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Abstract—Radio Frequency Identification (RFID) is a key emerging technology for supply chain systems. By attaching RFID tags to

various products, product-related data can be efficiently indexed, retrieved and shared among multiple participants involved in an RFID-

enabled supply chain. The flexible data access property, however, raises security and privacy concerns. In this paper, we target at

security and privacy issues in RFID-enabled supply chain systems. We investigate RFID-enabled Third-party Supply chain (RTS)

systems and identify several inherent security and efficiency requirements. We further design a Secure RTS system called SRTS,

which leverages RFID tags to deliver computation-lightweight crypto-IDs in the RTS system to meet both the security and efficiency

requirements. SRTS introduces a Private Verifiable Signature (PVS) scheme to generate computation-lightweight crypto-IDs for

product batches, and couples the primitive in RTS system through careful design. We conduct theoretical analysis and experiments

to demonstrate the security and efficiency of SRTS.

Index Terms—Privacy, RFID, supply chain, production message
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1 INTRODUCTION

RADIO Frequency Identification (RFID) is a key emerging
technology for supply chain systems. Compared with

printed tags (e.g., barcodes, QR codes), RFID tags have
moderate storage capacity to store unique IDs and support
long-distance communication. By attaching tags to prod-
ucts, supply chain participants can read a tag to efficiently
track the labeled product. The tag ID serves as an index to
retrieve the product-related data from a database. Such an
RFID-based supply chain facilitates information sharing
among participants, enabling substantially improved prod-
uct handling efficiency [1].

For instance, Toll Global Logistics, one of Asia’s largest
logistics providers, has adopted the RFID technology to
track the tagged products of its served firms and cut labor
costs [3]. The RFID infrastructure can be further leveraged
to share product information with the participants involved
in the supply chain. The sender stores IDs into tags and
uploads the production messages indexed by the IDs in its
database. The sender then delegates the logistics provider
to deliver the tagged products to the receiver in a way that
the latter two participants can flexibly read the tag IDs to
retrieve the production messages of the labeled products
from the sender’s database.

Despite the flexibility of data sharing enabled by RFID
technology, it raises security and privacy concerns [4]. When
tagged products flow in RTS system, the production mes-
sages stored in the sender’s database should not be freely
exchanged by the logistics provider and the receiver without
any security guarantees. Given that the three participants
typically belong to different trust sectors, different partici-
pantsmay have diverse requirements as shown in Fig. 1.

First, the sender and the receiver may be concerned about
the privacy for the production messages of product batches
against the logistics provider as the messages may be sen-
sitive. Without privacy guarantee, a honest-but-curious
logistics provider can collect production messages and
explore non-trivial business secrets (e.g., production details,
strategic relationships, buying interests of the receiver, etc).
For instance, the logistics provider may use the collected
messages together with out-of-bound information (e.g.,
product trading volume, transfer time, etc) to gradually infer
the business transactions between the sender and the
receiver. The sender and the receiver thus may be concerned
about the privacy for the production messages of each deliv-
ered product batch, whichwe term as batch privacy.

Second, the logistics provider and the receiver may be
concerned about non-repudiation for the production mes-
sages of product batches to prevent the sender from denying
the creation of them. Without non-repudiation guarantee, a
malicious sender may deny the creation of production mes-
sages to avoid economic loss. For instance, when a problem-
atic product mismatched with its production message is
found and needs to be recalled, a malicious sender may
blame the logistics provider or the receiver, and refuse to
recall the product. In fact, product delivery service is not
always reliable in real trading systems. As exposed by China
e-commerce complaints and rights of public service platform
[5], customers receive inferior or fake products frequently
in E-commerce business. The logistics provider and the
receiver thus may be concerned about the non-repudiation
for the productionmessages of each delivered product batch,
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so that they can prove the receipt of the whole batch or a cer-
tain product in the batch, whichwe term as batch non-repudia-
tion and item non-repudiation, respectively.

Third, a large scale RTS system involves delivery of large
amount of product batches. Ensuring privacy and non-
repudiation for production messages of product batches
among the three participants through crypto-tools may
incur prohibitive communication and computation over-
head. Specifically, when a product batch is delivered in the
RTS system, the logistics provider may need to receive and
process secured production messages for each product in
the batch. As logistics provider is on the critical path of each
product batch delivery, it easily becomes a bottleneck of the
RTS system. The three participants thus are concerned
about the delivery efficiency of product batches, which we
term as batch efficiency.

In this paper, we target at security and efficiency issues
in RFID-enabled Third-party Supply chain (RTS) system.
We design SRTS, a Secure RTS system, to ensure the above
three concerned requirements. Instead to directly exchange
secured production messages through communication link,
SRTS leverages RFID tags to deliver computation-lightweight
crypto-IDs in the RTS system. Crypto-IDs serve as product
IDs for product identification purpose as used in general
RFID framework with the following two additional security
properties: (1) crypto-IDs have non-repudiation property
from which both the logistics provider and the receiver can
acquire evidences to prove batch and item non-repudiations;
and (2) crypto-IDs have privacy property to hide the content
of the production messages. SRTS leverages the security
properties of crypto-IDs as well as careful protocol design to
achieve batch privacy, batch non-repudiation and item non-
repudiation. By leveraging tags to distribute computation-
lightweight crypto-IDs, SRTS also reduces the communica-
tion and computation overhead, achieving batch efficiency.

SRTS implements this idea through two steps. SRTS first
introduces a Private Verifiable Signature (PVS) scheme to
efficiently sign production messages as a whole in a privacy-
preserving way. The signing result can be properly encoded
into computation-lightweight crypto-IDs. SRTS then pro-
vides a set of distributed protocols to combine PVS scheme
with RTS system through careful design. Specifically, prod-
uct batch transfer protocol is executed in the delivery of a
product batch. The sender generates crypto-IDs from the pro-
ductionmessages of the batch through PVS scheme. After the
delivery, both the logistics provider and the receiver acquire
evidences from tag carried crypto-IDs. Later, the two parties
can use the acquired evidences in a product batch arbitration

protocol and an auditable item-level arbitration protocol to
prove batch non-repudiation and item non-repudiation,
respectively. The evidences are used in different ways in the
two protocols to optimize the performance.

Our contributions can be summarized as follows. To our
best knowledge, we are the first to propose efficient solu-
tions to achieve these key security and efficiency require-
ments for large-scale RTS systems. We formulate and study
three major security and efficiency requirements in RTS
systems, i.e., batch privacy, batch non-repudiation/item
non-repudiation and batch efficiency. We devise the SRTS
scheme to achieve the desired requirements. We carry out
extensive evaluation and evaluate the applicability of our
approach on commodity C1G2 RFID systems.

2 BACKGROUND AND PROBLEM

2.1 RFID Framework

Current RFID systems generally consist of three main com-
ponents: RFID tags, RFID readers and a database. Light-
weight commodity RFID tags harvest energy from RFID
readers and backscatter incident signals to communicate
with the RFID readers [1], [2]. The RFID tags have moderate
storage capability with small onboard non-volatile memory,
e.g., the Alien ALN-9640 passive RFID tags are equipped
with a 512-bit user memory [28]. RFID readers can read/
write a small amount of data (e.g., 512 bits) from/to user
memory of RFID tags [28], [29]. Restricted by the small
memory of RFID tags, product details are not carried by the
tags but stored in the database, and accessed by the tag IDs
as indexes to achieve fine-grained information sharing
among participants. By labeling the products with RFID
tags, supply chain participants can read tag IDs to efficiently
track the labeled products and product details, which
greatly facilitates the logistics and product management.

2.2 RFID-Enabled RTS System

An RFID-enabled RTS system consists of three participants:
a logistics provider and two cooperative firms. We name
the logistics provider as Relaynode and distinguish the two
firms as Sender and Receiver. Sender transfers tagged prod-
uct batches to Receiver through Relaynode. We describe
detailed operations shortly.

To transfer a product batch, Sender attaches RFID tags to
the batch. Depending on the applications, tags can be attached
in different levels, such as item-level, packet-level or con-
tainer-level. In this paper, we focus on item-level tag attach-
ment as other levels can be easily extended from item-level.

Each product of the batch corresponds to a message
idijjmi, which consists of an ID idi and a production message
mi. Sender writes idi into the attached tag and stores the
message mi in its database indexed by idi. We consider a
general case where the production messages of the products
within the same batch may be different. For instance, a hos-
pital (Receiver) may order a batch of medicines from a medi-
cine company (Sender), with the batch containing different
types of medicines.

2.3 Desired Requirements

When a product batch is transferred through RTS system,
different participants are concerned about different security

Fig. 1. Diverse requirements of different participants in an RFID-enabled
RTS system.
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requirements against other participants for the batch. Yet,
the three participants hope to afford lightweight batch
delivery overhead. In summary, the participants are con-
cerned about following three requirements:

� Batch privacy: Sender wants to share the production
message mi of each product in the batch with
Receiver. As the content of mi might be related to
sensitive business matters, both Sender and Receiver
do not want to leakmi to Relaynode.

� Batch and item non-repudiation: Both Relaynode and
Receiver want to obtain the ability to publicly prove
batch non-repudiation—convincing an authority the
receipt of the product batch with each product asso-
ciated with a production message mi; and item non-
repudiation—convincing an authority the receipt of
a certain product in the batch associated with a pro-
duction messagemi.

� Batch efficiency: To achieve the above two security
requirements, the production message mi of each
product in the batch needs to be properly equipped
with privacy and non-repudiation properties and
delivered from Sender to Relaynode and Receiver. As
Relaynode is on the critical path of each product
batch delivery, all the three participants hope to min-
imize the delivery overhead to avoid Relaynode
becomes a bottleneck of the RTS system.

3 OVERVIEW OF SRTS

Basically, SRTS combines cryptographic tools with RFID
framework to achieve the desired security and efficiency
requirements. SRTS leverages RFID tags to deliver compu-
tation-lightweight crypto-IDs in the RTS system to reduce
the communication and computation overhead. For a prod-
uct batch, each product tag is loaded with a crypto-ID and
the corresponding production message is stored at Sender’s
database indexed by the crypto-ID. The crypto-ID serves as
a product ID to identify the product as used in RFID frame-
work with two additional security properties: (1) crypto-IDs
have non-repudiation property from which both Relaynode
and Receiver can acquire receipt evidences of a product
batch. The constructed evidences can be used to prove batch
and item non-repudiations for the product batch; and (2) the
crypto-IDs have privacy property to hide the content of the
production messages. As a result, the only way to acquire
the production messages is to access Sender’s database,
which is only allowed by Receiver. In the following, we first
give a strawman item-level solution, which presents partial
design principles of SRTS. This solution then leads to our
final design of SRTS.

3.1 A Strawman Item-Level Solution

A strawman design might be to encode a signed commit-
ment as a cypto-ID, with the production message commit-
ted in the commitment. During the transfer of a product
batch, both Relaynode and Receiver can directly collect the
signed commitments from the product tags as evidences.
Receiver is further allowed to use the signed commitments
as indexes to retrieve the production messages from
Sender’s database. In an arbitration, Relaynode/Receiver
could choose to reveal one or all of the collected signed

commitments to an authority to prove item non-repudiation
or batch non-repudiation, respectively. After convincing
that the revealed signed commitment(s) is(are) correctly
signed by Sender, the authority then requires Sender to
reveal the committed production messages. Due to the secu-
rity of commitment scheme, revealing tampered production
messages will be detected by the authority.

This design, however, incurs prohibitive signature proc-
essing overhead. In a large-scale RTS system, where a large
amount of product batches are delivered, the participants
have to process tag carried digital signatures (contained in
the signed commitment) in item-level. For a batch of n prod-
ucts, Sender needs to generate n signatures, and Relaynode
and Receiver need to verify n signatures. Signature compu-
tation could incur considerable overhead (see detailed
experiments in Section 6), and thus delay the transportation
in RTS system. Besides, low-cost, storage-constrained tags
cannot accommodate excessively long signatures, e.g., a
320-bit ECDSA signature alone may consume more than
half of the commodity tag memory.

3.2 Our Design

Instead, our design of SRTS provides a new signature
scheme called Private Verifiable Signature scheme, whose
signing result can be encoded into computation-lightweight
crypto-IDs. SRTS then provides a set of distributed proto-
cols to combine PVS scheme with RFID framework through
careful design.

PVS scheme. PVS scheme adopts a commit-then-sign pat-
tern to sign the production messages of a product batch as a
whole in two ways: public signing and private signing. In
public signing, the production messages are committed into
commitments and the concatenation of which are further
signed by a digital signature scheme. The production mes-
sages as well as the signature is then output as a message
batch-signature (MB) pair. In private signing, the produc-
tion messages are committed and then signed in the same
way as in the public signing, while the commitments as
well as the signature is output as a commitment batch-sig-
nature (CB) pair. Both the MB and CB pairs incur constant
signature storage and computation overhead regardless of
the number of the production messages. PVS scheme guar-
antees that both the MB pair and the CB pair are unforge-
able while the CB pair hides but binds the committed
production messages. All these security properties are for-
mally proved in security models.

Combining PVS scheme with RTS system. SRTS combines
PVS scheme with RTS system by providing a set of distrib-
uted protocols. SRTS provides a product batch transfer pro-
tocol as shown in Fig. 2. To transfer a product batch, Sender
privately signs the production messages of the batch to gen-
erate a CB pair and divides the pair into crypto-IDs. During
the transfer, both Relaynode and Receiver can directly
recover the CB pair from the tags as evidence. Additionally,
Receiver can choose to retrieve the production messages
from Sender, incorporate them with the CB pair to generate
a MB pair, and stores the MB pair as its evidence.

SRTS provides a product batch arbitration protocol to
prove batch non-repudiation. In the protocol, Relaynode/
Receiver directly reveals its CB/MB pair of the batch to
an authority to prove batch non-repudiation for the
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product batch. Due to the non-repudiation property of
CB pair, the authority convinces that the commitments
contained in the CB pair is generated from Sender. The
authority further requires Sender to reveal these commit-
ted production messages. Due to the binding property of
CB pair, revealing tampered production messages will
be detected by the authority. Due to the non-repudiation
property of MB pair, the authority directly convinces
that the production messages contained in the MB pair
is generated from Sender.

To efficiently prove item non-repudiation, SRTS pro-
vides an auditable item-level arbitration protocol. The pro-
tocol starts with a lightweight item non-repudiation proof
phase which involves the exchange of attestations, and fol-
lowed by an expensive audit phase which involves the
reveal of a CB/MB pair. The protocol guarantees that if all
participants behave correctly in the item non-repudiation
proof phase, then the audit phase can be ignored. Whereas
if misbehavior occurs, audit phase will be triggered and
the malicious participant will be detected. Such a separa-
tion enforces all the participants behave in the lightweight
item non-repudiation proof phase, and the expensive audit
phase thus can be ignored.

4 SRTS: PRIVATE VERIFIABLE SIGNATURE

In this section, we focus on PVS scheme and analyze its
security properties. PVS scheme is the key component of
SRTS to achieve lightweight batch-level signature process-
ing (computation and storage) overhead.

With the PVS scheme, Sender can sign production mes-
sages to generate either an MB pair or a CB pair. The MB
pair reveals the production messages, while the CB pair
hides the production messages. Both the CB and MB pairs
involve one signature regardless of the number of the pro-
duction messages.

PVS scheme guarantees several security properties
including: (1) both the MB pair and the CB pair are unforge-
able, (2) the CB pair hides the production messages, and (3)
the CB pair can only be opened to the hidden production
messages.

4.1 Notations and Preliminaries

We list the important nations used in PVS scheme in Table 1.
To sign product messages by PVS scheme, all the produc-
tion messages need to be first concatenated to form a long

message. At a high level, our construction adopts a multi-
commit then single-sign mechanism to compose two crypto
primitives: digital signature scheme and string commitment
scheme.

Digital signature. A digital signature scheme
Q

D = (skg,
sig, ver) consists of a key generation algorithm skg(), a sign-
ing algorithm sig() and a verification algorithm ver(). We
require the signing algorithm to support the signing of vari-
able length message. The security property of a signature
scheme is that an adversary cannot forge a valid message-
signature pair.

String commitment. A string commitment scheme
Q

S =
(ckg, commit) consists of a key generation algorithm ckg()
and a committing algorithm commit(). A user can use
commit() to generate a commitment for a string. The security
properties of a commitment scheme are (1) hiding: the com-
mitment does not leak any information about the string,
and (2) binding: it is hard for the user to produce two differ-
ent strings and a commitment such that the commitment is
valid to both the strings.

4.2 Definition of PVS Scheme

By using the above two crypto primitives as building
blocks, PVS scheme is constructed to provide six algorithmsQ

= (KeyGen, Sign, Verify, PriSign, PriVerify, Check). We
briefly introduce the six algorithms as follows:

� KeyGen(�) ! (PK, SK): On input a security parame-
ter �, this algorithm outputs a public-secret key pair
(PK, SK).

� Sign(PK, SK, {mi}n)! ({mi}n, dMB): On input a public
key PK, a secret key SK and production messages
{mi}n, this algorithm outputs an MB pair ({mi}n,
dMB), which can be verified by Verify().

� Verify(PK, {mi}n, dMB)! (Accept, Reject): On input a
public key PK and an MB pair ({mi}n, dMB), this

TABLE 1
Important Notations

Notations Definitions

(pk, sk) Public-secret key pair of digital signature
scheme

s Signature of digital signature scheme
ck Commitment key of string commitment

scheme
com Commitment of string commitment scheme
r Random number used to generate commit-

ment com
U Domain of random number r
{stri}num Concatenated batch of nummessages

str1jj � � � jjstrnum
(PK, SK) Public-secret key pair of PVS scheme
({mi}n, dMB) Message batch-signature(MB) pair of PVS

scheme
{mi}n Concatenated batch of n production mes-

sagesm1jj � � � jjmn

dMB Signature in MB pair
({mci}n, dCB) Commitment batch-signature(CB) pair of

PVS scheme
{mci}n Concatenated batch of n PVS commitments

mc1jj � � � jjmcn
dCB Signature in CB pair

Fig. 2. Product batch transfer.
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algorithm verifies the validity of ({mi}n, dMB) and
outputs either Accept or Reject.

� PriSign(PK, SK, {mi}n)! ({mci}n, dCB, {ri}n): On input
a public key PK, a secret key SK and production mes-
sages {mi}n, this algorithm outputs a CB pair ({mci}n,
dCB) and witnesses {ri}n. The CB pair can be verified
by PriVerify().

� PriVerify(PK, {mci}n, dCB) ! (Accept, Reject): On
input a public key PK and a CB pair ({mci}n, dCB),
this algorithm verifies the validity of ({mci}n, dCB)
and outputs either Accept or Reject.

� Check(PK, {mi}n, {ri}n, {mci}n, dCB) ! (Accept,
Reject): On input a public key PK, production mes-
sages {mi}n, witnesses {ri}n and a CB pair ({mci}n,
dCB), this algorithm checks whether {mi}n is the origi-
nal production messages committed in ({mci}n, dCB)
and outputs either Accept or Reject.

4.3 Security Properties

The security of a PVS scheme is defined by four security
properties: MB-unforgeability, CB-unforgeability, Binding and
Privacy. Comparing with a general digital signature scheme,
which only provides MB-unforgeability, a PVS scheme pro-
vides three additional security properties.

MB-unforgeability. Intuitively, MB-unforgeability means
that it is computationally infeasible for an adversary A to
forge a valid MB pair ({mi}n, dMB) with respect to the signer.

Definition 1 (MB-unforgeability). A PVS scheme
Q

=
(KeyGen, Sign, Verify, PriSign, PriVerify, Check) satisfies
the MB-unforgeability property if every probabilistic polyno-
mial time (p.p.t.) adversary A has negligible advantage to win
in the following experiment.

Experiment ExpMB�unf
A [PVS]:

(PK, SK) KeyGen(�);
({mi}

�
n, d
�
MB) ASignðSK;PK;?Þ(�, PK);

output 1 if Verify(PK, {mi}
�
n, d
�
MB)! Accept

^ {mi}
�
n =2 M;

else output 0

Our experiment allows A to submit message batches
to a signing oracle Sign(SK, PK, ?), which returns the corre-
sponding MB pairs. All the queried message batches are
recorded in a set M. We define the advantage of A as

AdvMB�unf
A [PVS] = Pr[ExpMB�unf

A [PVS]) 1].

CB-unforgeability. Intuitively, CB-unforgeability means
that it is computationally infeasible for an adversary A
to forge a valid CB pair ({mci}n, dCB) with respect to the
signer.

Definition 2 (CB-unforgeability). A PVS scheme
Q

=
(KeyGen, Sign, Verify, PriSign, PriVerify, Check) satisfies
the CB-unforgeability property if every probabilistic polyno-
mial time adversary A has negligible advantage to win in the
following experiment.

Experiment ExpCB�unf
A [PVS]:

(PK, SK) KeyGen(�);
({mci}

�
n, d
�
CB) APriSignðSK;PK;?Þ(�, PK);

output 1 if PriVerify(PK, {mci}
�
n, d
�
CB)! Accept

^ {mci}
�
n =2 M;

else output 0

Our experiment allows A to submit (message batch, wit-
nesses) pairs to a signing oracle PriSign(SK, PK, ?), which
returns the corresponding CB pairs. The commitment
batches contained in all the returned CB pairs are recorded in

a set M. We define the advantage of A as AdvCB�unfA [PVS] =

Pr[ExpCB�unf
A [PVS]) 1].

Binding. Intuitively, binding means that it is computation-
ally infeasible for an adversary A to produce message
batches {mi}n 6¼{m0i}n and a CB pair ({mci}n, dCB), such that
{mci}n is valid to both {mi}n and {m0i}n.

Definition 3. (binding) A PVS scheme
Q

= (KeyGen, Sign,
Verify, PriSign, PriVerify, Check) satisfies the binding prop-
erty if every probabilistic polynomial time adversary A has
negligible advantage to win in the following experiment.

Experiment Expbind
A [PVS]:

(PK, SK) KeyGen(�);
({mi}

1
n, {ri}

1
n, {mi}

2
n, {ri}

2
n, {mci}n, dCB) 

 A(�, PK, SK);
output 1 if Check(PK, {mi}

1
n, {ri}

1
n, {mci}n, dCB)

! Accept
^ Check(PK, {mi}

2
n, {ri}

2
n, {mci}n, dCB)

! Accept
^ {mi}

1
n 6¼ {mi}

2
n;

else output 0

We define the advantage of A as AdvbindA [PVS] = Pr

[Expbind
A [PVS]) 1].

Privacy. Intuitively, privacy means that it is computation-
ally infeasible for an adversary A to learn non-trivial
knowledge about the message batch {mi}n from a CB pair
({mci}n, dCB).

Definition 4 (privacy). A PVS scheme
Q

= (KeyGen, Sign,
Verify, PriSign, PriVerify, Check) satisfies the privacy prop-
erty if every probabilistic polynomial time adversary A has
negligible advantage to win in the following experiment.

Experiment ExpPriv
A [PVS]:

(PK, SK) KeyGen(�);
({mi}

1
n, {mi}

2
n) A(�, PK);

b R {0, 1};
({mci}

b
n, dCB, {ri}

b
n) PriSign(PK, SK, {mi}

b
n);

b’ A(�, PK, {mci}
b
n, dCB);

output 1 if b’=b, else output 0

Our experiment uses indistinguishability of multiple
messages, which allows A to submit two message batches
and get a CB pair. The committed messages are chosen ran-
domly from one of the two message batches. A then guesses
which message batch is committed. We define the advan-

tage of A as AdvPrivA [PVS] = Pr[ExpPriv
A [PVS]) 1] - 1/2.

4.4 Construction of PVS Scheme

We describe a concrete PVS scheme in Table 2. Next, we
analyze the security of our construction.

Theorem 1. If the digital signature scheme
Q

D is unforgeable
and if the string commitment scheme

Q
S is binding, then our

construction of PVS scheme
Q

achievesMB-unforgeability.

Proof.WhenA submits amessage batch fmign to the signing
oracleSign(SK,PK,?), the oracle computes a commitment
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batch fmcign for fmign, signs fmcign using the underlying
digital signature scheme, and returns an MB-pair ({mi}n,

dMB). Suppose A queried l message batches (fmig1n1 , . . . ,
fmiglnl ) to the signing oracle Sign(SK, PK, ?), and ({mi}

�
n,

d�MB) is the purported forgery output by A. The forgery
must fall in at least one of the following two cases: (1)

Case 1: For everymessage batch fmigjnjð1 � j � lÞ submit-

ted byA, the corresponding commitment batch fmcigjnj is
different from the commitment batch fmcig�n of {mi}

�
n. (2)

Case 2: There is amessage batch fmigjnj (1�j�l) submitted

by A such that its commitment batch fmcigjnj equals

{mci}
�
n. We thus concludeAdvMB�unf

A [PVS]� Pr[Case 1] +

Pr[Case 2].
In the first case, the adversary A could be used to

build an adversary B to break unforgeability of the digi-
tal signature scheme. At the beginning, B is given a
public key pk of the digital signature scheme and gener-
ates a commitment key ck of the string commitment
scheme. B then generates a public key of PVS scheme
PK = (pk, ck) and gives PK to A. B simulates the oracle
Sign(PK, SK, ?) as follows. When A queries a message

batch fmigjnjð1 � j � lÞ, B generates witnesses frigjnj
and uses this batch as well as ck to generate a commit-

ment batch fmcigjnj for fmigjnj . B then submits fmcigjnj
to its own signing oracle sig(sk, ?) of the digital signa-

ture scheme to get a signature sj. Finally, B returns an

MB-pair (fmigjnj , dMB) to A, where dMB = (sj, frigjnj ).
When A outputs ({mi}

�
n, d�MB), B parses d�MB = (s�,

frig�n), computes a commitment batch {mci}
�
n from {mi}

�
n

and frig�n, and outputs a message-signature pair ({mci}
�
n,

s�). Obviously, Pr[Case 1] equals the probability of B to
break unforgeability of the digital signature, which hap-
pens with negligible probability.

In the second case, the adversary A could be used to
build an adversary B to break binding of the string com-
mitment scheme. At the beginning, B is given a commit-
ment key ck of the string commitment scheme and
generates a public-secret key pair (pk, sk) of the digital sig-
nature scheme. B then generates a public key of PVS
scheme PK = (pk, ck) and gives PK to A. B simulates the
oracle Sign(PK, SK, ?) as follows. When A queries a mes-

sage batch fmigjnjð1 � j � lÞ, B generates witnesses frigjnj
and uses frigjnj as well as ck to generate a commitment

batch fmcigjnj for fmigjnj . B then signs fmcigjnj by using sk

to get a signature sj. Finally, B returns an MB-pair

(fmigjnj , dMB) to A, where dMB = (sj, frigjnj ). When A out-

puts ({mi}
�
n, d

�
MB), B finds the message batch fmigjnjð1 �

j � l) submitted by A with fmigjnj 6¼ fmig�n but fmcigjnj =
fmcig�n. B then finds amessagemi 2 fmigjnj and amessage

m0i 2 {mi}
�
n satisfying the condition commit(ck, mi, ri) =

commit(ck, m0i, r
0
i) and outputs (mi, ri, m

0
i, r
0
i). Obviously,

Pr[Case 2] equals the probability of B to break binding of
the string commitment scheme, which is negligible. tu

Theorem 2. If the digital signature scheme
Q

D is unforgeable,
then our construction of PVS scheme

Q
achieves CB-

unforgeability.

Proof. The adversary A could be used to construct an
adversary B to break unforgeability of the digital signa-
ture scheme. At the beginning, B is given a public key
pk of the digital signature scheme and generates a
commitment key ck of the string commitment scheme.
B then generates a public key of PVS scheme PK =
(pk, ck) and gives PK to A. B simulates the oracle
PriSign(SK, PK, ?) as follows. When A queries a mes-

sage batch fmigjnj and witnesses frigjnj , B uses frigjnj
as well as ck to generate a commitment batch fmcigjnj
for fmigjnj . B further queries fmcigjnj to its own sign-

ing oracle sig(sk, ?) to get a signature sj. B then

returns a CB-pair (fmcigjnj , d
j
CB) to A, where d

j
CB = sj.

When A outputs ({mci}
�
n, d�CB), B directly outputs

({mci}
�
n, d�CB). Obviously, AdvCB�unfA [PVS] equals the

probability of B to break unforgeability of the digital
signature scheme, which is negligible. tu

Theorem 3. If the string commitment scheme
Q

S is binding,
then our construction of PVS scheme

Q
achieves binding.

Proof. The adversaryA could be used to construct an adver-
sary B to break binding of the string commitment scheme.
At the beginning, B is given a commitment key ck of the
string commitment scheme and generates a public-secret
key pair (pk, sk) of the digital signature scheme. B then

TABLE 2
Construction of Private Verifiable Signature

KeyGen(�)! (PK, SK):
—- (pk, sk) skg(�);
—- ck ckg(�);
—- Output PK = (pk, ck) and SK = sk.

Sign(PK, SK, {mi}n)! ({mi}n, dMB):
—- for 1 � i � n:
—- ri R U;
—- comi commit(ck,mi, ri);
—- s sig(sk, {comi}n);
—- dMB = (s, {ri}n);
—- Output a MB pair ({mi}n, dMB).

Verify(PK, {mi}n, dMB)! (Accept, Reject):
—- for 1 � i � n:
—- comi commit(ck,mi, ri);
—- ver(pk, s, {comi}n) ¼ valid/invalid?
—- If valid, output Accept, else output Reject.

PriSign(PK, SK, {mi}n)! ({mci}n, dCB, {ri}n):
—- for 1 � i � n:
—- ri R U;
—- comi commit(ck,mi, ri);
—- s sig(sk, {comi}n);
—- {mci}n = {comi}n;
—- dCB = s;
—- Output a CB pair ({mci}n, dCB) and witnesses {ri}n.

PriVerify(PK, {mci}n, dCB)! (Accept, Reject):
—- ver(pk, dCB, {mci}n) = valid/invalid?
—- If valid, output Accept, else output Reject.

Check(PK, {mi}n, {ri}n, {mci}n, dCB)! (Accept, Reject):
—- for 1 � i � n:
—- mci = commit(ck,mi, ri)?
—- If all equal, output Accept, else output Reject.
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generates a public-secret key pair (PK, SK) of PVS scheme
with PK = (pk, ck) and SK = sk and gives (PK, SK) to A.
Suppose A outputs ({mi}

1
n, {ri}

1
n, {mi}

2
n, {ri}

2
n, {mci}n,

dCB) satisfying the condition Check(PK, {mi}
1
n, {ri}

1
n,

{mci}n, dCB) ! Accept ^ Check(PK, {mi}
2
n, {ri}

2
n, {mci}n,

dCB)! Accept ^ {mi}
1
n 6¼ {mi}

2
n. B finds mi 2 {mi}

1
n and

m0i 2 {mi}
2
n satisfying the condition commit(ck, mi, ri) =

commit(ck, m0i, r
0
i) ^ mi 6¼ m0i and outputs (mi, ri, m

0
i, r
0
i).

Obviously, AdvbindA [PVS] equals the probability of B to

break binding of the string commitment scheme, which is
negligible. tu

Theorem 4. If the string commitment scheme
Q

S is hiding, then
our construction of PVS scheme

Q
achieves privacy.

Proof. The adversaryA could be used to construct an adver-
sary B to break hiding (semantic security of multiple mes-
sages) of the string commitment scheme. At the
beginning, B is given a commitment key ck of the string
commitment scheme and generates a public-secret key
pair (pk, sk) of the digital signature scheme. B then gener-
ates a public key of PVS scheme PK = (pk, ck) and gives
PK to A. B simulates the oracle PriSign(PK, SK, ?) as fol-
lows. When A submits ({mi}

1
n, {mi}

2
n), B submits ({mi}

1
n,

{mi}
2
n) to its own committing oracle of the string commit-

ment scheme to get a commitment batch {mci}
b
n. B then

runs s sig({mci}
b
n, sk), sets dCB = s, and returns ({mci}

b
n,

dCB) to A. Suppose A outputs b0. B also outputs b0 as its

guess. Obviously, AdvprivA [PVS] equals the advantage of

B to break hiding of the string commitment scheme,
which is negligible. tu

5 SRTS: PROTOCOL DESIGN

In this section, we focus on SRTS. It consists of three proto-
cols: product batch transfer, product batch arbitration and audit-
able item-level arbitration.

5.1 Initialization

In SRTS, the three participants leverage existing secure
network communication protocols (such as SSL/TLS) to
achieve reliable message exchange. When two participants
need to exchange messages, they first authenticate the iden-
tity of each other and then establish a secure channel to
exchange messages.

Both the Relaynode and Receiver need to have their own
public-private key pairs of digital signature scheme. Their
public keys need to be certified by the key authority and
published, so that anyone can verify the validity of their
signatures.

To guarantee the security of SRTS, Sender needs to gener-
ate a public-secret key pair (PK, SK) of PVS scheme and
requests a certificate for PK from a key authority so that any-
one can verify the validity of PK. Recall that a PK consists of
a public key pk of a digital signature scheme and a commit-
ment key ck of a string commitment scheme. The commit-
ment scheme requires ck to be correctly generated by a
trustworthy party to guarantee its security properties. To
achieve this, we require the key authority to only accept pk
from Sender, generates ck by itself to form a public key PK =
(pk, ck), and issues a certificate on PK.

5.2 Product Batch Transfer

5.2.1 Message Batch Processing

To transfer a product batch of n products, Sender gener-
ates the production messages {mi}n for the product
batch. Sender then generates n crypto-IDs for {mi}n
through steps S1-S3:

S1. Sender runs the PriSign() algorithm of PVS scheme to
generate a CB pair for {mi}n and witnesses:

ðfmcign; dCB; frignÞ  PriSignðPK; SK; fmignÞ
S2. Consider the commitment batch fmcign in the CB

pair. Notice that fmcign represents a long message
mc1jjmc2jj...jjmcn. For each commitment mci, Sender concat-
enates mci with an in-batch index i, where i is the position
of mci in the long message. Sender then encodes each
indexed commitment ijjmci as a crypto-ID idi and stores the
n crypto-IDs into the n product tags. Sender attaches a batch
tag to the product batch and stores the common signature
dCB into it. Notice that a commitment mci is actually a ran-
dom element of a group G, which can properly serve as a
general ID to uniquely identify a tag.

S3. Sender creates a batch record in its database. The
batch record contains a two-layer index structure. The com-
mon signature dCB of the CB pair is used as the first-layer
index for the whole batch record. The crypto-IDs are used
as the second-layer index for the individual elements of
both the production messages and the witnesses:

ðdCB; fidijjmign; fidijjrignÞ:
5.2.2 Sender! Relaynode

The process is shown in Fig. 3 and described as follows.
Sender directly transfers the product batch to Relaynode.
Upon receiving it, Relaynode can use the tag carried cypto-
IDs to identify and track each product in the batch.
Relaynode can also collect the cypto-IDs from the product
tags as well as the common signature from the batch tag to
recover a CB pair through steps S1-S2:

S1. Relaynode concatenates the collected cypto-IDs fol-
lowing the order of their concatenated in-batch indexes to
recover a commitment batch {mci}n:

fmcign ¼ mc1jjmc2jj . . . jjmcn:

Relaynode then combines the commitment batch with the
collected common signature to recover the CB pair:

ðfmcign; dCBÞ:
S2. Relaynode runs the PriVerify() algorithm of PVS

scheme to verify if the CB pair is valid:

Fig. 3. Product batch transfer in Relaynode case.
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PriVerifyðPK; fmcign; dCBÞ ¼ Accept?

If valid, Relaynode stores the CB pair ðfmcign; dCBÞ as an evi-
dence in its database. Later, Relaynode transfers the product
batch to Receiver.

5.2.3 Relaynode! Receiver

The process is shown in Fig. 4 and described as follows.
Upon receiving the product batch from Relaynode,
Receiver can use the tag carried cypto-IDs to identify
and track each product in the batch. Receiver can also
collect the cypto-IDs from the product tags as well as
the common signature from the batch tag to recover an
MB pair through steps S1-S4:

S1-S2. Similar with Relaynode, Receiver recovers a CB
pair and runs the PriVerify() algorithm of PVS scheme to
verify its validity.

S3. If the CB pair ({mci}n, dCB) is valid, Receiver returns
the common signature dCB in the CB pair to Sender to fetch
the production messages and the witnesses:

ðfidijjmign; fidijjrignÞ:

S4. Receiver runs the Check() algorithm of PVS scheme to
verify if the fetched production messages are the exact ones
committed in the CB pair:

CheckðPK; fmign; frign; fmcignÞ ¼ Accept?

If valid, Receiver recovers an MB pair from the CB pair:

ðfmign; dMBÞ ¼ ðfmign; ðdCB; frignÞÞ
and stores the MB pair as an evidence in its database.

After the above four steps, Receiver accepts the fetched
production messages fidijjmign as valid for the received
product batch. For each product with tag carried crypto-ID
idi, Receiver can easily search the corresponding production
messagemi from fidijjmign.

5.3 Product Batch Arbitration

5.3.1 Relaynode Case

The process is shown in Fig. 5 and described as follows. To
prove batch non-repudiation for the product batch,
Relaynode starts an arbitration with the authority through
steps S1-S4:

S1. Relaynode sends its evidence ðfmcign; dCBÞ (the CB
pair) of the product batch to the authority.

S2. The authority runs the PriVerify() algorithm of PVS
scheme to verify the evidence:

PriVerifyðPK; fmcign; dCBÞ ¼ Accept?

S3. If Accept, the authority returns the common signature
dCB in the CB pair to Sender to fetch the production mes-
sages and the witnesses of the product batch:

ðfidijjmign; fidijjrignÞ:

S4. The authority runs the Check() algorithm of PVS
scheme to verify if the fetched production messages are the
exact ones committed in the evidence:

CheckðPK; fmign; frign; fmcignÞ ¼ Accept?

If Accept, the authority convinces the receipt of a product
batch with each product associated with a production mes-
sagemi2fmign.

5.3.2 Receiver Case

To prove batch non-repudiation for the product batch,
Receiver starts an arbitration with the authority through
steps S1-S2:

S1. Receiver sends its evidence ðfmign; dMBÞ (the MB pair)
of the product batch to the authority.

S2. The authority runs the algorithm VerifyðÞ of PVS
scheme to verify the evidence:

VerifyðPK; fmign; dMBÞ ! Accept?

If Accept, the authority convinces the receipt of a product
batch with each product associated with a production mes-
sagemi2fmign.

5.4 Auditable Item-Level Arbitration

Auditable item-level arbitration supports a more flexible
scenario where Relaynode/Receiver may want to prove item
non-repudiation, i.e., receipt of a certain product (in a prod-
uct batch) from Sender associated with a production mes-
sage mi to the authority. The protocol involves exchange of
attestations, which are signed messages. For simplicity, we
use the notion Sign(m) to denote a signed message m as
well as the corresponding signature.

5.4.1 Relaynode Case

The process is shown in Fig. 6 and described as follows.
To prove item non-repudiation for a certain product,
Relaynode starts an arbitration with the authority through
steps S1-S4 (S1-S3 belong to item non-repudiation proof
phase and S4 belongs to audit phase):

Fig. 4. Product batch transfer in Receiver case. Fig. 5. Product batch arbitration in Relaynode case.
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S1. Relaynode concatenates a notion Proof-request with
the commitment mci of the product, and signs the whole
message to generate an attestation:

SignRelaynodeðProof-requestjjmciÞ:

Relaynode then sends this attestation to the authority. Not-
ice thatmci is contained in the CBpair stored byRelaynode.

S2. Upon receiving the attestation, the authority records
it, sends the commitmentmci to Sender and requests the lat-
ter to reveal the production message committed inmci.

S3. Upon receivingmci, Sender decides whether to accept
the authority’s request. If accept, Sender concatenates a
notion Accept with a production message mi, and signs the
whole message to generate an attestation:

SignSenderðAcceptjjmiÞ:

If reject, Sender concatenates a notion Reject with the
commitment mci, and signs the whole message to generate
an attestation:

SignSenderðRejectjjmciÞ:

Sender then returns its attestation to the authority.
On the other hand, the authority either checks if mi is the

exact production message committed inmci and records the
attestation. If the first case happens, the authority convinces
the receipt of a product associated with the production mes-
sage mi. Finally, the authority informs the proof result to
Relaynode.

S4. If a malicious Sender refuses to reveal the production
message for a valid commitment mci, then Relaynode can
choose to send the CB pair, which includes mci, to the
authority to prove the validity ofmci.

Efficiency. The design of the audit phase S4 enforces both
Sender and Relaynode to correctly execute the item non-
repudiation proof phase S1-S3; otherwise their malicious
behaviours will be detected by the authority through S4.
But if Sender and Relaynode correctly execute item non-
repudiation proof phase, auditable item-level arbitration proto-
col will end and S4 will not be executed. From Fig. 6, we can
clearly see that the item non-repudiation proof phase only
involves the commitment or the production message of the
targeted product, and the CB pair of a product batch is not
involved. Overall, we can conclude that our protocol in
Relaynode case prunes the abundant overhead incurred by
the rest products in the same batch.

5.4.2 Receiver Case

Receiver can prove item non-repudiation for a certain prod-
uct through four steps similar with the Relaynode case.

S1. Receiver sends an attestation:

SignReceiverðProof-requestjjmiÞ
to the authority. Note that mi is contained in the MB pair
stored by Receiver.

S2. Upon receiving the attestation, the authority records
it, sends the message mi to Sender and requests the latter to
decide if to accept the message.

S3. If Sender decides to accept, it directly returns an attes-
tation:

SignSenderðAcceptjjmiÞ

to the authority. Otherwise, Sender returns an attestation:

SignSenderðRejectjjmiÞ
to the authority.

S4. Receiver sends the MB pair, which includes mi, to the
authority to prove the validity ofmi.

Efficiency. The efficiency is similar with the Relaynode
case, and we just ignore it here. Clearly, we can also con-
clude that our protocol in Receiver case prunes the abun-
dant overhead incurred by the rest products (and protects
the privacy of their production messages) in the same batch.

5.5 Security Analysis

We now analyze the security of SRTS. Specifically, we focus
on Batch privacy and Batch and Item non-repudiation.

5.5.1 Batch Privacy

Consider the product batch transfer protocol of SRTS in
which a product batch is transferred. Sender only stores a
CB pair into the tags of the product batch. Due to privacy
property of PVS scheme, it is infeasible for Relaynode
to learn any non-trivial knowledge about the production
messages from the CB pair. Formally, Relaynode can be
described as the adversary defined in Definition 4 (privacy)
and the security is proved in Theorem 4.

5.5.2 Batch Non-Repudiation

We analyze Batch non-repudiation in Relaynode case and
Receiver case separately as follows.

Relaynode case. Consider the Relaynode case of the prod-
uct batch arbitration protocol in SRTS. Suppose Relaynode
wants to prove batch non-repudiation for a product batch.
Relaynode shows the CB pair of the product batch for the
authority to verify. Due to CB unforgeability of PVS scheme,
the authority convinces receipt of a product batch with each
product associated with a product message committed in
mci. Formally, Relaynode can be described as a weak ver-
sion of the adversary defined in Definition 2 (CB-unforgeabil-
ity) and the security is proved in Theorem 2.

The authority then requests Sender to reveal the produc-
tion messages {mi}n committed in the CB pair. Due to binding
property of PVS scheme, Sender cannot reveal tampered pro-
duction messages {m0i}n which can also pass the check.

Fig. 6. Auditable item-level arbitration in Relaynode case.
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Formally, Sender can be described as the adversary defined in
Definition 3 (binding) and the security is proved in Theorem 3.

Combining the above two steps, the authority convinces
receipt of a product batch with each product associated
with a production messagemi 2 {mi}n.

Receiver case. Consider the Receiver case of the product
batch arbitration protocol in SRTS. Suppose Receiver wants
to prove batch non-repudiation for a product batch.
Receiver shows the MB pair of the product batch for the
authority to verify. Due to MB unforgeability of PVS scheme,
the authority convinces receipt of a product batch with each
product associated with a production messagemi contained
in the MB pair. Formally, Receiver can be described as the
adversary defined in Definition 1 (MB-unforgeability) and the
security is proved in Theorem 1.

5.5.3 Item Non-Repudiation

We analyze Item non-repudiation in Relaynode case and
Receiver case separately as follows.

Relaynode case. Consider the Relaynode case of the audit-
able item-level arbitration protocol in SRTS. Suppose
Relaynodewants to prove item non-repudiation for a certain
product. The audit phase S4 enforces a malicious Sender to
accept the revealing request for a valid commitment; since if
the malicious Sender chooses to reject, then it must provide
a reject attestation in S3 to the authority. In this case,
Relaynode shows the CB pair to verify the commitment in
S4. Due to CB unforgeability of PVS scheme, the authority
confirms that the commitment is valid. As the reject attes-
tation is signed by Sender, due to unforgeability of signature
scheme, the authority can use this attestation to accuse that
Sender rejects a valid commitment.

The audit phase S4 also enforces a malicious Relaynode
to prove item non-repudiation for a valid product; since if
Relaynode provides a fake commitment in S1, Sender can
safely reject to reveal the production message committed in
the commitment. In this case, themaliciousRelaynode cannot
show a valid CB pair to verify the fake commitment in S4 due
to CB unforgeability of PVS scheme. Recall that Relaynode
already provided a request attestation in S1 to the authority,
which is signed by Relaynode. Due to unforgeability of signa-
ture scheme, this request attestation can be used by the
authority to accuse that Relaynode requests to prove item
non-repudiation for a fake product (commitment).

Receiver case. Consider the Receiver case of the auditable
item-level arbitration protocol in SRTS. The analysis is simi-
lar with the Relaynode case, and we just ignore it here.

6 PERFORMANCE EVALUATION

6.1 Selection of Crypto-Primitives

Recall that PVS scheme builds on top of two crypto-primi-
tives: namely digital signature scheme and string commit-
ment scheme. We now consider several instantiations of
the two crypto-primitives that can be used to implement
PVS scheme.

BLS signature scheme. We consider BLS signature scheme
[33] as an instantiation of the digital signature scheme. In
this scheme, a secret key is a random value x selected from
an interval [0, q-1] where q is a prime number. The corre-
sponding public key is gx where g is a generator of a group

G with order q. To sign a message m, one computes h=H(m)
where H() is a hash function hashing m to an element of G,
and computes a signature sig=hx. Given pk=gx and sig=hx,
the verification of the signature sig is performed by checking
the equivalence e(sig, g)=e(HðmÞ, gx). Here, e(�,�) is a bilinear
mapG�G!GT mapping two elements of group G to an ele-
ment of group GT .

Pedersen commitment scheme. We consider Pedersen com-
mitment scheme [26] as an instantiation of the string com-
mitment scheme. In this scheme, a commitment key ck
comprises a generator g of a group G with prime order q
and a random element h of G. To commit to a string m in an
interval [0, q-1], one draws a random value r in [0, q-1] and
computes the commitment com=gmhr. To open a commit-
ment, one sends the tuple (m, r) to the verifier who checks
whether com=gmhr.

Hash commitment scheme. We consider Hash commitment
scheme as another instantiation of the string commitment
scheme, which can be used to replace Pedersen commit-
ment scheme with security-efficiency tradeoff. A commit-
ment of Hash commitment scheme is a hash value H(m, r),
where H() is a collision-resistant hash function, m is the
committed string and r is a random number.

Compared with the Pedersen commitment scheme, the
Hash commitment scheme enjoys higher efficiency but suf-
fers weaker security. The computation overhead of Hash
commitment scheme ismore efficient than Pedersen commit-
ment scheme. Instead, Hash commitment provides informal
hiding property. Although an output of a hash function is
thought to hide the underlying input in some works [34], the
hiding property of hash function is not formally defined and
guaranteed in the cryptographic literature.

6.2 Computation Overhead

We compare SRTS with the basic Item-level Solution (IS) as
discussed in Section 2 in terms of cryptographic opera-
tions. According to our crypto selection, both IS and SRTS
can be built on two compositions of digital signature and
string commitment, namely “BLS signature + Perdersen
commitment” and “BLS signature + Hash commitment”.
We term the two instantiations as PE-based scheme and
HA-based scheme. We compare the performance of PE-
IS, HA-IS and PE-SRTS, HA-SRTS. The computation over-
head of BLS signature is dominated by exponentiation
operation ExpG on group G and pairing operation Paire of
bilinear map e. The computation overhead of Pedersen
commitment is dominated by exponentiation operation
ExpG on group G. The computation overhead of Hash com-
mitment is dominated by hash operation H.

Table 3 summarizes the cryptographic operations of PE-IS
and PE-SRTS incurred at the three participants respectively,
when a batch of n products are transferred through RTS sys-
tem. The comparison of HA-IS and HA-SRTS is similar and is

TABLE 3
Comparison of IS and SRTS in Terms

of Cryptographic Operations

Sender Relaynode Receiver

PE-IS nExpG+2nExpG 2nPaire 2nPaire+2nExpG
PE-SRTS ExpG+2nExpG 2Paire 2Paire+2nExpG
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ignored. The computation benefit of SRTS is derived from
the signature processing overhead (signature generation for
Sender and signature verification for Relaynode and
Receiver). SRTS requires the three participants to process 1
signature while IS requires the three participants to process
n signatures. As shown in Table 3, SRTS reduces computa-
tion complexity from nExpG to ExpG at Sender side and from
2nPaire to 2Paire at both Relaynode and Receiver sides.
Importantly, SRTS incurs constant computation complexity
at Relaynode regardless of the size of the product batch, thus
avoidingRelaynode as a bottleneck of the RTS system.

6.3 Tag Memory Overhead

We compare with the IS as a baseline in terms of tag storage
overhead. Recall that SRTS requires each tag to store a
crypto-ID, which is a commitment concatenated with an in-
batch index. We set the in-batch index to be 16 bits long to
support at most 216=65,536 products in a batch. Compared
with IS, SRTS avoids the tag storage of digital signatures.
PE-IS and HA-IS raise 672 bits storage while PE-SRTS and
HA-SRTS raise 336 bits storage. We see that SRTS saves
about 50 percent tag storage overhead compared with IS.
Note that SRTS achieves more tag storage benefit if other
long-length digital signature schemes are adopted.

6.4 Experiment Results

In our implementation, we adopt the Pairing Based Cryp-
tography (PBC) libraries [35], [36], [37] to implement BLS
signature, Pedersen commitment and Hash commitment.
All the experiment results represent the average of 10 trials.

Each of Sender, Relaynode and Receiver has a backend
server and multiple readers. The readers are used to bundle
tag carried messages and forward the messages to the server
via internal network for further computation. Current enter-
prises often own commercial-level servers to complete their
computation tasks. In our experiments, we use a computa-
tion abundant PC to simulate the commercial-level server of
each of the three participants, and conduct our experiments
on the PC. The PC is equipped with a 16-Core AMDOpteron
Processor and 16 GB RAM, running 64-bit Ubuntu 13.10.

We compare the performance of IS and SRTS at the three
participants to transfer a batch of n products. In our experi-
ment, we generate n random production messages. We vary
n from 2,000 to 10,000. Figs. 7a, 7b, 7c show the experiment
results at the three participants, respectively. The experi-
ment results show that SRTS incurs far less computation
overhead compared with IS. To transfer a batch of 10,000
products with PE-SRTS, Sender costs 845 s (3,662 s with

PE-IS), Relaynode costs 0.257 s (2,601 s with PE-IS) and
Receiver costs 2,307 s (8,416 s with PE-IS). Notice that at
Relaynode side, SRTS incurs constant computation overhead
regardless of the number of products. The reason is that
Relaynode only needs to run PriVerify() algorithm once.

Table 4 lists the speed up ratio of SRTS against IS at the
three participants. At Sender side, SRTS achieves 4.4 to 5.2
times speed up (lines 1-2). At Relaynode side, the speed up
of SRTS grows linearly with the number of products, from
2,000 to 10,000 times (line 3). At Receiver side, SRTS achieves
3.2 to 3.8 times speed up (lines 4-5). The experiment results
confirm our complexity analysis shown in Table 3.

6.5 Parallelization of SRTS

A design advantage of SRTS is that it is highly parallelizable.
In transferring a batch of n products, the computation task of
Sender can be divided into n independent commitment com-
putation tasks and a signing task, and the computation task
of Receiver can be divided into n independent commitment
computation tasks and a signature verifying task.

We implement a parallel version of SRTS and compare
the computation overhead of parallel-SRTS and original
SRTS to process a batch of n products. We vary n from 2,000
to 10,000. Figs. 8a, and 8b show the experiment results at
Sender and Receiver sides, respectively. Our results show
that parallel-SRTS achieves obvious speed up compared
with SRTS. To transfer a batch of 10,000 products with PE-
parallel-SRTS, Sender costs 153 s (755 s with PE-SRTS) and
Receiver costs 933 s (2,162 s with PE-SRTS).

Table 5 lists the speed up ratio of parallel-SRTS and SRTS
at Sender and Receiver sides. At Sender side, parallel-SRTS
achieves 4 to 5 times speed up (lines 1-2). At Receiver side,
parallel-SRTS achieves 2 to 2.3 times speed up (lines 3-4).

6.6 Tolerating Tag Errors and Failures

In SRTS, when a product batch is transferred in the RTS sys-
tem, Relaynode and Receiver need to collect the crypto-IDs
from the attached tags to recover a commitment batch, from
which they can further derive a CB pair or an MB pair.

Fig. 7. Comparison of IS and SRTS.

TABLE 4
Speed-Up Ratio of SRTS versus IS

Number of tags 2,000 4,000 6,000 8,000 10,000
Sender side-PE 4.3 4.5 4.5 4.4 4.3
Sender side-HA 4.7 5.0 5.1 4.7 4.9
Relaynode side 1,977 4,262 6,290 8,097 10,120
Receiver side-PE 3.7 3.7 3.7 3.7 3.6
Receiver side-HA 3.3 3.3 3.2 3.4 3.4
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However, RFID tag is not a robust medium to carry message.
In specific, a tag may suffer from: (1) tag error, i.e., the tag
carries a wrong crypto-ID; (2) tag failure, i.e., the tag loses its
functionality and its crypto-ID cannot be read anymore.

To tolerate tag errors and tag failures, we propose to
extend the concept of crypto-ID to design redundant crypto-
ID. Our idea is to combine Reed-Solomon code (RS code)
with crypto-ID. A Reed-Solomon code is termed as RS(n, k)
with s-bits symbols. The RS encoder takes k s-bits symbols to
generate n redundant s-bits codewords. The RS decoder can
correct up to s errors or up to r erasureswith 2s + r < 2t.

Recall that a crypto-ID is an indexed commitment ijjmci.
For a product batch with n products, we encode the corre-
sponding commitment batch fmcign ¼ mc1jjmc2jj . . . jjmcn
into a redundant commitment batch by encoding every k�s
bits of the commitment batch into n�s bits code words. We
then equally divide the redundant commitment batch into n
pieces. For each piece rmci, we concatenate it with an index i
and generate a redundant crypto-ID ijjrmci. Clearly, our
redundant crypto-IDs can tolerant tag errors and tag failures.

We compare the performance of RS code with that of PE-
SRTS. We use the implementation of a popular RS(255, 223)
code [42]. We conduct two groups of experiments: (1) We use
the PriSign() algorithm to generate a CB pair and then use the
RS encoder to encode the commitment batch contained in
the CB pair into a redundant commitment batch. (2) We use
the RS decoder to decode a redundant commitment batch into
a commitment batch, use the batch to form a CB pair, and run
Check() algorithmon the CB pair.Wemeasure the percentage

of the time of the RS encoder/decoder against the total time
and summarize the result in Table 6. From the table, we can
see that the performance of RS code is negligible comparing
with that of PE-SRTS. In the worst case, the overhead of RS
code accounts for less than 0.2 percent of that of PE-SRTS.

6.7 Implementation on Commodity C1G2 RFID
Systems

SRTS does not require any modifications to the commodity
passive tags or implement additional cryptographic func-
tionality on the tags. Instead, a tag only needs to carry short
crypto-IDs for reading and writing purposes. SRTS satisfies
the 512 bits-storage constraint of commodity passive tags.
We use the Write command to write data into RFID tags.
One Write command allows the reader to write a 16-bit data
block. To write large-length data, the reader needs to divide
the data into multiple 16-bit blocks and write them via sev-
eral Write commands. On the other hand, The Read com-
mand supports bulk data collection, which allows the
reader to collect up to 512 bits per Read operation.

We use the Alien ALR 9,900+ commodity RFID reader
with regular parameters (e.g., 30 dBm transmission power)
to interrogate commodity passive RFID tags. The data trans-
fer program is developed based on the Alien RFID reader
SDK codes. Our implementation only requires the C1G2
routine operations. So we believe that our implementation
can be easily extended to other commodity RFID platforms.
We select two different types of widely used passive tags –
ALN-9640 and AD-224 tags both with 512-bit user memory.

We focus on the communication overhead of data trans-
fer between the reader and the tag. Fig. 9 shows the commu-
nication overhead involved in the transfer of a 336-bits
crypto-ID. As we can see, it requires more time to write a
crypto-ID into tag, because as mentioned the Write com-
mand only allows the reader to write a 16-bit data block per
Write operation. As a result, the reader needs to first divide
the ID into several blocks and transfer them one by one
which consumes longer time. In comparison, the Read

Fig. 8. Comparison of SRTS and parallel-SRTS.

TABLE 5
Speed-Up Ratio of Parallel-SRTS versus SRTS

Number of tags 2,000 4,000 6,000 8,000 10,000
Sender side-PE 4.1 4.8 5.0 4.8 4.9
Sender side-HA 4.0 4.2 4.2 4.6 4.5
Receiver side-PE 2.2 2.3 2.2 2.2 2.3
Receiver side-HA 1.9 2.1 2.0 2.1 2.2

TABLE 6
Comparison of RS Code with PE-SRTS (Seconds)

Tag num PriSign Encode Per Check Decode Per

2�103 144 0.263 0.2% 131 0.063 0.048%
4�103 304 0.427 0.1% 309 0.129 0.042%
6�103 457 0.545 0.1% 453 0.188 0.041%
8�103 565 0.759 0.1% 610 0.253 0.041%
10�103 722 0.926 0.1% 714 0.318 0.045%

Fig. 9. Overhead (ms) of a 336-bits crypto-ID.
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operation consumes less time since it only requires one
Read operation to collect the whole ID.

7 RELATED WORK

Currently, many works have studied security issues in RFID
systems. Private preserving authentication (PPA) protocols
[7], [8], [9], [10], [11], [12], [13], [14], [15] are such a type of
protocols which enable a reader to authenticate the validity
of a tag in a privacy-preserving way. In these protocols, the
reader interacts with the tag in several rounds for authentica-
tion. The interactedmessages are computed based on a secret
key shared between the reader and the tag. If the authentica-
tion is successful, the reader can locate a record from a back-
end database for the tag. The shared secret key can thus be
treated as a crypto-ID for identification and index purposes.
These works target at tag authentication problem and thus
have totally different goals with our work.

Recently, some works have studied security issues in
RFID-enabled supply chain systems [16], [17], [19]. Juels et al.
[16] consider key distribution issue in RFID-enabled supply
chain. Secure keys are directly stored in tags by using secret
sharing. During the supply chain, only authorized distribu-
tors can recover the secure keys from tags and use them to
decrypt the data stored in tags. Although key supply chain
simplifies data privacy protection, some desired security
properties (e.g., data non-repudiation) are not easy to be
obtained. Blass et al. [17] propose a technique to authenticate
whether a tag has been processed through a valid path in a
supply chain network. The idea is to use polynomial signa-
ture together with homomorphic encryption, which allows
the path information stored in a tag to be continuously
updated when it flows through a valid path. Their technique
provides authentication and privacy guarantee for the path
information. However, the path information must be gener-
ated in fixed format (looks like random numbers), while we
aim to provide security guarantee for general production
messages. Chaves andKerschbaum [19] propose a solution to
protect privacy of productionmessage in RFID-enabled prod-
uct recall. In their solution, sensitive production message can
be encoded in a privacy-preserving manner and stored in
tags for problematic product identification. Their solution,
however, does not consider data non-repudiation. Besides,
our work targets at a different model of RFID-enabled supply
chain systems comparingwith all theseworks.

We design PVS scheme to provide security guarantees
and reduce signature processing overhead, including both
computation and storage, for large-scale RTS system. We
notice that in the crypto literature, there are many other
powerful signature schemes [38], [39], [40], [41]. We next
discuss the suitability of these schemes when deploying in
RTS system. Designated verifier signature [38] can convince
a designated verifier the authenticity of a signed message.
This scheme cannot be directly deployed in RTS system
as it convinces a designated verifier in such a way that the
verifier cannot prove the signature to a third party. In RTS
system, however, sender needs to transfer non-repudiable
messages to relaynode and receiver, so that the two can
record these messages as evidences and later prove them to
an authority for arbitration. Multi-signature [39], aggregate
signature [40] and batch signature [41] are designed to

reduce signature processing overhead. These schemes, how-
ever, fall in following drawbacks when deploying in RTS
system. First, multi-signature and aggregate signature work
in a multi-signers scenario, while in RTS system, all the sig-
natures are signed by sender. Second, batch signature fasts
signature verification overhead, but does not reduce signa-
ture storage overhead. Finally, all the three schemes do not
protect privacy of the signed messages.

8 CONCLUSION

In this paper, we target at security and privacy issues in
RFID supply chain systems. We consider RFID-enabled
Third-party Supply chain (RTS) system. We analyze the
essential structure of RTS system and identify three inherent
requirements about production messages. We design
a Secure RTS system called SRTS, which incorporates a
Private Verifiable Signature scheme, to achieve the desired
requirements. With SRTS, the production messages of a
product batch are equipped with privacy and non-repudia-
tion properties and can be efficiently transferred in the RTS
system. In the future work, we plan to improve SRTS so that
the receiver can directly recover production messages from
tag carried crypto-IDs.
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