areas, yet instantly computing the snapshot
positions of those mobile sensors is very difficult and costly. We equip a small portion
of the network nodes with external locating devices, such as GPS receivers (called
seed nodes), and all sensor nodes estimate their distances from each other. We explore
different statistical approaches for efficiently localizing the floating areas of the seed
and non-seed nodes with distance estimations. By locating the sensor nodes, we can
infer accordingly the sea depth at the anchor positions in a practical way, which will be
elaborated on in Section 5. Such a method could be applied for other applications where
detecting the sea depth is a primary goal. FALA could also be used in other application
scenarios where sensor nodes could be of constrainted-mobility and where detecting
the mobility area of sensors suffices to approximate the locations of sensors. Using
FALA in such scenarios would save unnecessary overhead in traditional localization
approaches, such as accurate synchronization, fast positioning, unnecessary energy
consumption, etc.

We validate our design by launching a prototype system with 25 Telos sensor nodes
off the seashore in our campus. The results show that our prototype achieves less than
0.5 m sea depth estimation error on average. We conduct a large-scale simulation to
further test the system performance and scalability under various network settings.
With precise distance measurements assumed, we can obtain the sea depth estimation
with an average relative error within 20%.

The rest of the article is organized as follows. In Section 2, we formally define the
RFS network model and formulate the localization problem for RFS. We describe our
localization approaches for seeds and non-seeds in Sections 3 and 4, respectively. In
Section 5, we discuss applying the RFS localization for sea depth measurement. We
present the experiments and results in Section 6. In Section 7, we summarize related
work and conclude in Section 8.

2. THE NETWORK MODEL

Before presenting our targeted Restricted Floating Sensor (RFS) network, we first give
a definition of the more general restricted mobile sensor (RMS) network.

Definition 2.1 (RMS Network). A sensor is called a restricted mobile sensor if it is
capable of movement but its movement is restricted within a local area of the applica-
tion field. A network composed of restricted mobile sensors is called an RMS network.
The RFS is a typical RMS network. Once anchored at a point, the sensor node floats on
the sea surface but within a restricted area. There are some other RMS networks, for
example, in Li et al. [2008], mobile sensors are restricted to moving along the cables.
Such RMS networks differ from the considered RFS network in this article as sensors
are restricted within different types of areas.

Definition 2.2 (Floating Area). In an RMS network, the movement of a sensor is
limited in a restricted area. The restricted area may have different shapes due to
different constraints of RMS networks. In the RFS network, each sensor node floats
on the sea surface within a disk area centered at its anchor. This disk area is called
the floating area of the sensor. We use o(c, r) to denote a disk floating area, where c
and r represent the centre and radius of the disk area, respectively. In practice, c is the
anchored position of each sensor, and r is determined by the length of the rope and the
sea depth at the anchored position.
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Definition 2.3 (Floating Model). In the RFS network, each sensor floats within its
floating area. The movement is affected by many factors, for example, ocean current,
wind blow, tide, etc. These factors are hard to model and mostly affect with randomness.
Sensor nodes could possibly be applied with high velocities within its restricted floating
area such that the current position of a sensor is considered independent of its previous
positions under nonnegligible intervals between consecutive sampling times. When the
rope becomes straight, the node on the sea surface moves to the boundary of the floating
area, that is, the farthest to the center of the disk. When the rope is not straight, the
node simply randomly appears within the floating area. Each sensor is assumed to
appear in the floating area under uniform distribution, and the probability distribution
of the sensor position is given as follows.

f (x, y) =
⎧⎨
⎩

1
πr2 , (x, y) ∈ o(c, r),

0, otherwise.

Definition 2.4 (RFS Network Model). The targeted RFS network N(S, O) consists of
a set of sensors S and the corresponding set of floating areas O. Each sensor si moves
within its floating area oi under the floating model. The floating areas of different
sensors are assumed non-overlapped, that is, ∀ si, s j ∈ S within floating area oi(ci, ri)
and o j(c j , r j), dist(ci, c j) > ri + r j . Such an assumption prevents the possibility that two
sensors get too close and that their ropes get twisted with each other. The assumption
is realistic in practice, as the sensor communication range is usually multiple times
the radius of the sensor floating area.

Definition 2.5 (Neighborhood of RFS). In traditional sensor networks, the neigh-
bors of a sensor s are defined as the set of sensors that have direct communications
with s. While the neighborhood is relatively stable in static sensor networks, it is highly
dynamic in mobile sensor networks. As a restricted mobile sensor network, an RFS net-
work shares the similarity with traditional mobile sensor networks in that each sensor
node has dynamic connections with its neighboring nodes. However, the locality of sen-
sor movement in the RFS network constrains this dynamic effect. Therefore, we are
able to introduce a more proper definition of neighborhood for RFS. Sensors si and sj
are defined to be neighbors if and only if they can communicate with each other in their
entire floating areas. Each node has direct communications with its neighbor nodes at
any time. With this definition, we obtain a stable neighborhood in RFS networks.

Definition 2.6 (Seeds and Non-seeds). Seeds refer to the sensor nodes equipped with
localization devices and are aware of their instantaneous locations. Non-seeds refer to
those nodes which cannot directly obtain their instantaneous locations. To reduce cost,
our proposed RFS network only employs a small portion of seeds.

Definition 2.7 (Floating Area Localization). In RFS networks, sensor nodes move
within their floating areas under the probabilistic floating model. Hence, it is difficult
to locate their instantaneous locations. We observe that the floating areas do provide
geographical location information of sensor nodes. Thus, the localization issue in RFS
networks is to obtain the floating areas instead of the instantaneous locations. The
floating area localization in the RFS network indicates the process of locating the
floating area o(c, r) of each sensor, including the central anchor position c and the radius
r of the floating area. In the following, localization means floating area localization if
not elsewhere specified.

Definition 2.8 (Error). Let o(c, r) be the floating area of sensor s and ô(ĉ, r̂) be the
estimated floating area. The localization error includes two parts: (1) error on the
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estimated anchor position ec = dist(ĉ, c); (2) error on the estimated radius er = |r̂ − r|.
We define the floating area localization error as a 2D vector (ec, er). The relative error
ε of floating area o(c, r) is accordingly defined asE(ô, o) = (ec/r, er/r). The average error
in a RFS network N(S, O) is defined as

E(N) = 1
|O|

∑
o∈O

E(ô, o).

We design the Floating Area Localization Algorithm (FALA) to localize sensor nodes
in an RFS network. In the localization process, all sensor nodes are able to measure the
distances between themselves through RSS measurements. Other superior techniques
like TOA, TDOA, and AOA can be applied for higher-ranging accuracy.

As a statistic-based algorithm, FALA yields the localization result after a series
of data sampling. During each sampling process, seeds collect their locations, and
non-seeds process the distance measurements. FALA applies different schemes for
locating seeds and non-seeds. Although seeds are able to know their instantaneous
locations, further computation based on the location information is needed to determine
their floating areas. For non-seeds, FALA derives their floating areas from distance
information through a sequential process.

FALA includes four steps: sampling, seed floating area computing, non-seed floating
area computing, and continuous date collection and accuracy improvement.

3. FALA FOR SEEDS

As equipped with localization devices, seeds are aware of their instant positions. We
carry out a series of samplings on seed positions. After a period of time, each seed node
records a set of positions it resides in at different times. We estimate the floating area
of seed nodes from the position sets.

Obviously, all sampled positions of a seed are certainly in its floating area under
the floating model. In other words, its floating area should be a disk area at least
containing all sampled positions. Moreover, as the sampled positions accumulate, the
floating area is asymptotically approached. Thus, we can transform the floating area
localization problem to figure out a disk area which covers a set of positions.

Apparently, there are many feasible disk areas, among which the smallest one should
be considered the maximum likelihood estimation because it provides the highest prob-
ability of the occurrence of a set of positions. Thus, the smallest one is then considered
the estimation of the floating area of the seed. The problem is formulated as follows.

Given a set P of n points in the plane, find the smallest enclosing disk for P,
that is, the smallest disk that contains all the points of P.

For simplicity, we assume that no three points are collinear and that no four points
are cocircular. In computational geometry, this problem is often called the Minimum
Enclosing Disk (MED) problem. It is not difficult to find a brute force solution to the
problem which takes O(n4) running time. We observe that the MED solution must
contain at least two points on its boundary; otherwise, one can shrink the disk with-
out losing any points. Also, two or three points define a disk in the plane. In the case
of two points, they must define a diameter of the disk. Therefore, the seed can val-
idate the candidate disks by enumerating all O(n2) pairs and O(n3) three-tuples of
the recorded positions. For each candidate disk, the seed checks in O(n) time whether
the disk contains all other points. In all, this algorithm takes O(n4) time. Such an
algorithm introduces intensive computational cost which is likely not suitable for the
resource-restricted sensor nodes. We introduce a randomized algorithm RMED, which
takes only O(n) expected runtime to compute the MED. We further develop an online
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version RMED ONLINE based on RMED which incrementally updates the input seed
positions and takes O(1) expected runtime for the updating process at each sampling
time. We discuss the RMED algorithm in Section 3.1 and describe RMED ONLINE in
Section 3.2. We analyze the accuracy and runtime of RMED ONLINE in Section 3.3.

3.1. A Randomized Algorithm RMED

A randomized algorithm [de Berg et al. 2000; Welzl 1991] for the MED problem has been
proposed in the computational geometry domain, which takes O(n) expected runtime.
It is observed that when a point is outside the MED of all other points, it must lie in
the boundary of the MED of all points. The following theorem [de Berg et al. 2000]
illustrates this observation.

THEOREM. Let P be a set of points in the plane. Let R be a possibly empty set of points
with R ∩ P = φ. Let D(P, R) denote the minimum enclosing disk of P that contains R
on its boundary. Then we have the following.

(a) If a point p ∈ D(P\{p}, R), then D(P, R) = D(P\{p}, R).
(b) Otherwise, D(P, R) = D(P\{p}, R ∪ {p}).

Based on this theorem, the randomized algorithm RMED computes the MED of a
given set P of positions. At the very beginning, we have no idea about which point lies
on the boundary of MED, so the seed runs RMED(P, null) as a start.

ALGORITHM 1: RMED (P, R)
1: if P = φ or |R| = 3,
2: then D := the disc defined by R.
3: else choose a random p ∈ P,
4: D := RMED(P\{p}, R);
5: If p /∈ D,
6: then D := RMED(P\{p}, R ∪ {p}).
7: return D.

In RMED, it is not necessary to generate a random point p ∈ P in each recursive
call. It suffices to randomly permute the input points and then examine points in this
random order during the recursive calls. That is, we insert a process to generate a
random permutation (p1, p2 . . . pn) of P before executing the RMED process. RMED
sequentially selects one pi in (p1, p2 . . . pn) and treats pi as the random point p.

Due to the permutation process, a seed needs to collect all sampled positions in P
before it is able to start the algorithm, which means a long latency before the area can
be localized. To address this issue, we design an online version of RMED for stepwise
updating of the floating area approximation.

3.2. RMED ONLINE for Stepwise Approximation

When a seed node is deployed, the location samples are collected sequentially at consec-
utive sampling times. Let (t1, t2. . . tn) denote a series of sampling times. Let pi denote
seed position at sampling time ti (1 ≤ i ≤ n). Each sampled pi is in fact a random posi-
tion in the n position set {p1, p2. . . pn}, though at this stage, the seed has not obtained
the intact knowledge of all pj (i < j ≤ n). The sequentially sampled series (p1, p2. . . pn)
is indeed a random permutation instance of the n position set.

In RMED ONLINE, the seed maintains and updates the current MED at each sam-
pling stage. Assume a seed already has the MED for the previous i −1 positions. When
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Fig. 2. Empirical cumulative distribution function of the estimated to real radius ratio.

the ith position is obtained, the seed updates the existing MED to obtain a feasible one
for all i positions.

Let Pi be the set of points {p1, p2. . . pi}; let Di be the MED of Pi; and let pi be
the current position of seed at sampling time ti. After obtaining pi, the seed updates
its existing solution Di−1 by executing a process Di = RMED ONLINE(pi, Di−1). The
RMED ONLINE process is described as follows.

ALGORITHM 2: RMED ONLINE (pi, Di−1)
1: if pi ∈ Di−1,
2: then D: = Di−1;
3: otherwise,
4: D: = RMED (Pi−1, {pi});
5: return D.

In the RMED ONLINE process, seeds can start localization as early as possible
without waiting for all n positions to be collected. This feature of RMED ONLINE
well suits the data acquisition pattern of the seed sampling process. Each time, being
informed of the current position from its positioning device, a seed updates its existing
minimum enclosing disk and obtains a refined approximation of the floating area.
The estimation is refined in a stepwise manner while, as shown in next section, each
intermediate updating process takes only O(1) expected runtime.

3.3. RMED ONLINE Analysis

In this section, we analyze the error ratio and the runtime of RMED ONLINE. Ac-
cording to our algorithm, the approximated floating area ô is always smaller than the
real one o. The error between o and ô is kept reduced during the updating processes
in which ô is monotonously increased towards o. To minimize the estimation error, the
seed needs to collect more sample data. However, a large sample capacity usually im-
plies a long period of sampling. Therefore, we need to properly choose a sample capacity
aiming for an acceptable accuracy.

We conduct a simulation to analyze the error of our estimation at different sample
capacities of n = 2, 3, 5, 10, and 20. The simulation results are shown in Figure 2. We
find that when the number of samplings is 10, 80% percent of cases have less than
20% relative error of radius estimation, and when the number of samplings is 20, 90%
percent of cases have less then 10% error. In most applications, a number ranging
from 10 to 20 induces an acceptable sample capacity for seeds to compute their floating
areas.
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To analyze the runtime of the RMED process, we focus on the number of tests p /∈ D ,
because the total execution complexity is proportional to this number. Let Tj(n) be
the expected number of tests performed in the RMED process such that |P| = n and
|R| = 3 − j, where 0 ≤ j ≤ 3. Note that T0(n) = 0 for all n because only lines 1 and
2 of RMED algorithm are executed. For j ≥ 1 and n ≥ 1, line 4 takes Tj(n − 1) time;
line 5 performs the test once; and line 6 may take further Tj−1(n − 1) time. In order to
take further Tj−1(n − 1) time, p must lie on the boundary of the solution disk. Since
|R| = 3 − j, only j out of the current n points can do so. The probability that p is one
of them is j/n. Therefore, we have the following recurrence.

Tj(n) ≤ Tj(n − 1) + j
n

Tj−1(n − 1).

Since T0(n) = 0, we obtain T1(n) ≤ T1(n − 1) + 1, implying that T1(n) ≤ n. Then

T2(n) ≤ T2(n − 1) + 1 + 2(1 − 1/n) < T2(n − 1) + 3,

implying that T2(n) ≤ 3n. Then

T3(n) ≤ T3(n − 1) + 1 + 9(1 − 1/n) ≤ T3(n − 1) + 10,

implying that T3(n) ≤ 10n.
Now, we turn to the asymptotic complexity of the RMED ONLINE process. Similarly,

we focus on the number of tests performed. Let T(i) be the expected number of tests
performed for updating the existing solution when pi is obtained. When executing
the RMED ONLINE process, a seed performs the test once and, if possible, executes
further RMED processes. Since the probability that pi lies in the boundary of Di is 3/i,
we have the following recurrence.

T (i) ≤ 1 + 3
i

T2(i − 1).

Because T2(n) ≤ 3n, we achieve T(i) = O(1), that is to say, the updating process
RMED ONLINE can be computed in O(1) expected runtime.

4. FALA FOR NON-SEEDS

When seeds have localized their floating areas, we need to utilize them as referees to
locate non-seeds. Triangulation from referees is a widely used method to localize static
nodes in stationary sensor networks. However, due to the dynamic property, directly
using triangulation for RFS leads to poor accuracy. In this section, we propose a new
scheme for locating non-seeds based on statistical measurements.

4.1. The Framework of Non-seed FALA

Before looking inside the non-seed FALA, we first define two concepts about computed
and computable sensor nodes.

Definition 4.1 (Computed and Computable Sensor Nodes). We call a sensor node
computed if its floating area is already known. If a noncomputed sensor node has
k (k ≥ 3) computed neighbors, it is a computable sensor node.

The non-seed FALA is an iterative process, gradually transforming computable sen-
sors to computed sensors. Figure 3 plots a deployment of four sensors: a non-seed s
with the floating area o unknown, and its three neighbors {si | 1 ≤ i ≤ 3}. Assume
all si are computed nodes, that is, their floating area oi(ci, ri) is known. Let di denote
the distance between s and si. Our goal is to estimate the floating area o of s. Clearly,
with one time measurement, there exists uncertainty for floating area computation.
As shown in Figure 3, another disk area o′ different from o is also possible to be a
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Fig. 3. A non-seed node s and its neighbors.

Fig. 4. The distance d between two sensors and d′ between two anchored positions.

candidate of the floating area of s, because the current position of s which satisfies all
distance constraints also resides in o′. We cannot distinguish the real area from o and
o′ at this stage. That means, it is impossible to calculate the floating area of s under a
single time observation of di.

The distance measurement di varies all the time due to the movement of s and si.
We observe that multiple samplings can alleviate the uncertainty for FALA. If we treat
o and o′ as two sets of points in plane, when s moves to some position in o − o′, the
distance sampling information negates the possibility of o′ being the floating area.
Furthermore, we know that di only depends on o(c, r) and oi(ci, ri), irrespective of any
other floating areas o j ( j 	= i). Hence, the sample distribution is determined by ri, r
and the distance between two anchored positions d′

i = dist(c, ci), indicating that, to
some extent, the samples statistics can imply ri, r, and d′

i . Therefore, the relationship
between the sample statistics and the parameters ri, r, and d′

i is of great importance,
based on which non-seeds can localize their floating areas.

Without loss of generality, we only consider s and a calculated neighbor si, as shown
in Figure 4. For simplicity, we use d and d′ instead of di and d′

i to elaborate the non-seed
FALA. We know d varies all the time, while d′ is a static value. Let D denote the random
variable of d, and let di denote the observed value of D at sampling time ti.

Three steps are included in the floating area computation of non-seed s, described as
follows.

(1) A non-seed s samples the distance measurements d between s and its neighbors.
(2) Based on the sample statistics, s calculates d′ and r.
(3) If s has more than three computed neighbors, it calculates the anchor position c by

triangulation based on d′.

In step 1, the non-seed s carries out a sampling process. In step 2, s estimates the
hidden parameters based on distance samples. We consider three methods for exploring
the relationship between sample statistics and the hidden parameters: the maximum
likelihood estimation (MLE), geometrical relationship, and regression analysis.
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In step 3, although sensor nodes are mobile, their anchored positions are static.
Thus, it is possible to solve a typical point localization problem for locating anchored
positions. On the premise that the distances from an unknown anchor position to three
known anchored positions are obtained, triangulation can be conducted to calculate
the unknown anchored position. With c and r, this step completes the floating area
computation of s, and s becomes a computed sensor node.

4.2. Maximum Likelihood Estimation (MLE)

Let P(D) be the probability density function of D. Certainly, d′, r, and ri are parameters
affecting P(D). Among the three parameters, ri is known because si is a computed
sensor node. Let θ = (d′, r) denote the unknown parameter vector. Hence, P(D) can be
represented as P(D|θ ). According to the observed distribution of sampling data, the
non-seed node s aims to predict the unknown parameters. This is actually a parameter
estimation problem.

We calculate the likelihood function L(θ ) and let θ̂ , which maximizes L(θ ), to be the
estimation of unknown θ ,

L(θ ) =
n∏

i=1

P(di| θ )

Since L(θ ) and In(L(θ )) reach maximum value simultaneously in parameter space �,
it is equivalent to maximizing In(L(θ )) instead of L(θ ). If In(L(θ )) is derivable to θ , θ̂
should satisfy the following.

∂ In(L(θ ))
∂θi

= 0, i = 1, 2

Thus, d′ and r can be calculated by solving this equation.
MLE gives us a theoretical method for calculating d′ and r. In practice, however, it is

difficult to calculate θ from the differential equation, so we cannot rely on MLE in real
implementation.

4.3. Geometrical Relationship

A simple method for estimating d′ and r is to explore the geometrical relationship
between the two floating areas of s and si. We define dmax = max(D) and dmin = min(D)
as the minimum and maximum values of D, respectively. As shown in Figure 4, dmax and
dmin are obtained in two extreme situations. According to the geometrical relationship,
we have

d′ = dmax + dmin

2
,

r = dmax − dmin

2
− ri.

Such a method is simple to implement and takes little computation cost. Since the
extreme cases may not occur in sampling, it is reasonable to regard max(di) and min(di)
as the estimation of dmax and dmin, respectively. Indeed, the sampling quantity and
fidelity severely influence the accuracy of estimation. To the best of our knowledge,
existing ranging methods, such as RSS- or TDOA-based approaches, usually produce
nonnegligible errors which may heavily degrade the effectiveness of the method. On
the contrary, the statistical method, based on sampling distribution suffers less from
this.
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Fig. 5. The relationship between hidden parameters and sample statistics.

4.4. Regression Analysis

As we have observed, the distribution of D, to some extent, reflects the hidden param-
eters r and d′. This fact allows us to design a method for estimating r and d′ based on
sample statistics.

In our analysis, since ri is a known parameter, we introduce two coefficients θ1 and
θ2 such that r = θ1 × ri and d′ = θ2 × ri. The sample statistics include the mean μ̂ and
the standard deviation σ̂ of samples, defined by

μ̂= 1
n

n∑
i=1

di,

σ̂ =
√√√√ 1

n − 1

n∑
i=1

(di − μ̂)2

A simulation study is conducted to explore the relationship between hidden parame-
ters (θ1 and θ2) and sample statistics (μ̂ and σ̂ ). We control θ1 and θ2 in our simulation.
For higher accuracy, μ̂ and σ̂ are calculated with a large sample capacity.

Figure 5 gives us an intuition about the relationship. When fixing θ1, μ̂ grows linearly
as θ2, increases while σ̂ stays. When fixing θ2, σ̂ grows linearly as θ1 increase, while μ̂
stays around the value of θ2. This observation provides an important hint: there exists
a linear relationship between the parameters and the sample statistics.

We now synthetically take account of the impact of both θ1 and θ2 by using multiple
regression analysis. Let β be a 2×3 coefficient matrix; our general form of a two-variable
linear regression equation is as follows.[

μ̂
σ̂

]
= β ×

[
θ1
θ2
1

]

Using the least squares technique, we have

β =
[

0.0951 0.9820 0.0409

0.4507 0.0035 0.1956

]

Contrary to our simulation, coefficients θ1 and θ2 are unknown in a real deployment.
According to the regression model, we calculate θ1 and θ2 by the following equation.[

θ1
θ2

]
= χ ×

[
μ̂
σ̂
1

]
,
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Fig. 6. Residuals of regression analysis.

Fig. 7. The normal probability plot of sample data.

where χ = [ −0.0079 2.2204 −0.4340
1.0191 −0.2150 0.0004 ].

In summary, a node s first collects sample distances between itself and its neighbor
si, and then calculates the statistics μ̂ and σ̂ . According to the regression model, s
determines θ1 and θ2 and finally completes the estimation of r and d′.

Errors of our regression model may come from two sources: (1) the residuals in
regression analysis and (2) the inaccuracy of μ̂ and σ̂ . The residual figure, Figure 6,
illustrates that the error of our linear regression model is relatively small if we consider
the usual values of θ1 and θ2. The inaccuracy of μ̂ and σ̂ is usually due to a small sample
capacity.

Taking error analysis of μ̂ as an example, we want to derive a reasonable sample
size with an acceptable accuracy. We first conduct a normality test of sample data. The
normal probability plot, Figure 7, suggests that the sampling distribution is normal.
Since D is normally distributed with the mean μ, the statistic

μ̂ − μ

σ̂/
√

n

possesses a t-distribution with n − 1 degrees of freedom, where n is the size of the
sample. Then we get

P
(

μ̂ − tα/2,n−1
σ̂√
n

< μ < μ̂ + tα/2,n−1
σ̂√
n

)
= 1 − α,
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Fig. 8. The geometrical structure of the rope length, radius, and sea depth.

and the interval estimation of μ(
μ̂ − tα/2,n−1

σ̂√
n
, μ̂ + tα/2,n−1

σ̂√
n

)

is a (1 − α) × 100% confidence interval for the mean μ. The length of the interval is

l = 2tα/2,n−1
σ̂√
n
.

According to the t-distribution, n = 30 deserves a 90% confidence interval with an
acceptable accuracy l = 0.6204 σ̂ .

5. SEA DEPTH MEASUREMENT BY FALA

By utilizing FALA, we can efficiently localize the sensor nodes in the network. When
we use a rope with length L to anchor the sensor node on the sea of depth h (L > h), the
sensor node floats within the disk area of radius r = √

L2 − h2, as shown in Figure 8.
When the rope becomes straight, the node on the sea surface moves to the boundary of
the floating area, while when the rope is not straight, the node simply resides within
the floating area. After FALA, we obtain the floating area of a node, achieving its
center c as well as its radius r. We can then easily calculate the sea depth at position c.
This calculation involves neither extra measurements nor hardware costs. We actually
obtain the desired result for free as the byproduct of FALA.

In this work, the main application need is to determine the sea depth of Huanghua
Harbor such that we can instantly monitor the extent of siltation on the sea bed of
the harbor. While regular sea depth monitoring is desired in high time granularity, the
measurement precision is not necessarily high, as long as the measured data allows the
port authority to be aware of the siltation extent and to make administrative decisions.
Such a harbor is close to the seashore and has relatively shallow water (below ten meter
sea depth), so we choose the rope length of L larger than 10 m to guarantee that the
sensors float above the sea surface. Later in the experimental evaluation, we test
FALA in the sea area off HKUST campus, which is similar to the Huanghua Harbor
environment. When the sea depth of a monitoring region is deep, longer ropes are
necessary. In this situation, the gravity of ropes cannot be ignored. When sensor nodes
are on the boundaries of their floating areas, ropes cannot be straight but form a curve
with a steep upper part and a mild lower part. Such a curve can be seen as a part
of catenary. We can also calculate the sea depth according to FALA results and the
equation of catenary [Beyer 1987].

Figure 9 depicts the system design of FALA. FALA consists of three major steps:
data collection, floating area determination, and sea depth estimation. At the first step,
seeds and non-seeds collect GPS readings and distance measurements, respectively, for
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Fig. 9. The system design of FALA.

a certain amount of time until adequate samples are obtained. At the second step, the
seeds carry out the RMED ONLINE procedure to compute their anchored positions
and floating areas, while the non-seeds employ two location estimators: geometrical
relationship and regression analysis. At the last step, sea depth can be further calcu-
lated according to localization results. The accuracy of the final sea depth estimation
is largely affected by the precision of the RSSI-based distance measurements.

The entire process of FALA is efficient in terms of energy consumption. When locating
non-seeds, distance measurement relies on RSS, which can be obtained through normal
data packet delivery, that is, RSS data are free in terms of energy consumption. In ad-
dition, current experimental studies have shown that the power used for computation
is several orders of magnitude less than that of communication [Polastre et al. 2006].
Thus, neither RMED ONLINE nor arithmetic operation (for floating area determina-
tion of seeds and non-seeds, respectively) requires power resources comparable with
communication overhead. Moreover, although sensors float on the sea surface, their
floating areas are fixed because they are anchored at fixed positions. Hence, locating
floating sensors is a one-time task and consumes relatively less energy compared with
other network tasks, such as environment monitoring that requires continuous data
collection. To sum up, FALA only contributes a tiny portion of total energy consumption
to our system.

6. EXPERIMENTAL EVALUATION

We first examine the effectiveness of our design by deploying a prototype system off
the seashore in the HKUST campus. We further conduct a large-scale simulation to
test the system scalability under varied network parameters.

We evaluate FALA using three metrics: E(c) = ec/r, E(r) = er/r, defined in Section 2,
and E(h) = |ĥ− h|/h to evaluate the error of sea depth measurement. In some previous
literature, the location error is represented relative to the hop size (i.e., the maximum
communication range of a node) [Goldenberg et al. 2006; Hu and Evans 2004]. However,
for FALA evaluation, if we use the communication range as a benchmark to measure
location error, a 1m error contributes the same impact to a small floating area as to
a large floating area, that is, a 2m radius area and a 10m radius area. To diminish
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Fig. 10. Deployment of the prototype system.

this unfairness, we adopt the relative error against the radii of floating areas in the
evaluation. Since the communication range of each sensor node is usually 5∼15 times
larger than the radius of its floating areas in our experiment, the estimate errors
shown in this section are usually several times that of what they are against the
sensor communication range.

6.1. Prototype Experiment

To better understand the systematic behaviors of FALA, we deploy a prototype with
25 nodes off the seashore on the university campus. The hardware layer of the pro-
totype is constructed on the Telos motes with an Atmel128 processor and CC2420
transceiver. We fit each node with a lightweight supporting shelf, which floats on the
sea surface and raises the sensor node 150 cm high above the sea surface. Twenty
five such assembled floating nodes are anchored on a 100m × 100m sea area where
the water depth is around 4∼7 m. We use 8m rope length accordingly, resulting in a
2–6m floating radius of sensors. Five sensors are selected to be anchor nodes. Figure 10
exhibits our deployment.

We utilize RSSI values from the transceivers to estimate the distances between
nodes. The transmitting power of sensor nodes is set to 1 mW, and the transmitting
range could reach as far as 40 m with more than −95 dbm receiving signal strength. We
construct a distance estimator according to the most widely used signal propagation
model: the log-normal shadowing model [Seidel and Rappaport 1992]. Due to the coarse
and nonmonotone correspondence between the RSSI and distance in the real measure-
ments, the relative error of the distance estimation could be up to 150%, which heavily
limits the accuracy of FALA. We believe more precise distance estimating techniques,
such as TDOA - or TOA-based approaches, would help to achieve better FALA accuracy.

Figure 11 plots the FALA performance in our prototype system. The error of the an-
chored position, as shown in Figure 11(a), is around 0.5∼1 for seeds and 0.5∼4 for non-
seeds. For radius estimation, the error is around 0.05∼0.3, illustrated in Figure 11(b).
In Figure 11(c), we can see the relative error of sea depth is around 0.03∼0.2. From
Figure 11, seeds basically outperform non-seeds in all three metrics.
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Fig. 11. FALA performance of each node in the prototype system.

(a)

(b) 

Fig. 12. OceanSense. (a) Assembled sensor nodes; (b) system deployment on the sea.

In practice, two factors limit our prototype from more accurate results: (1) the ocean
current near the seashore undergoes more regular ways than affected by random
factors, which makes errors on our floating model assumptions; (2) the large errors in
our RSSI-based ranging technique contributes much to the estimation error of FALA.

We are currently conducting the OceanSense project, implementing a working system
with a larger deployment scale in Tsingtao, China. Figure 12(a) shows our manufac-
tured sensor node with a Telos mote encapsulated in the container and empowered
with a high-gain antenna. The plastic encapsulation protects the inside mote from the
sea water corrosion which helps to persist the system over a long time. The high-gain
antenna helps to provide stable signal strength and increase the RSSI-based ranging
accuracy. We attach buoys on the sensor node to let them float on the sea, estimating
the sea depth and measuring other environmental elements, such as temperature, light
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Fig. 13. FALA performance vs. sample capacity with precise distance measurement.

illumination, etc. A Stargate board attached with an IRIS node is deployed among the
Telos motes. The Stargate acts as a sink node, receiving information from the sensor
nodes and connecting to the Internet through wireless GPRS network. We implement a
backend database system storing and processing the information delivered back from
Stargate. Figure 12(b) shows the system deployed on the field. We hope that the long-
term operational experience from this practical system examines the validity of our
approach and that the collected real data trace will provide us with insight knowledge
of the real environment variations. A demo video is available on the Web showing how
we design the nodes and deploy them on the sea.

6.2. Large-Scale Simulation

In this section, we evaluate the scalability of FALA. We generate networks of 900 nodes
randomly distributed in a square sea region. In our simulation, the sea region is
designed to be a 600m × 600m square and has a water depth around 10 m. When
an RFS network is deployed in this sea region, the radii of floating areas are 2∼6 m,
which are determined by sea depth and rope length. A typical communication range of
the sensor nodes is 30 m, and the average degree of network topology is 8. In all our
measurements, we integrate the results from 100 instances.

In our simulation, we varied two parameters: the proportion of seeds and the sample
capacity to examine FALA under different settings. We test the performances of the
geometrical relation method (GR) and the regression analysis method (RA) proposed
in Section 4.

Precise Distance Measurements. We first assume precise distance measurement to
explore the ideally achievable accuracy of FALA. Figure 13(a) plots the average error
of the anchored positions. The error of RA is below 1.5, which is lower than GR as the
sample capacity varies in a wide range. When the size of the sample is larger than
20, the extra gain from RA becomes trivial. Therefore, 20 could be a good choice of
sample capacity considering the trade-off between accuracy and overhead. As shown
in Figure 13(b), the average radius error of RA consistently decreases as the sample
size increases, while GR is getting slightly worse. RA outperforms GR when the sample
capacity is larger than 20. The average error of sea depth, investigated in Figure 13(c),
follows a similar pattern as that of the radius estimation.

We also examine the impact of the seed density on FALA, highlighted in Figure 14.
The sample size is set to 20. All performance metrics get better when the seed density
increases. There is a notable gap between GR and RA in Figure 14(a). The error of
RA is less than 2 when 25% of the seeds exist. In Figure 14(b), we examine the radius
estimation. We observe that both RA and GR yield smaller errors when inserting
more seeds and that RA is better than GR when seed proportion is larger than 20%.
Figure 14(c) shows the error on sea depth measurements. Again, it follows the similar
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Fig. 14. FALA performance vs. seeds proportion with precise distance measurement.
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Fig. 15. FALA performance vs. sample capacity with noisy distance measurement.
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Fig. 16. FALA performance vs. seeds proportion with noisy distance measurement.

pattern as that of radius error, and RA yields the error from 0.35 to 0.2 when the seed
proportion varies from 10% to 40%.

Noisy Distance Measurements. We further evaluate FALA under noisy distance mea-
surements. In our simulation, we introduce a zero-mean Gaussian noise with standard
deviation of 50% of the real values into distance measurements.

Again, RA outperforms GR, as shown in Figures 15 and 16. Compared with Figures 13
and 14, the error of all performance metrics is larger than the corresponding errors with
precise distance measurement. Especially, for anchored position estimation, the error
can be three times larger. Clearly, a noisy distance measurement heavily degrades
the performance of FALA. In such situations, 30 sample datum and 30% seeds are
necessary for precise localization.
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7. RELATED WORK

Recent advances in WSNs have attracted the attention of a lot of researchers [Ahn et al.
2006; Karenos and Kalogeraki 2006; Li and Liu 2009; Liu et al. 2011; Ni et al. 2003;
Xing et al. 2005], with many efforts towards locating sensors [Goldenberg et al. 2006;
He et al. 2003; Li et al. 2011]. A general overview of state-of-the-art location sensing
systems is available in Hightower and Borriello [2001]. According to the targeted
environments, previous localization approaches can be classified into two types: those
for static sensor networks and those for mobile sensor networks.

The static localization problem has been extensively studied for WSNs. The proposed
localization approaches typically use a small number of seed nodes that are aware
of their location. Moreover, ranging measurements [Bahl and Padmanabhan 2000;
Goldenberg et al. 2006; Liu et al. 2006; Niculescu and Nath 2003] (in range-based
approaches) or neighborhood information [Bulusu et al. 2000; He et al. 2003; Li and
Liu 2010; Niculescu and Nath 2003] (in range-free approaches) are utilized to locate
non-seed nodes. All these approaches assume the invariability of sensor locations. Once
a sensor node knows its location, it can be used as a beacon to locate other sensor nodes.
Such a strategy fails in our RFS context due to the movement of sensors. Some of the
static localization approaches [Niculescu and Nath 2003; Savvides et al. 2001] can be
extended to conform to the mobile environment. Most of them, however, cannot yield
results in real time and thus suffer from estimation latency and inaccuracy brought
on by sensor movements. Bergamo and Mazzini’s [2002] produced one of the first
works related to the localization problem in mobile sensor networks. Two fixed seeds
are assumed transmitting across the entire network, and other nodes can measure the
received signal strength accurately. Hu and Evans propose a statistic-based localization
approach for mobile sensor networks [2004] based on the MCL method [Dellaert et al.
1999], which originates from a mobile localization problem in robotics. Li et al. consider
the restricted mobility of sensors along the underground cables, which shares some
similarities with this work [2008]. Nevertheless, in their work, the restricted sensors
do not move within disk areas, as they do in this work. Mobility creates obstacles
to accurate localization, resulting in large errors and heavy communication cost. In
addition, dense seed deployment is required in that proposed approach.

8. CONCLUSIONS AND FUTURE WORK

In this work, we discuss a novel sea depth measurement application using wireless
sensor networks. We define the localization problem in RFS networks and introduce
the concept of floating area localization, so as to determine the floating areas of sensor
nodes. A statistical approach, FALA, is designed, based on which the sea depth can be
acquired without expensive sonar systems. A prototype with 25 Telos nodes is deployed
on a sea surface, and intensive large-scale simulations are conducted to examine the
efficiency and scalability of the proposed approach.

This work is still at an initial stage. Future work leads the following directions.

(1) One assumption in our floating model is that the sensors float within their anchored
areas under randomness, which in our prototype test is shown to be inadequate. The
seawater near the seashore moves regularly a little rather than being completely
affected by randomness. The wave may also introduce errors of estimation. Given
such limitations, we believe a good model of the behaviors of the sea would help
diminish their negative impact or even make use of their regularity to achieve more
accuracy [Guo et al. 2010].

(2) The system scalability is also an important issue that we need to pay special atten-
tion to. Since the RSSI-based distance measurement bears a large error, there is a
trend of error propagation on our estimations when the network size significantly
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increases, especially under a small percentage of seeds. Whether or not we are able
to design a sound-collaborating mechanism at the layer of network topology so that
we can suppress the localization errors throughout the network is a significant but
challenging issue.

(3) Sea depth estimation is of great interest and importance for many sea monitoring
applications. Our FALA approach yields the estimations of sea depth by utiliz-
ing the result of the floating area localizations, thereby reducing the cost. This
approach, however, also has its own limitations, for example, the anchor of each
sensor can actually get buried by the silt, which leads to inaccurate estimations as
time passes, or the RSSI-based localization may introduce errors. Nonetheless, due
to the intensive needs on the sea depth measurement and the difficulty of employ-
ing infrastructures at sea, we believe WSN is one of the best candidates for this
application. Other distance measurement approaches, like TDOA- or TOA-based
ones, may help to achieve better accuracy.

(4) The Restricted Floating Sensors describe a general model for sensor deployment
which might be suitable for many sensing applications carried out on the sea. Under
different contexts of the sensing applications, we might consider different factors
of the network besides the locations, such as sensor coverage, network connectivity,
data samplings, etc. Due to the nature of restricted mobility, the RFS network intro-
duces the intermediate dynamics between the static network and mobile network.
By developing mechanisms over the dynamics but taking advantage of the restric-
tion on the mobility, could we achieve higher efficiency? We believe it is nontrivial
and highly related to the concerned factors and the application context.
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