
When Pipelines Meet Fountain: Fast Data Dissemination in
Wireless Sensor Networks

Wan Du, Jansen Christian Liando, Huanle Zhang, Mo Li
School of Computer Engineering, Nanyang Technological University, Singapore

{duwan, cjansen, Huanle.Zhang, limo}@ntu.edu.sg

Abstract
This paper presents Pando, a completely contention-free
data dissemination protocol for wireless sensor networks.
Pando encodes data by Fountain codes and disseminates the
rateless stream of encoded packets along the fast and paral-
lel pipelines built on constructive interference and channel
diversity. Since every encoded packet contains innovative
information to the original data object, Pando avoids dupli-
cate retransmissions and fully exploits the wireless broadcast
effect in data dissemination. To transform Pando into a
practical system, we devise several techniques, including the
integration of Fountain coding with the timing-critical oper-
ations of constructive interference and pipelining, a silence-
based feedback scheme for the one-way pipelined dissemi-
nation, and packet-level adaptation of network density and
channel diversity. Based on these techniques, Pando can
accomplish the data dissemination process entirely over the
fast and parallel pipelines. We implement Pando in Con-
tiki and for TelosB sensor motes. We evaluate Pando’s
performance with various settings on two large-scale open
testbeds, Indriya and Flocklab. Our experimental results
show that Pando can provide 100% reliability and reduce
the dissemination time of the state-of-the-art by 3.5×.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; C.2.2 [Network Protocols]: Protocol archi-
tecture

Keywords
Wireless sensor networks, Data dissemination, Fountain codes,
Constructive interference.

1. INTRODUCTION
Data dissemination reliably diffuses a bulk of data to all

the nodes in a wireless sensor network. It provides a fun-
damental service for many applications, like on-the-air re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SenSys’15, November 1–4, 2015, Seoul, South Korea..
c© 2015 ACM. ISBN 978-1-4503-3631-4/15/11 ...$15.00.

DOI: http://dx.doi.org/10.1145/2809695.2809721.

programming [27,39] and application updating [2]. One im-
portant metric of data dissemination for these applications
is reliability, which is measured by the proportion of the
data received at each node over the data to be disseminated.
To provide high reliability, traditional data dissemination
protocols [17–19, 22, 28, 30, 36, 40] flood data packets over
multiple hops with contention-based access control protocols
like CSMA/CA, which suffers long backoff delay and severely
limits the channel spatial reuse. Recent advance in physical-
layer cooperative broadcasting [43] allows multiple synchro-
nized transmissions constructively add on each other. Mul-
tiple senders can thus transmit the same packet simulta-
neously and the constructively interfered transmissions can
be successfully decoded at the receivers. Glossy [13] builds
upon this principle and experimentally demonstrates that
constructive interference can remove unnecessary channel
contention and improve the flooding performance. Another
work, PIP [38], exercises multi-channel communication and
enables adjacent links in a multi-hop path to operate con-
currently. Based on Glossy and PIP, Splash [7] enables
data dissemination over the fast and parallel pipelines by
combining constructive interference and pipelining, thereby
significantly improving the channel utilization.

The combination of constructive interference and pipe-
lining, however, represents a challenge to the reliability of
data dissemination. Due to the varied quality of different
channels at different nodes [5,52] and the unreliability of con-
structive interference when the number of concurrent trans-
mitters or the packet size is large [7,50], the packet reception
rate at different nodes in a network may vary significantly.
As a result, the same data object needs to be disseminated
in multiple rounds to recover specific packets missing at
few nodes. To achieve high reliability, Splash requires three
rounds of data dissemination and employs contention-based
local recovery after three rounds of pipelined data dissemi-
nation. Splash suffers from the long tail problem, where the
dissemination time for achieving 100% reliability is orders of
magnitude longer than the time needed for 80% reliability.

This paper presents Pando, a completely contention-free
data dissemination protocol, which tackles the long tail prob-
lem in data dissemination of constructive interference and
pipelining. Pando introduces randomness in the dissemi-
nated packets and fully exploits the wireless broadcast effect.
It encodes data with Fountain codes [34] and continuously
pumps the rateless stream of encoded data into the network.
Since every encoded packet contains innovative information
for the original data, receivers become insensitive to the
loss of individual packets. Pando avoids the overhead of

re-disseminating the entire data object in rounds. The dis-
semination process is terminated once all nodes in the net-
work accumulate sufficient encoded packets and successfully
recover the original data. Pando accomplishes the dissem-
ination process entirely over the contention-free pipelines.
Thus, it can fully use the network resource and asymptoti-
cally approach the network capacity.

Transforming the idea behind Pando into a practical sys-
tem is challenging for at least two reasons. First, the encod-
ing and decoding of packets using Fountain codes need to be
integrated into the timing-critical operations of constructive
interference and pipelining. Incautious design of the Foun-
tain decoder will lead to uncertainty in data transmission,
which may impair the synchronization of constructive in-
terference and paralyze the pipelined data dissemination.
Second, a stop condition of the data dissemination has to
be set and conveyed to the source. The data dissemination
should be terminated once all nodes recover the original data
object. The source stops pumping packets into the network
and the relaying nodes stop forwarding packets to their lower
layer. In the pipelined data dissemination, however, all
nodes are either receiving packets from their upper layer
or relaying the received packets to their lower layer all the
time. No explicit feedback channels can be used to convey
the acknowledgements from all nodes to the source.

By tackling the above challenges, we make the following
three contributions.

1. We design a radio-driven coding scheme where the
computation of Fountain encoding and decoding is accom-
modated into the intervals between the timing-critical oper-
ations of highly-synchronized constructive interference and
pipelining. Fountain coding and transmission controls are
tailored to guarantee a deterministic software delay, which is
essential to limit the time offset of concurrent transmissions
within 0.5 µs (the synchronization requirement for generat-
ing constructive interference with high probability [13]). By
parallelizing data coding and transmissions, we also avoid
adding coding latency in dissemination time.

2. We devise a novel feedback approach in the one-way
pipelines to timely acknowledge the successful recovery of
the data object and stop the dissemination process. We
leverage the silence of channels to aggregate and convey the
acknowledgements from the leaf nodes to the source. The
feedback process is carefully integrated with the pipelined
data dissemination to guarantee the reliability of data dis-
semination. The threshold of channel silence is adapted
dynamically according to the ambient noise and interference.
Packet loss is also considered to eliminate its impact on data
dissemination and feedback delivery.

3. We apply packet-level adaptation of channel diversity
and network density to boost the dissemination efficiency.
By adapting the channel allocation and the number of con-
current transmitters for every packet, all nodes experience
cycled channel assignments and better wireless diversity.
This avoids few poorly-performing nodes to hinder the entire
pipelines. We design a set of techniques to incorporate
the adaptation operations into the feedback process and
pipelined data dissemination, such as scheduled silence of
leaf nodes, fast channel switching and failure recovery.

We implement Pando in Contiki and evaluate its per-
formance on Indriya [6] and Flocklab [31], two large-scale
testbeds for wireless sensor networks. In our experiments,
Pando is able to successfully disseminate a data file of 32

P2 P2

P1 P1 P1

P1 P1 P1 Next time slot

P1 P1

Figure 1: The pipelined tree built on constructive
interference and pipelining. ‘P1’ and ‘P2’ represent
the first packet and the second packet respectively.

kBytes over a network of up to 6 hops within 6 seconds.
We compare Pando with state-of-the-art data dissemination
protocols, Splash [7] and Deluge [19], over various network
configurations. Our experimental results suggest that Pando
reduces the average dissemination time of Splash by 3.5×,
corresponding to a reduction factor of 32.7× over Deluge.

2. MOTIVATION
The goal of data dissemination is to deliver a bulk of data

(e.g., an executable file or an application updating profile)
to all the nodes in a network. Any packet loss may make the
received data useless. Reliability and dissemination time are
thus two key performance metrics for data dissemination. To
achieve high reliability, previous protocols, like Deluge [19]
and ReXOR [8], transmit the data object hop by hop with
explicit acknowledgements and retransmissions. The net-
work resources are significantly underutilized in such a way
due to high multiple access overhead and low spatial reuse.
For instance, two transmissions can occur concurrently only
if they are apart from each other for at least three hops [19].
By leveraging constructive interference, Glossy [13] allows
multiple nodes to simultaneously transmit one packet with-
out backoff or spatial multiplexing. The spatial reuse is
further improved by enabling multiple layers transmitting
concurrently on distinct channels [38]. Therefore, the data
dissemination time could be essentially reduced by combin-
ing constructive interference and pipelining [7].

In this section, we experimentally study the data dissem-
ination enabled by constructive interference and pipelining,
and reveal its long-tail problem. We also demonstrate the
gain and challenges of incorporating Fountain coding into
the pipelined data dissemination.

2.1 Constructive interference and pipelining
Based on constructive interference and pipelining, a tree

topology is built, as depicted in Figure 1. One packet is
forwarded simultaneously by all nodes at a same layer which
interfere constructively with each other; meanwhile, mul-
tiple packets can be transmitted concurrently by different
layers that make use of distinct channels. In each time slot
(corresponding to the transmission time of one packet), all
received packets are disseminated one-hop further from the
upper layers (closer to the source) to the lower layers. In this
paper, for the nodes at the same layer, we refer the nodes
at their upper layer as their parent nodes and the nodes at
the lower layer as their child nodes.

In the pipelined tree, the channel quality varies at different
nodes [5, 52] and constructive interference becomes unreli-
able if the number of concurrent transmitters is large [50].
As a result, some packets may not be received by several
nodes, and the data dissemination is not reliable. To the

Packet ID

N
od

e
ID

20 40 60 80 100

10

20

30

40

50

60

70

80

90

(a) First round (85% reliability).

Packet ID

N
od

e
ID

20 40 60 80 100

10

20

30

40

50

60

70

80

90

(b) Second round (96.8% reliability).

Packet ID

N
od

e
ID

20 40 60 80 100

10

20

30

40

50

60

70

80

90

(c) Third round (99% reliability).

Figure 2: The packet reception performance of every node after each round in Splash. One black point
represents that the packet is correctly received by the relative node. One white point refers to a packet loss.
Due to the space limitation, only the first 100 packets (instead of all 500 packets) in each round are presented.

best of our knowledge, Splash [7] is the latest data dis-
semination protocol that combines constructive interference
and pipelining. It disseminates the data object multiple
times and relies on a local recovery phase to achieve high
reliability. In the first two rounds, it disseminates the same
data object twice. In the third round, 500 XOR-encoded
packets are disseminated. Every encoded packet is the linear
combination of 20 randomly-selected original packets. When
a node receives an encoded packet, it can recover a missing
original packet only if it has received 19 original packets
which were used to generate that encoded packet. After the
dissemination over the fast pipelines, a local recovery phase
is performed. Nodes request the missing packets from their
neighbors using CSMA/CA-based multiple access.

2.2 The long-tail problem
We conducted a series of experiments with Splash [7] on

Indriya [6], the same testbed used in [7]. A data object of 32
kBytes (i.e., 500 packets of 64-byte payload) is disseminated
in each experiment. Figure 2 depicts a snapshot example
of the packet reception for every node after each round.
Figure 2a demonstrates that the network reliability is high
(85%) after the first round although the packet reception
rate varies for different nodes. The network reliability is
calculated as the average reliability of all nodes in the net-
work. From Figure 2a to Figure 2b, the second round only
increases the reliability from 85% to 96.8%. It is inefficient
to repeatedly disseminate the whole data object to all nodes.
On average, for one node, 76.2% of its received packets are
duplicate. Figure 2c shows that the reliability improvement
of XOR coding is limited (from 96.8% to 99%). 97.8%
of the XOR packets cannot contribute to the recovery of
original data. The empirical design of Splash (e.g., 500
XOR-encoded packets) deviates from the best setting which
requires an optimal number of XOR packets according to
the reception of the first two rounds.

Figure 3 depicts the network reliability progress of Splash.
It reveals that the long tail problem is severe in Splash. The
total dissemination time of Splash for achieving 100% reli-
ability is more than 10× larger than the time for achieving
75.9% reliability in the first round. Two obvious reasons can
be found in Figure 3. Compared with the first round, the last
two rounds provide limited contributions to the reliability
progress. The contention-based local recovery (i.e., more
than 13 seconds) is time-consuming. As reported in [7], the

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

R
el

ia
bi

lit
y

Dissemination time (s)

Figure 3: Network reliability of Splash at some
specific time points. The end of 3 dissemination
rounds is indicated by circle markers. The local
recovery phase is from the end of the third round
till the last node correctly receives the data object.

local recovery phase is much longer than the total transmis-
sion time of three dissemination rounds.

2.3 Fountain coding in data dissemination
To address the long-tail problem in data dissemination,

we use Fountain codes to introduce randomness in the dis-
seminated packets. We disseminate the Fountain-encoded
packets along the fast and parallel pipelines. Every en-
coded packet is a linear combination of several randomly-
selected original packets. Regardless of which packets one
node has received, every encoded packet provides innovative
information to the recovery of the original data. Instead of
the identity of individual packets, the number of received
packets becomes the key factor that determines the reliable
reception of a data object. When a node accumulates suf-
ficient amount of encoded packets, it recovers the original
data by simple linear determinant calculation.

By incorporating Fountain coding into the pipelined data
dissemination, duplicate retransmissions are avoided and the
network capacity can be asymptotically approached as rateless-
encoded packets are disseminated over the fast and parallel
pipelines. For example, if we replace the data packets in
the same trace of the above experiment (Section 2.2) with
Fountain-encoded packets, we can achieve 100% network re-
liability by just disseminating 1132 encoded packets, thereby
reducing the dissemination time of Splash by 7.2×.

Although Fountain codes have been implemented in some
previous data dissemination protocols [17, 18, 40], they all
use Fountain codes to improve the performance of single-
hop transmissions. The integration of Fountain coding with
pipelined data dissemination is challenging. The highly-
synchronized operations of constructive interference and pipe-
lining can be easily paralyzed by incautious design of Foun-
tain coding. During the dissemination, all nodes (except the
source) are either receiving or transmitting on the down-
links. They do not have any time to decode a packet or
send an acknowledgement to their parent node. In a naive
way of Fountain-enabled data dissemination, the source first
disseminates a certain number of encoded packets and all
nodes begin to decode after the dissemination. The decod-
ing time is comparable with the dissemination time. To
achieve 100% reliability, a local recovery phase has to be
performed or the source must know the decoding result of
every node. It is troublesome to collect the feedback from
all nodes using CSMA/CA-based multiple access and multi-
hop routing. After the feedback collection, the source has
to resume the data dissemination if any nodes have not
received sufficient packets. Such a loop may have to be
performed multiple times. The above simple solution cannot
eliminate the overhead of multiple access and defies the goal
of constructive interference and pipelining.

3. PANDO
Pando works as a service middleware in the protocol stack

to provide fast and reliable data dissemination. A wake-up
protocol (details in Section 4) is developed to trigger data
dissemination, when general network activities (e.g., data
collection or duty cycling) are being performed in sensor
networks. During the data dissemination process, the gen-
eral network activities are temporarily suspended, and the
sensor mote resources (e.g., CPU and radio) are in active
mode. Since Pando’s dissemination is fast (6 seconds to
disseminate a file of 32 kBytes across a network of 31 nodes),
Pando has negligible impact on other network activities.
Compared with existing data dissemination protocols that
use much longer time for data dissemination, Pando essen-
tially reduces the energy consumption of individual nodes
and prolongs the network lifetime.

In this section, after a preliminary analysis of Fountain
codes, we introduce three techniques that are used to make
Pando into a practical system. The Fountain coding in
Pando is radio-driven. The coding computation is accommo-
dated into the CPU idle intervals of transmission operations;
at the same time, the integration is carefully tailored to
guarantee the strict synchronization of constructive interfer-
ence and pipelining (Section 3.2). A silence-based feedback
scheme is developed for the one-way pipelines to promptly
terminate the source and complete the dissemination process
(Section 3.3). Packet-level adaptation of network density
and channel diversity is adopted to boost the performance
of constructive interference and pipelining (Section 3.4).

3.1 Preliminaries on Fountain codes
Fountain codes, like LT codes [33] and random linear codes [34],

encode a data object of k packets, {X1, X2, · · · , Xk}, into
a rateless stream of encoded packets, {Y1, Y2, · · · }. One
encoded packet is generated by linearly combining a certain
number of randomly-selected original packets. Once a node
correctly receives m (m≥k) encoded packets, it can recover

the original data using the Gaussian Elimination (GE) or
Belief Propagation (BP) decoding algorithm. The coding
efficiency is calculated as k/m.

Although Pando is not limited to any specific Fountain
codes, in our current implementation, we choose LT codes
in consideration of its succinct design (i.e., low computation
overhead). Every encoded packet of LT codes is calculated
by performing XOR operations of d packets that are ran-
domly chosen from k original packets, where d = 1, 2, . . . , k.
For an encoded packet Yi, 1 < i < ∞, the degree d is
determined by a distribution ρ(d) = Pd, where Pd is the
probability that d original packets are selected to encode
Yi. The default robust Soliton degree distribution produces
low coding efficiency for the applications of sensor networks
with small number of packets. We implement an optimized
degree distribution proposed in SYNAPSE++ [40], which
produces high coding efficiency for small data objects. Like
in the previous work [10], we use a best seed of the random
number generator. It produces the lowest decoding over-
head and avoids the time consumption of random number
generation in the decoding process. Although the random
linear codes may provide higher coding efficiency, its compu-
tation overhead is high. It generates encoded packets using
modular multiplication in Galois Field (GF) 28, which is
time-consuming to execute compared with XOR operations.

3.2 Radio-driven coding scheme
We perform the encoding and decoding of LT codes along

with the timing-critical communication operations of highly-
synchronized constructive interference and pipelining. Since
the microcontroller is mostly in idle mode while the radio
is receiving or transmitting, the microcontroller can execute
the coding computation in parallel with the transmissions
performed by the radio hardware. The goal of our design
is to find the largest idle intervals of the microcontroller for
Fountain coding, under the precondition of controlling the
synchronization offset between the concurrent transmissions
of constructive interference within 0.5 µs. Thus, we need to
guarantee that the generated idle CPU intervals are constant
and the coding computation occupies deterministic time.

Constant intervals of idle CPU. We generate two
large constant idle intervals in the operations of constructive
interference and pipelining based on two observations. First,
the time to read/write one byte from/into the radio through
the Serial Peripheral Interface (SPI) bus (e.g., 5.75 µs for
general low-power microcontrollers) is much shorter than the
latency of transmitting/receiving one byte by the radio hard-
ware (i.e., 32 µs for IEEE 802.15.4-compliant transceivers).
Second, although the operations of constructive interference
and pipelining are timing-critical, they only need to execute
a few CPU commands at some important time points, e.g.,
sending commands to set the radio to the right state when
an interruption is received. Therefore, after reading/writing
one packet from/into the radio and executing the commands,
the microcontroller goes into idle mode for a long time that
can be used for Fountain encoding and decoding.

We design Pando on top of the flooding protocol in Glossy [13]
and the pipelining of PIP [38]. In Glossy, hardware in-
terrupts are used to implicitly synchronize the concurrent
transmissions. When multiple nodes receive a packet si-
multaneously, they detect the interrupt for the end of the
reception at the same time. Based on the interrupt, their
microcontrollers immediately set their radios to TX mode

and write the data into the TX buffer of the radios. They
then enter idle mode till the end of the transmission. After
the transmission, the microcontrollers also detect an inter-
rupt and set the radios to RX mode to receive the next
packet. They go into idle mode for a long duration before
the end of the reception. Since the transmission time and
the operations of constructive interference are predefined,
the idle interval is constant for every packet transmission.

To make sure that the coding computation in the constant
idle interval and the following hardware interrupt do not
impact each other, a guard interval, corresponding to the
transmission time of 8 bytes, is added before the end of each
interval. Based on the guard interval, the coding procedure
can save its context before the hardware interrupt and re-
sume its operation in the next idle interval. A timer is set at
the beginning of the idle interval. It expires when the radio
begins to receive the last 8th byte. The microcontroller saves
the decoding context when the timer expires.

Deterministic coding time. To be safely inserted into
the constant idle intervals, the coding computation should
be decomposable and each decomposed piece should occupy
deterministic time. We begin to decode once two encoded
packets are received. New received packets can be added into
the decoding process incrementally. Upon receiving a packet
from its parent nodes, a node has two time slots to decode
that packet before the next packet is received. In these two
slots, the node transmits that packet to its child nodes and
receives the new packet from its parent nodes respectively.
During the transmission and reception performed by the
radio hardware, the microcontroller tries to complete the
decoding of the received packet in its idle intervals.

The Accumulative Gaussian Elimination (AGE) algorithm
[10] is used for incremental decoding. Although the BP
algorithm is less computationally expensive, AGE provides
higher coding efficiency (e.g., a coding efficiency of 89% for
a data object of 16 original packets). AGE transforms the
top-left square submatrix of the coefficient matrix into an
identity matrix when few packets are received. As new
packets are received, AGE extends the submatrix gradually.
The original data is recovered when the size of the submatrix
becomes equal to the number of original packets.

At the end of each idle interval, the decoding algorithm
saves the context by recoding the decoding results and the
intermediate variables, including the size of the submatrix,
the coefficient matrix and the calculated results of data pack-
ets. The decoding computation occupies deterministic time
which ends before the guard interval. In our implementa-
tion, the context saving costs at most 64 µs, which is much
smaller than the guard interval (256 µs for IEEE 802.15.4
radios). The encoding can also be performed incrementally.
The computation of encoding one packet is much less than
the decoding of one packet, and thus nodes are able to
generate one encoded packet every two time slots.

Timing process. Figure 4 presents the key timeline
of Pando. When the microcontroller receives an interrupt
for the end of a transmission (the SFD pin is set to low),
it immediately sets the radio to the RX mode by sending
two commands (i.e., channel setting and RXON) to the
radio. After calibration (192 µs), the radio is ready to
receive any incoming signals. When a node receives the first
two bytes (Glossy header for synchronization) of a packet,
instead of reading the following bytes one by one as Glossy,
it begins to decode the previously-received encoded packet

Radio

μC

Cal

SFD

RX Cal TX

3 Decoding Decoding 5 W W

TX

W

RXON setChannel TXON W Wait

1

1

2 3 W 1

2

4 3

3 RX from Radio TX to Radio 5 4

Figure 4: State transition of the radio and the
microcontroller in Pando.

for a certain duration (e.g., 1688 µs in our implementation).
It then resumes reading the received data from the radio and
switches to waiting state during the guard interval.

By detecting an interrupt for the end of a packet reception
(the SFD pin is set to low), the microcontroller sets the
sending channel and sends a TXON command. After that,
it reads the last eight bytes of the received packet from the
RX buffer of the radio and writes the whole received packet
to the TX buffer of the radio. Then, the microcontroller is
able to perform Fountain coding before the radio begins to
transmit the last eight bytes.

Results. We have implemented the radio-driven coding
scheme in Contiki for TelosB sensor motes, a typical sen-
sor mote type that has been widely used in current sensor
network deployments. A TelosB sensor mote includes a TI
CC2420 radio which supports the IEEE 802.15.4 standard.
The packet size in Pando is set to 73 bytes, including 64-
byte payload, 7-byte MAC header and 2-byte footer. Except
the 8-byte guard interval, the transmission time of the first
65 bytes is 2080 µs. It only takes 392 µs to read these
bytes from the radio into the microcontroller via the SPI
bus. Therefore, the microcontroller has 1688 µs for decoding
during the reception of one packet. In the same principle,
the microcontroller has a similar idle interval when the radio
is transmitting.

Pando can be implemented on any hardware platforms
that support constructive interference. Glossy [13] success-
fully demonstrated the feasibility of realizing constructive in-
terference on IEEE 802.15.4-compliant hardware platforms.
All the parameters of Pando, including RX/TX data rate,
calibration interval and SPI transmission speed, are set ac-
cording to the IEEE 802.15.4 standard. We do not need to
tune these parameters for different hardware platforms.

3.3 Silence-based feedback scheme
As the source continuously pumps the rateless encoded

packets into the network, Pando approaches 100% reliability
automatically over the fast and parallel pipelines. Based on
the radio-driven coding approach, all nodes can successfully
decode the received packets when they are disseminating
data packets. To promptly terminate the source and com-
plete the dissemination process, every node needs to send
an acknowledgement to the source when it correctly recovers
the original data object. In the pipelined data dissemina-
tion, however, nodes are either receiving new packets from
their parent nodes or relaying the received packets to their
child nodes. The acknowledgement transmission of one node
should not impact its role as a forwarder or the synchronized
transmissions of other nodes. A feedback scheme is needed
to convey the acknowledgement of every node to the source
during the data dissemination process.

A silence-based feedback scheme is devised for the one-
way parallel pipelines. With this feedback scheme, the ac-

knowledgement of every node is delivered from the lower
layers, merged at the relay node, and finally reaches the
source. When a node succeeds in decoding, it can generate
the Fountain encoded packets by itself using the recovered
packets and continue transmitting the encoded packets to
its child nodes without receiving new packets from its parent
nodes. The successful nodes can thus monitor the transmis-
sion of their child nodes in the RX slots. In addition, the
nodes at upper layers are likely to recover the original data
earlier than the nodes at lower layers, since all packets are
forwarded from the source to the lower layers. Therefore, the
nodes at upper layers are likely to be ready for detecting the
feedback before their child nodes succeed in decoding.

In Pando, a leaf node stops transmitting when it success-
fully recovers the original data. Its parent nodes (i.e., relay
nodes) can detect such silence by measuring the Received
Signal Strength Indicator (RSSI) value on the sending chan-
nel of that leaf node. A relay node terminates transmitting,
when all its child nodes become silent, corresponding to a
RSSI value lower than a threshold (RSSIthreshold). The
silence of a relay node indicates that both itself and its child
nodes have successfully recovered the original data object.
In such a way, the acknowledgements from all child nodes
are aggregated at that relay node. The fused feedback can
be further conveyed to the source across the network.

In our experiments using the above feedback scheme, some
nodes stop working, because the transmissions are always
triggered by the lower layer and the time offset among the
concurrent transmissions increases. We solve this problem
by requiring the relay nodes to synchronize back with their
parent nodes periodically. Since the dissemination is trig-
gered from the source, the downlink packets have more pre-
cise synchronization information and are used to calibrate
the relay nodes. In our current implementation, nodes listen
to the feedback channel only in the odd RX slots.

As an example, Figure 5 demonstrates the dissemination
process of a 16-packet data object in Pando. The encoded
packets are disseminated from the source to the other nodes
layer by layer. Every node needs 17 encoded packets (one
extra packet is the coding overhead) to recover the original
data. In this example, we assume no packet loss occurs.
All nodes correctly recover the original data object when
the 17th packet is received. When the leaf nodes at the
third layer receive the 17th packet, after two time slots,
they succeed in decoding and stop transmitting. The relay
nodes at the second layer detect the channel silence in their
19th RX slot and terminate their dissemination. The fused
feedback of silence is captured by the nodes at the first layer
in their 21st RX slot and finally reaches the source. The
whole dissemination process is terminated after the 21st RX
slot of the source. Figure 5 shows that the silenced-based
feedback scheme is efficient. Along the path, the relay nodes
only need 1 or 3 slots to forward the aggregated feedback to
their parent nodes. In this example of three-hop network,
five slots (13.6ms) are sufficient for the feedback aggregation
and delivery after the last leaf node succeeds in decoding.

False negative of channel silence. Due to ambient
noise or interference from nearby devices using the same
frequency band, a node may not be able to detect the chan-
nel silence, when all its child nodes succeed in decoding and
stop transmitting. To eliminate the false negative of channel
silence, we dynamically adapt the RSSI threshold of channel
silence (RSSIthreshold) according to the noise and interfer-

 Source

 Layer 1

 Layer 2

 Layer 3

T1 T2 R20 T20

R2 T1 R20 T2 R1

R2 T1 R1

R1

R19 T18

R18 T19

R19 T17

...

...

...

... R17

R18

T18

R18

T17

T19

R19

T18

T1

T3

R3 T3

R3 T2

R2 T2

T20

R21 T21

R21

R18

Figure 5: Dissemination process of a 16-packet data
object in Pando. ‘T1’ refers to the first TX slot. ‘R1’
represents the first RX slot. The arrow indicates the
signal transmission direction.

ence condition. Between the wake-up protocol and the data
dissemination, we leave 10 time slots, during which all nodes
measure the RSSI of free channels (denoted as RSSIsilence).
During data dissemination, when a node successfully re-
ceives a packet, it measures the channel RSSI and updates
the RSSI value of successful packet reception (denoted as
RSSIrx). In our experiments on two large-scale testbeds
deployed in both indoor and outdoor environments, RSSIrx
is always larger than RSSIsilence. We set RSSIthreshold as
(RSSIsilence + RSSIrx)/2. If some noise or interference
appears, RSSIrx increases and RSSIthreshold becomes thus
large. When the child nodes are not transmitting, with such
a high RSSIthreshold, the channel is measured as silent even
in the appearance of noise or interference.

False positive of channel silence. When a node fails
to receive a packet, it cannot forward that packet. Its parent
node may interpret this silence as successful decoding. To
filter out such false silence, every node only infers that all
its child nodes have completed the reception when M con-
secutive silent slots are detected. In practical, M is small
based on two facts. First, even if a node cannot transmit, its
parent node is likely to detect a high RSSI by the signal from
the other child nodes at the same layer. Second, it is rare
that a node cannot receive the packet from its parent node
consecutively, especially when our packet-level adaptation
of network density and channel allocation is applied. In
our implementation, M is set to 3, which can filter out all
false silences in a large-scale sensor network that is densely
deployed in a building. We will show in Section 5 that the
overhead of the feedback process is small compared with the
significant improvement of data dissemination efficiency.

3.4 Packet-level adaptation of channel diver-
sity and network density

In pipelined data dissemination, some nodes may have
poor packet reception due to bad channel quality or un-
reliable constructive interference. Some channels may be
lossy at some node locations because of ambient noise or
interference from other nodes or devices. The bad channel
can be replaced by exchanging the assigned channel among
nodes. On the other hand, constructive interference may
not work well at some nodes as the synchronization offset is
high. The performance of these nodes can be improved by
changing the set of concurrent transmitters, since construc-
tive interference is likely to be strong for a small number of
concurrent transmitters [50] and the capture effect occurs
at some locations of concurrent transmitters [13]. With
capture effect, a radio is able to receive one signal despite
the interference from other transmitters, when the signal
is stronger and arrives earlier than the interference [24].

Splash [7] changes the channel allocation and network den-
sity after each dissemination round. Such round-level adap-
tation, however, cannot effectively adapt to the channel vari-
ations. Few poorly-performing nodes may hinder the entire
pipelines for a whole round. Moreover, every node can only
experiences three different channels at most in the three
dissemination rounds respectively.

By applying Fountain codes in data dissemination, Pando
enables packet-level adaptation of channel allocation and
network density. Pando allocates every packet with a specific
channel and changes the number of concurrent transmit-
ters for every packet transmission. Nodes set their RX/TX
channel according to the packets they are going to receive
or transmit. Packet-level adaptation can only be enabled
in the data dissemination of Fountain-encoded packets. As
the encoded packets are independent to each other, the loss
of an individual packet caused by unreliable constructive
interference or bad channel at some nodes can be imme-
diately compensated by the following packets disseminated
with different channels and network densities. Compared
with round-level adaptation, Pando avoids that some poorly-
performing nodes hinder the dissemination process for a
long time. Moreover, every node circularly experiences all
available channels which fully exploits the wireless diversity.

A set of techniques are designed to incorporate the adap-
tation operations into the pipelined data dissemination and
the silence-based feedback process. In order not to impact
the synchronized transmissions of constructive interference
and pipelining, channel switching is divided into two steps,
i.e., calculating which channel to use for the next packet and
setting the channel in the radio. The first step is executed
in the idle interval of the microcontroller and the last step
introduces constant software delay. A recovery mechanism
is adopted to address the failure caused by packet losses.
The transmissions of leaf nodes are scheduled according to
the feedback scheme.

Channel diversity. Figure 6 presents the data dissem-
ination process of packet-level channel allocation. Every
packet is assigned with a unique channel. Four channels
(i.e., Channel 15, 20, 25, 26 in the IEEE 802.15.4 standard)
that experience light link correlations [5] are used circularly.
At the beginning, all nodes in the network are set to a
default channel to receive the first packet. After forwarding
the received packet to their child nodes, they immediately
switch to the channel allocated for the next packet. When
the previous packets are being forwarded by the relay nodes,
a new packet is released by the source. The minimum dis-
tance between two packets using a same channel is at least
eight hops, which are large enough to avoid the intra-path
interference in typical sensor networks [38].

Channel switching is performed at the end of each trans-
mission. To ensure that it produces deterministic software
delay, as shown in Figure 4, channel switching is enabled by
sending two commands (i.e., channel setting and RXON) to
the radio immediately when the SFD interrupt for the end
of transmission is detected. The channel of the next packet
is calculated according to the sequence number of the last
received packet. The computation is short (addition of two
integers) and performed before the microcontroller goes to
waiting state during the guard interval. It does not cause
any software delay to channel switching.

If a node misses a packet because the signal is not detected
or the CRC checking fails, it stays at the same channel and

P4 P3 P2 P1

C4 C3 C2 C1

Source

Slot1:

P4 P3 P2

C4 C3 C2
Slot2:

P5 P4 P3 P2

C1 C4 C3 C2
Slot3:

Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 Layer7

Figure 6: Packet-level channel allocation. ‘P1’
represents the first packet. ‘C1’ indicates the first
channel. From slot 1 to slot 2, all the packets in the
network are forwarded one hop further by the nodes
of different layers with distinct channels.

tries to overhear that packet transmitted by the other nodes
at the same layer. Before the overhearing, the node starts
a RX timer to record a time slot. If the overhearing fails,
it can still switch the channel to the new coming packet
from the parent nodes in time. When multiple packets are
missing consecutively, the node is also able to set to the right
channel by counting the slot sequence using the RX timer.
The slot sequence is calibrated frequently when a packet is
received. The racing problem occurs if a node begins to
receive after its parent nodes transmit. Such misalignment
becomes worse as more time slots pass. To solve the racing
problem, the RX timer is set slightly shorter than a time slot.
In our implementation, nodes switch to the next channel 50
µs earlier than the start time of the next transmission.

Network density. In Pando, although leaf nodes do not
have any child nodes, they transmit the received packets to
enable the overhearing of the nodes at the same layer. The
transmissions of leaf nodes do not impose any overhead to
the data dissemination time, since they use a unique channel
and happen at the same time with other transmissions.

To adapt the network density at packet level, the leaf
nodes transmit a received packet only when the sequence
number of that packet is even. For the received packets
with odd sequence number, the leaf nodes do not transmit
them. Because more than 50% of nodes in a data collection
tree are leaf nodes [7], disabling the transmissions of leaf
nodes for odd packets can significantly reduce the number
of concurrent transmitters. In addition, if a node does not
receive an even packet correctly, it does not transmit either.
Since the set of successful receivers varies for each packet, the
set of concurrent transmitters also changes for the following
transmission of that packet. Therefore, the network density
is altered for every packet and the reliability of constructive
interference is improved.

The leaf nodes do not transmit in the time slots of odd
packets. When considering the feedback scheme, these silent
slots may be wrongly detected as successful decoding by the
parent nodes. Our integrated design of the network density
adaptation and the feedback scheme avoids such misunder-
standing. In the time slots of odd packets when the leaf
nodes are not transmitting, the parent nodes are receiving
packets from the upper layer and do not listen to their child
nodes for feedback detection. As in Figure 5, the leaf nodes
only transmit in their even TX slots, corresponding to the
odd RX slots of their parent nodes, in which the parent
nodes listen to the feedback from the leaf nodes. Therefore,
the silence of leaf nodes in the time slots of odd packets does
not impact the feedback process.

4. IMPLEMENTATION
We implement Pando on TelosB sensor motes with Con-

tiki operating system. In this section, we introduce some
technical details which enable the Pando implementation.

Wake-up protocol of Pando. To incorporate Pando’s
data dissemination with the general network activities of
sensor networks, before the dissemination of a data object,
the source first broadcasts a start command across the net-
work multiple times. The reception probability of such a
short command (4 bytes) over a multi-hop sensor network of
constructive interference is more than 99.99% for 6 retrans-
missions [13]. In our implementation, the start command is
disseminated 20 times and it only takes tens of milliseconds
in the fast and parallel pipelines. After the dissemination of
the start command and the silent interval of 10 time slots,
the source begins to transmit the first encoded packet.

The general applications of sensor networks usually work
on a single channel. The channel 26 of the IEEE 802.15.4
standard is widely adopted in real deployments of sensor
networks, because it is not overlapping with the channels
of Wi-Fi (see http://www.wi-fi.org/) [45]. We disseminate
the start command on channel 26 (the default channel in
Pando). The start command includes information about
the data object size. All nodes resume the previous network
activities (e.g., data collection or duty cycling), when they
complete the data dissemination and the feedback delivery.

Page-based dissemination. We divide the data ob-
ject (e.g., 32 kBytes) into small pages (e.g., 2 kBytes in
our current implementation) and disseminate the pages se-
quentially due to the memory constraints of wireless sensor
motes (e.g., 10-kByte RAM memory on TelosB). The source
begins to disseminate a new page when the current page
has been correctly received by all nodes. The source knows
the dissemination of one page has terminated thank to the
silence-based feedback scheme. When a node succeeds in
decoding and completes its feedback task, it switches to the
default channel and waits for the packets of the next page. If
the dissemination of the current page is not completed, the
successful nodes may receive some packets from some other
nodes that are still transmitting packets. They check the
sequence number of the received packets. If it is larger than
the last packet they received, they infer that the packets are
from the current page; otherwise, they start the dissemina-
tion of a new page.

State machine of nodes. Figure 7 illustrates the state
machine of the nodes in Pando. The bold arrows indicate
how a node performs in an ideal case. At first, all nodes
receive packets from their upper layer and immediately relay
the packets to their lower layer. When a node successfully
recovers the original data, it performs the following four
operations sequentially: receiving a packet from its parent
node, forwarding that packet to its child nodes, listening to
its child nodes, and transmitting a self-generated encoded
packet to its child nodes. It switches to the next page
when it detects that all its child nodes are silent. Upon
the completion of one page, the source starts a new page or
terminates the whole dissemination process.

We introduce several failure recovery mechanisms to cope
with packet losses. As described in Section 3.4, if a packet
from the upper layer is corrupted, the node stays in the
same channel and tries to receive that packet from the other
nodes at the same layer. After that, the node switches to
the next channel for the coming packet from its upper layer.

Pando OFF

Start

Receive
Peer

Receive
Parent

Transmit

Receive
Children

Dissemination
Completes

Pando On
New Page

End Page

Packet Corrupted

RX Completes
CH+1

Packet Lost
CH+1

!Decoded
CH+1

RX
Completes

Decoded

SFD Received
CH+1

Incomplete RX
CH+2

Figure 7: Node state machine in Pando.

If no SFD interrupts are detected on the feedback channel,
the node loses synchronization and goes back to listen to its
parent node by setting the channel accordingly. The node
follows the right circulation of channels by using a RX timer
to count the dissemination slots.

5. EVALUATION
We conduct a series of experiments on two large-scale

open testbeds of wireless sensor networks, Indriya [6] and
Flocklab [31]. Both testbeds deploy sensor motes inside a
building and operate on 2.4 GHz. Indriya currently has 99
TelosB sensor motes with dense deployment. In Flocklab,
31 Tmote Sky sensor motes are sparsely deployed with low
network density and some sensors are installed outdoors.
The packet size is set to 64 bytes for most of the experiments
and the data object is 32 kBytes (i.e., 500 packets).

We execute Pando while a conventional data collection
protocols (e.g., CTP [15] for TinyOS and Contiki Collect [21]
for Contiki) is running. Pando builds the pipelined tree
based on the topology information provided by Contiki Col-
lect. Every node only needs to know its hop count, and
the ID of its parent node and its child nodes. Since data
collection is a general application of sensor networks, a hier-
archical tree is usually maintained throughout the network
lifetime. Therefore, the construction of pipelined tree im-
poses negligible overhead on Pando’s data dissemination.

Protocols. In our experiments, we compare Pando with
Deluge [19] and Splash [7], of which we could find the source
code. They are two state-of-the-art data dissemination pro-
tocols. Deluge is the first reliable data dissemination pro-
tocol developed in 2004. Many protocols have been devised
in the last decade to improve its performance, such as MC-
Deluge [53], Rateless Deluge [17] and MT-Deluge [14]. They
all disseminate a data object in small pages hop by hop us-
ing a handshake mechanism and CSMA/CA-based multiple
access. In 2013, Splash is designed to partially eliminate
the contention overhead using constructive interference and
pipelining. It is the latest data dissemination protocol with
the best reported performance. For the other data dissem-
ination protocols that we cannot find the source code, we
compare Pando with them by literature studies.

Metrics. We evaluate the data dissemination protocols
using four metrics: reliability, dissemination time, energy
consumption and memory cost. Pando’s dissemination time
is measured from the start of protocol (e.g., transmission
of the start command) to the termination of the source.
Since Splash has no explicit termination time, we monitor

Table 1: Dissemination time (second) on Indriya1.

Test Size
Pando Splash Splash w/o encoding

(hops)
1 7 9.7 40.2 22.3
2 8 13.3 40.4 22.5
3 9 10.4 39.4 21.6
4 8 12.4 39.7 21.9
5 7 11.0 40.8 22.9

Average 8 11.4 40.1 22.3

Table 2: Dissemination time (second) on Flocklab.

Test Size
Pando Splash

Splash w/o Deluge
(hops) encoding (2 kBytes)
1 6 5.7 36.4 18.4 481.4
2 5 4.3 36.3 18.3 471.7
3 9 7.7 36.4 18.4 481.4
4 6 6.4 36.3 18.3 481.4
5 5 4.4 36.5 18.6 466.9

Average 6 5.7 36.5 18.7 476.6

the traces of all nodes and calculate the dissemination time
as the last node correctly receives the data object.

5.1 Performance comparison
Table 1 and Table 2 show the dissemination time of three

protocols on Flocklab and Indriya respectively. For each
experiment, we run Deluge, Splash and Pando separately.
For each protocol, five tests are conducted with different
locations of the source node. Each run lasts 30 minutes.
For Deluge and Splash, the data dissemination ends when
the last node correctly recovers the original data. For Pando,
it ends when the source receives the feedback and stops
transmitting. Before the data dissemination, Splash needs to
first generate the XOR-encoded packets for the third round.
Splash spends about 18 seconds to encode 500 XORed pack-
ets on TelosB with TI MSP430 microcontroller. In Table 1
and Table 2, we also present the dissemination time of Splash
without encoding in which the time spent on encoding is not
included in the dissemination time of Splash.

The experiment results reveal that all three protocols can
achieve 100% network reliability. It takes Pando 11.4 sec-
onds and 5.7 seconds to disseminate a file of 32 kBytes on
Indriya and Flocklab respectively. Splash needs about 40.1
seconds and 36.5 seconds. Pando reduces the dissemina-
tion time of Splash by an average factor of 3.5 and 6.4
on Indriya and Flocklab, corresponding to 71.6% or 84%
reduction respectively. Even not considering the encoding
time in Splash, the reduction factor achieved by Pando over
Splash is 2.0 and 3.3 on Indriya and Flocklab. Pando fully
utilizes the parallel pipelines during the entire dissemination
process and the Fountain-coding computation in Pando does
not add any overhead on the dissemination time.

Deluge has two versions: TinyOS’s DelugeT2 and Con-
tiki’s Deluge. We use Contiki’s Deluge, because it is difficult
to execute TinyOS’s DelugeT2 on remote testbeds which
requires to run some tools on the machine connected to
the source node. In our experiments on Flocklab, Contiki’s
Deluge spends 476.6 seconds to disseminate 2 kBytes, cor-

1We encountered several technical problems for running
Contiki’s Deluge on the remote testbed Indriya. The
experiments of Contiki’s Deluge succeeded on Flocklab and
the results in Table 2 show that the dissemination time of
Contiki’s Deluge is orders of magnitude larger than Pando.

Figure 8: Reliability of individual nodes achieved by
Pando and Splash on Indriya and Flocklab.

responding to 7625.6 seconds for 32 kBytes. Pando reduces
the dissemination time of Deluge by 1337.8×. Since the im-
plementation of Deluge in Contiki is less efficient than Del-
ugeT2, we calculate the reduction factor over Deluge based
on the result of DelugeT2 (524 seconds) reported in [7]. The
authors in [7] did the experiments on Indriya with 139 sensor
nodes. At present, only 99 sensor nodes are available on
Indriya. The dissemination time of DelugeT2 on current
Indriya is approximated as 373.2 seconds (i.e., 524 ∗ 99/139
seconds). The reduction factor over DelugeT2 achieved by
Splash and Pando is 9.3 and 32.7 respectively. Splash has
improved the performance of Deluge significantly. Pando
further improves the gain of Splash by 3.5×.

For the experiment results on Flocklab in Table 2, Pando
produces higher improvement to the previous two protocols
than the results on Indriya, since the sensor motes of Flock-
lab are more sparsely deployed and constructive interference
performs better with small number of concurrent transmit-
ters. Comparing Table 1 and Table 2, we also find that
the gain of constructive interference and pipelining is huge.
From Flocklab to Indriya, although the number of sensor
nodes increases more than 2×, the dissemination time of
both Pando and Splash only increases less than 1×. Based
on constructive interference, the delivery of one packet from
one layer of multiple nodes to another layer can be completed
by just one transmission. With pipelining, the transmissions
on different layers can occur simultaneously. Pando makes
the gain of constructive interference and pipelining bloom
in data dissemination, since it completes the entire data
dissemination process over the fast parallel pipelines.

Reliability of individual node. Figure 8 demonstrates
the reliability of individual nodes. The encoding overhead
is not included in the dissemination time of Splash. The
dissemination time of all protocols is when all nodes achieve
100% reliability. It is the time that the last node (the last
row) turns to black. On Flocklab, Pando completes the data
dissemination within 5.7 seconds when the source receives
the aggregated acknowledgement from all nodes in the last
page dissemination. Splash’s data dissemination ends at

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

R
el

ia
bi

lit
y

Dissemination time (s)

Pando
Splash
Splash w/o encoding

Figure 9: Network reliability progress on Indriya.

18.7 seconds when the last node successfully receives the
data object. The dissemination speed of Pando is 3.3× faster
than Splash. Pando completely eliminates the contention-
based multiple access overhead, but Splash has to dissem-
inate the data object multiple times and rely on the local
recovery to achieve 100%. Moreover, in Pando, all nodes
present a similar progress rate. The packet reception rate
is more uniformly distributed across all the nodes, since the
network density and channel allocation are adapted for every
packet transmission.

Reliability progress. Figure 9 and Figure 10 depict
the progress of the average network reliability achieved by
Splash and Pando on Indriya and Flocklab respectively. The
experiment results reveal that Splash has high XOR en-
coding overhead and long tail problem. Pando completes
the data dissemination even before the end of encoding of
Splash. Even if we do not count the encoding time in the
data dissemination time for Splash (i.e., Splash w/o encod-
ing), it still has the long-tail problem. Pando eliminates the
long-tail problem in pipelined data dissemination and re-
duces the dissemination time of Splash by 2.0× and 3.3× on
Indriya and Flocklab respectively. Although the reliability
progress rate of Pando is lower than Splash (i.e., Splash w/o
encoding) in the first round due to the feedback collection
in the page-based data dissemination, Pando achieves much
shorter dissemination time than Splash and the network re-
liability of Pando progresses smoothly for the dissemination
of each data page. Pando is able to asymptotically approach
the optimal dissemination time and adapt to different net-
work deployments and dynamic link conditions.

Energy consumption. The nodes in wireless sensor
networks are typically working in the duty-cycled mode,
which reduces their energy consumption by setting them
in low-power state periodically. The dissemination in the
duty-cycled mode is extremely time-consuming due to the
long-preamble transmissions [11]. Therefore, current data
dissemination protocols [7, 14, 17–19, 40] keep the hardware
resources on sensor motes (e.g., microcontroller and radio) in
active state during the data dissemination process. During
the dissemination, the power consumption of Pando is the
same as the previous protocols, since all of them keep the
nodes in active mode. Therefore, compared with the previ-
ous protocols, benefitting from a shorter dissemination time,
Pando reduces the energy consumption of individual nodes
by the same reduction factor as the dissemination time.

The Fountain coding in Pando is performed during the
idle intervals of the microcontroller and does not impose
any extra energy consumption. The default design of Splash

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

R
el

ia
bi

lit
y

Dissemination time (s)

Pando
Splash
Splash w/o encoding

Figure 10: Network reliability progress on FlockLab.

or the other data dissemination protocols do not exploit the
idle interval of the microcontroller or set the microcontroller
to a power-saving mode during such idle intervals. Even if
we enable Splash to sleep during the idle intervals of the
microcontroller, the saving energy is very limited, because
the energy consumption of sensor motes is dominated by
the transceiver and the transceiver is transmitting or receiv-
ing packets during the whole data dissemination process.
For example, the power consumption of the transceiver on
TelosB is 69 mW (23mA*3V), which is much larger than
the power consumption of the microcontroller, i.e., 5.4 mW
(1.8mA*3V). Using the experiment traces in the above ex-
periments, if we set the microcontroller to a power-saving
mode (e.g., 0.002mA) during the idle intervals for Splash,
only 5.2% energy could be saved. It is small, compared with
the energy saving gain of Pando over Splash (69.5%).

Memory cost. Pando uses 6.24 kBytes of RAM, 32
kBytes of data flash memory, and 31.49 kBytes of ROM
(program flash memory). TelosB is composed of 10 kBytes
of RAM, 1 MBytes of data flash memory, and 48 kBytes of
ROM. Pando uses about 2.24 kBytes of RAM to store the
received packets of current page. Without temporarily stor-
ing of encoded packets in the flash memory, Pando minimizes
the data memory cost and significantly reduces the number
of data flash memory access. Splash has to store the received
packets in the data flash memory and read them into RAM
for post-processing after the 3 dissemination rounds.

Comparison with other protocols. We compare Pando
with other data dissemination protocols by referring to their
performance reported in their papers [8, 9, 14, 17, 22, 53].
All the previous protocols compare their performance with
Deluge [19], the first reliable data dissemination protocol for
wireless sensor networks. Based on the result reported in the
papers of these protocols (i.e., reduction factor of dissemi-
nation time over Deluge), we can calculate the relative gain
of Pando over other existing protocols.

Table 3 tabulates the reduction factor of dissemination
time produced by the previous data dissemination protocols
and Pando over Deluge. The protocols developed before
Splash can only provide a reduction factor around 1.6 (max-
imum 2.4) over Deluge, because they all are based on the
contention-based multiple access. Pando and Splash are
orders of magnitude faster than Deluge, since they are based
on constructive interference and pipelining. By fully exploit-
ing the fast and parallel pipelines as well as the packet-level
adaptation of network density and channel diversity, Pando
asymptotically approaches the network capacity and reduces
the dissemination time of Splash by more than 3.5×.

Indriya Flocklab
0

10

20

30

40
D

is
se

m
in

at
io

n
tim

e
(s

)

Testbed

Pando
Pando−FC
Pando−FD
Pando−F
Splash

Figure 11: Contribution of individ-
ual techniques in Pando.

#1 #2 #3 #4
0

0.1

0.2

0.3

0.4

0.5

R
el

ia
bi

lit
y

Node

Channel 15
Channel 20
Channel 25
Channel 26

Figure 12: Channel quality experi-
enced by four nodes of Indriya.

#1 #2 #3 #4
0

0.2

0.4

0.6

0.8

Node

R
el

ia
bi

lit
y

Leaf On
Leaf Off

Figure 13: Network density expe-
rienced by four nodes of Indriya.

Table 3: Reduction factor of dissemination time over
Deluge achieved by the existing data dissemination
protocols in wireless sensor networks.

Protocols
Number Data size Reduction
of nodes (KB) factor

MNP [22](2005) 100 5 1.21
MC-Deluge [53](2005) 25 24.3 1.60

Rateless Deluge [17](2008) 20 0.7 1.47
ReXOR [8](2011) 16 4 1.53
ECD [9](2011) 25 10 1.44

MT-Deluge [14](2011) 20 0.7 2.42
SYREN [1](2013) 21 0.5 1.6
Splash [7](2013) 139 32 9.3

Pando 99 32 32.7

5.2 Contribution of individual techniques
To further analyze the gain of Pando, we execute Pando in

several versions, in which the individual techniques of Pando
are enabled separately. The results are shown in Figure 11.
In Pando-F, the packet-level adaptation of both network
density and channel diversity is disabled. The performance
gain of Pando-F mainly comes from the Fountain coding.
In Pando-FC, besides Fountain coding, we also enable the
packet-level adaptation of channel diversity. Similarly, in
Pando-FD, the packet-level adaptation of network density
is enabled. Pando in Figure 11 represents the full version of
Pando with all techniques.

Fountain codes. According to Figure 11, Pando-F can
reduce the dissemination time of Splash by 3.2× and 4.7×
on Indriya and Flocklab respectively. The fundamental gain
of Pando comes from the integration of Fountain codes with
the pipelined data dissemination. To tailor LT coding into
the highly-synchronized communication on the resource con-
strained sensor motes, we disseminate the data object in
small pages, which introduce some overhead due to the feed-
back collection for each page. In our current implementa-
tion, we adopt a page size of 32 packets. The gain of Pando
can be further improved by enlarging the page size with
more powerful hardware.

Packet-level adaptation of channel diversity. By
comparing the results of Pando-FC with Splash in Figure 11,
we find that Pando with Fountain codes and packet-level
adaptation of channel diversity can improve the reduction
factor of dissemination time over Splash to 3.4 and 5.5 on
Indriya and Flocklab respectively. Besides the improvement
achieved by Fountain coding, the packet-level adaptation of
channel diversity can further enhance the performance of
Pando-F by 5.6% and 14.3% on Indriya and Flocklab.

Figure 12 shows the contribution of each channel to the re-
liability of four different nodes on Indriya. Different channels
have different performance at different locations. Channel
26 contributes ignorable increase of reliability at the location
of node 3. It may be caused by the interference from the
other nodes or devices. Figure 12 fully demonstrates the
diverse performance of the four available channels at differ-
ent nodes, and suggests the necessity of packet-level channel
diversity. By changing the channel allocation at packet-level,
every node in the network experiences the four channels
equally and circularly. The packet reception becomes more
uniform across different nodes. Therefore, Pando maximizes
the performance of Fountain codes in data dissemination, as
it does not have to spend much time to deliver some packets
to few poorly-performing nodes.

Packet-level adaptation of network density. As shown
in Figure 11, the packet-level adaptation of network density
of Pando-FD reduces the dissemination time of Pando-F
by 4.8% and 10.4% respectively on Indriya and Flocklab.
Figure 13 presents the contributions of two different network
densities (determined by whether the leaf nodes transmit)
for four different nodes of Indriya. The performance of con-
current transmissions is related to the node locations. Some
nodes work well when the neighboring leaf nodes partici-
pate in the concurrent transmissions; the others may benefit
more for a small number of concurrent transmitters. With
packet-level adaptation of network density, Pando makes the
reception performance of individual nodes more uniformly
distributed across the network.

Packet-level adaptation of channel diversity and
network density. According to the experiment results in
Figure 11, Pando reduces the dissemination time of Pando-
F by 9.5% and 26.0% on Indriya and Flocklab respectively.
The dissemination time of Pando is 5.7 seconds on Flock-
lab and the dissemination time of Pando-F is 7.7 seconds.
Such significant improvement demonstrates that the packet-
level adaptation of channel diversity and network density
is necessary for the Fountain-enabled data dissemination of
constructive interference and pipelining.

Silence-based feedback. For the dissemination of one
page, Pando needs an average of 276.4 ms and 135.0 ms
to deliver the feedback information from the last successful
node to the source on Indriya and Flocklab respectively. The
number of consecutive silent slots M is set to 3 on Indriya,
since the nodes of Indriya are more densely deployed and
more packet losses occur. M is set to 2 on Flocklab for more
efficient feedback collection. On both testbeds, there are no

16 32 48 64 80 96
0

5

10

15

Packet size (byte)

D
is

se
m

in
at

io
n

tim
e

(s
)

FlockLab
Indriya

Figure 14: Performance for different payload sizes.

nodes that mistakenly stop their dissemination because of
false channel silence. For the data object of 32 kBytes, the
feedback delivery in Pando takes 4.4 seconds and 2.2 seconds
in total on Indriya and Flocklab respectively. Although this
amount of time is not directly used for disseminating the
data packets, it is necessary to start the dissemination of
a new data page and terminate the whole dissemination
process. Even including the feedback time, Pando’s dissemi-
nation time is still less than Splash by 28.7 seconds and 30.8
seconds on Indriya and Flocklab respectively.

In our experiments, we observe that the dynamic adaption
of channel silence threshold RSSIthreshold can well prevent
the false negative of silence detection. The RSSIthreshold
could be from -91 dBm to -78 dBm for different nodes. For
the node with a threshold of -78 dBm, it can detect a silence
channel even the noise or interference is as large as -78 dBm.
For the node with a threshold of -91 dBm, the noise and
interference at its location are small, and it can successfully
receive a packet with a signal of -89 dBm.

5.3 Effect of packet size
Figure 14 examines the performance of Pando with dif-

ferent packet sizes. The best performance of Pando comes
with a moderate size of data packet, i.e., 64 bytes. When the
packet size is small, the preamble of the physical and MAC
layer introduces high percentage of overhead and occupies a
large portion of the dissemination time. When the packet
size is large, the performance of constructive interference
decreases. From Figure 14, we see that the optimal packet
size is 64 bytes for both testbeds. Although the performance
of Pando depends on the best setting of packet size, the op-
timal setting does not change across testbeds with different
densities and scales.

6. RELATED WORK
In-field deployments of wireless sensor networks normally

require remotely wireless reprogramming [23, 26, 27, 35, 41,
46]. Content dissemination is also needed in other wire-
less networks, like vehicular networks [25] and social net-
works [29]. A variety of data dissemination protocols have
been developed based on different techniques in the last
decade. The best next-hop forwarder is selected by inves-
tigating its program version [19, 28], the information of its
neighbors [22] or its link quality [9]. The frequency of ad-
vertisement messages in Deluge is adjusted according to
the network density [3]. The link correlation [1, 47, 48, 54]
and opportunistic forwarding [16] are considered in flooding.
The multi-channel scheme is used to improve the spatial

reuse [30]. A backbone subnetwork is built to deliver data to
the other nodes based on a minimum connected dominating
set [36,49]. The delay constraint is taken into account in [20].
Selective dissemination is studied in [37,42]. A data-centric
data dissemination scheme is proposed in [4]. The above
protocols disseminate data hop by hop using CSMA/CA or
TDMA, which limits the spatial reuse and imposes heavy
overhead of multiple access.

The multiple access overhead is addressed by capture ef-
fect for flooding in wireless multi-hop networks [24,32,44,51].
However, the performance of capture effect decreases when
many nodes are transmitting simultaneously [32]. Many
practical works, e.g., A-MAC [11], Glossy [13] and LWB [12],
experimentally show that the reliability of constructive in-
terference is high. However, the payload size of the trans-
mitted packets in these works is small (i.e., 8 or 15 bytes).
For the dissemination of a large data object, long payload
size (e.g., 64 bytes) should be used. According to the exper-
iments in [7], also confirmed by our experiments, construc-
tive interference becomes unreliable for large packet size.
Meanwhile, PIP [38] constructs a fast data delivery pipeline
using multiple channels. Splash [7] partially eliminates the
multiple access overhead in data dissemination by combining
constructive interference and pipelining.

Fountain codes [34] have been widely used to improve the
broadcasting efficiency. The light-weight fountain transmis-
sion is first realized by LT codes [33]. SYNAPSE++ [40]
leverages LT codes to enhance the broadcasting efficiency of
Deluge [19] in each hop. DLT [10] use LT codes to improve
the networking performance of wireless sensors. Network
coding schemes, like random linear codes and XOR coding,
are also adopted to improve the single-hop broadcasting
efficiency in wireless sensor networks [8, 17, 18]. The above
protocols based on Fountain codes or network coding, how-
ever, are designed for single-hop transmissions with explicit
acknowledgement.

7. CONCLUSION
This paper presents Pando, a completely contention-free

data dissemination protocol for wireless sensor networks. By
integrating Fountain codes with constructive interference
and pipelining, Pando is able to continuously disseminate
rateless encoded packets over the parallel pipelines. Three
techniques, including radio-driven encoding and decoding,
silence-based feedback scheme and packet-level adaptation
of network density and channel diversity, are developed to
transform Pando into a practical system, which asymptoti-
cally approaches the network capacity. Experiment results
demonstrate that Pando can provide 100% reliability and
significantly outperform the previous data dissemination pro-
tocols in dissemination time and energy consumption.

8. ACKNOWLEDGMENTS
We thank our shepherd Prof. Silvia Santini and the anony-

mous reviewers for their valuable suggestions and feedback.
We also thank the kind help and support offered by the
Indriya testbed team led by Prof. Mun Choon Chan from
NUS and the Flocklab testbed team led by Dr. Jan Beutel
and Prof. Lothar Thiele from ETH Zurich. This work is
supported by Singapore MOE AcRF Tier 2 MOE2012-T2-1-
070 and NTU Nanyang Assistant Professorship (NAP) grant
M4080738.020.

9. REFERENCES
[1] S. Alam, S. Sultana, Y. C. Hu, and S. Fahmy.

SYREN: Synergistic link correlation-aware and
network coding-based dissemination in wireless sensor
networks. In IEEE MASCOTS, pages 485–494, 2013.

[2] A. Boulis, C.-C. Han, and M. B. Srivastava. Design
and implementation of a framework for efficient and
programmable sensor networks. In ACM MobiSys,
pages 187–200, 2003.

[3] S. Cho, H. Shin, S. Han, H. Cha, and R. Ha.
Density-adaptive network reprogramming protocol for
wireless sensor networks. Wireless Communications
and Mobile Computing, 10(6):857–874, 2010.

[4] M. Ditzel and K. Langendoen. D3: Data-centric data
dissemination in wireless sensor networks. In The
European Conference on Wireless Technology, pages
185–188, 2005.

[5] M. Doddavenkatappa and M. C. Chan. P3: a practical
packet pipeline using synchronous transmissions for
wireless sensor networks. In ACM/IEEE IPSN, pages
203–214, 2014.

[6] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda.
Indriya: A low-cost, 3d wireless sensor network
testbed. In TRIDENTCOM, 2011.

[7] M. Doddavenkatappa, M. C. Chan, and B. Leong.
Splash: Fast data dissemination with constructive
interference in wireless sensor networks. In USENIX
NSDI, pages 269–282, 2013.

[8] W. Dong, C. Chen, X. Liu, J. Bu, and Y. Gao. A
lightweight and density-aware reprogramming protocol
for wireless sensor networks. IEEE Transactions on
Mobile Computing, pages 1403–1415, 2011.

[9] W. Dong, Y. Liu, C. Wang, X. Liu, C. Chen, and
J. Bu. Link quality aware code dissemination in
wireless sensor networks. In IEEE ICNP, pages 89–98,
2011.

[10] W. Du, Z. Li, J. C. Liando, and M. Li. From rateless
to distanceless: Enabling sparse sensor network
deployment in large areas. In ACM SenSys, pages
134–147, 2014.

[11] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M.
Liang, and A. Terzis. Design and evaluation of a
versatile and efficient receiver-initiated link layer for
low-power wireless. In ACM SenSys, pages 1–14, 2010.

[12] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele.
Low-power wireless bus. In ACM SenSys, pages 1–14,
2012.

[13] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh.
Efficient network flooding and time synchronization
with glossy. In ACM/IEEE IPSN, pages 73–84, 2011.

[14] Y. Gao, J. Bu, W. Dong, C. Chen, L. Rao, and X. Liu.
Exploiting concurrency for efficient dissemination in
wireless sensor networks. IEEE Transactions on
Parallel and Distributed Systems, pages 691–700, 2013.

[15] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection tree protocol. In ACM SenSys,
pages 1–14, 2009.

[16] S. Guo, Y. Gu, B. Jiang, and T. He. Opportunistic
flooding in low-duty-cycle wireless sensor networks
with unreliable links. In ACM MobiCom, pages
133–144, 2009.

[17] A. Hagedorn, D. Starobinski, and A. Trachtenberg.

Rateless Deluge: Over-the-air programming of wireless
sensor networks using random linear codes. In
ACM/IEEE IPSN, 2008.

[18] I.-H. Hou, Y.-E. Tsai, T. F. Abdelzaher, and I. Gupta.
AdapCode: Adaptive network coding for code updates
in wireless sensor networks. In IEEE INFOCOM, 2008.

[19] J. W. Hui and D. Culler. The dynamic behavior of a
data dissemination protocol for network programming
at scale. In ACM Sensys, pages 81–94, 2004.

[20] H. S. Kim, T. F. Abdelzaher, and W. H. Kwon.
Dynamic delay-constrained minimum-energy
dissemination in wireless sensor networks. ACM
Transactions on Embedded Computing Systems,
4(3):679–706, 2005.

[21] J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-Haggerty,
J.-P. Vasseur, M. Durvy, A. Terzis, A. Dunkels, and
D. Culler. Industry: beyond interoperability: pushing
the performance of sensor network ip stacks. In ACM
SenSys, pages 1–11, 2011.

[22] S. S. Kulkarni and L. Wang. MNP: Multihop network
reprogramming service for sensor networks. In IEEE
ICDCS, pages 7–16, 2005.

[23] T.-t. T. Lai, Y.-h. T. Chen, H.-h. Chu, and P. Huang.
Pipeprobe: mapping hidden water pipelines. In ACM
SenSys, pages 375–376, 2009.

[24] O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos:
Versatile and efficient all-to-all data sharing and
in-network processing at scale. In ACM SenSys, pages
1:1–1:14, 2013.

[25] I. Leontiadis, P. Costa, and C. Mascolo. Persistent
content-based information dissemination in hybrid
vehicular networks. In IEEE PerCom, pages 1–10,
2009.

[26] I. Leontiadis, C. Efstratiou, C. Mascolo, and
J. Crowcroft. Senshare: Transforming sensor networks
into multi-application sensing infrastructures. In
EWSN, pages 65–81, 2012.

[27] P. Levis, D. Gay, and D. Culler. Active sensor
networks. In USENIX NSDI, pages 343–356, 2005.

[28] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle:
A self regulating algorithm for code propagation and
maintenance in wireless sensor networks. In USENIX
NSDI, pages 15–28, 2004.

[29] S. Li, L. Su, Y. Suleimenov, H. Liu, T. Abdelzaher,
and G. Chen. Centaur: Dynamic message
dissemination over online social networks. In ICCCN,
pages 1–8, 2014.

[30] C.-J. M. Liang, R. Musăloiu-e, and A. Terzis.
Typhoon: A reliable data dissemination protocol for
wireless sensor networks. In EWSN, pages 268–285.
Springer, 2008.

[31] R. Lim, F. Ferrari, M. Zimmerling, C. Walser,
P. Sommer, and J. Beutel. Flocklab: A testbed for
distributed, synchronized tracing and profiling of
wireless embedded systems. In ACM/IEEE IPSN,
pages 153–166, 2013.

[32] J. Lu and K. Whitehouse. Flash flooding: Exploiting
the capture effect for rapid flooding in wireless sensor
networks. In IEEE INFOCOM, pages 2491–2499, 2009.

[33] M. Luby. LT codes. In IEEE FOCS, pages 271–280,
2002.

[34] D. J. MacKay. Fountain codes. IEE

Proceedings-Communications, pages 1062–1068, 2005.

[35] L. Mottola, G. P. Picco, M. Ceriotti, S. Gunǎ, and
A. L. Murphy. Not all wireless sensor networks are
created equal: A comparative study on tunnels. ACM
Transactions on Sensor Networks, 7(2):1–33, 2010.

[36] V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler:
A reliable and energy efficient data dissemination
service for wireless embedded devices. In IEEE RTSS,
pages 777–789, 2005.

[37] B. Pásztor, L. Mottola, C. Mascolo, G. P. Picco,
S. Ellwood, and D. Macdonald. Selective
reprogramming of mobile sensor networks through
social community detection. In EWSN, pages 178–193,
2010.

[38] B. Raman, K. Chebrolu, S. Bijwe, and V. Gabale.
PIP: A connection-oriented, multi-hop, multi-channel
tdma-based mac for high throughput bulk transfer. In
ACM Sensys, pages 15–28, 2010.

[39] N. Reijers and K. Langendoen. Efficient code
distribution in wireless sensor networks. In ACM
WSNA, pages 60–67, 2003.

[40] M. Rossi, N. Bui, G. Zanca, L. Stabellini, R. Crepaldi,
and M. Zorzi. SYNAPSE++: code dissemination in
wireless sensor networks using fountain codes. IEEE
Transactions on Mobile Computing, pages 1749–1765,
2010.

[41] S. Santini, B. Ostermaier, and A. Vitaletti. First
experiences using wireless sensor networks for noise
pollution monitoring. In Proceedings of ACM
REALWSN, pages 61–65, 2008.

[42] M. Sathiamoorthy, K. R. Moghadam,
B. Krishnamachari, and F. Bai. Helper node allocation
strategies for content dissemination in intermittently
connected mobile networks. In IEEE SECON, pages
55–63, 2014.

[43] B. Sirkeci-Mergen, A. Scaglione, and G. Mergen.
Asymptotic analysis of multistage cooperative
broadcast in wireless networks. IEEE Transactions on
Information Theory, pages 2531–2550, 2006.

[44] D. Son, B. Krishnamachari, and J. Heidemann.
Experimental study of concurrent transmission in

wireless sensor networks. In ACM SenSys, pages
237–250, 2006.

[45] K. Srinivasan, M. Jain, J. I. Choi, T. Azim, E. S. Kim,
P. Levis, and B. Krishnamachari. The κ factor:
Inferring protocol performance using inter-link
reception correlation. In ACM MobiCom, pages
317–328, 2010.

[46] I. Stoianov, L. Nachman, S. Madden, T. Tokmouline,
and M. Csail. PIPENET: A wireless sensor network
for pipeline monitoring. In ACM/IEEE IPSN, pages
264–273, 2007.

[47] T. Zhu, Z. Zhong, T. He and Z.-L. Zhang. Exploring
link correlation for efficient flooding in wireless sensor
networks. In USENIX NSDI, 2010.

[48] S. Wang, S. M. Kim, Y. Liu, G. Tan, and T. He.
CorLayer: a transparent link correlation layer for
energy efficient broadcast. In ACM MobiCom, pages
51–62, 2013.

[49] S. Wang, G. Tan, Y. Liu, H. Jiang, and T. He. Coding
opportunity aware backbone metrics for broadcast in
wireless networks. IEEE Transactions on Parallel and
Distributed Systems, 25(8):1999–2009, 2014.

[50] Y. Wang, Y. He, X. Mao, Y. Liu, and X.-Y. Li.
Exploiting constructive interference for scalable
flooding in wireless networks. IEEE/ACM
Transactions on Networking, pages 1880–1889, 2013.

[51] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and
D. Culler. Exploiting the capture effect for collision
detection and recovery. In IEEE EmNetS-II, pages
45–52, 2005.

[52] Y. Wu, J. Stankovic, T. He, S. Lin, et al. Realistic and
efficient multi-channel communications in wireless
sensor networks. In INFOCOM, 2008.

[53] W. Xiao and D. Starobinski. Poster abstract:
Exploiting multi-channel diversity to speed up
over-the-air programming of wireless sensor networks.
In ACM SenSys, pages 292–293. ACM, 2005.

[54] Z. Zhao, W. Dong, J. Bu, Y. Gu, and C. Chen. Link
correlation aware data dissemination in wireless sensor
networks. IEEE Transactions on Industrial
Electronics, 2015.

