
Passive Diagnosis for Wireless Sensor Networks

Kebin Liu
Shanghai Jiaotong University & HKUST

kebin@cse.ust.hk

Mo Li
HKUST

limo@cse.ust.hk

Yunhao Liu
HKUST

liu@cse.ust.hk

Minglu Li
Shanghai Jiaotong University

mlli@sjtu.edu.cn

Zhongwen Guo
Ocean University of China

guozhw@ouc.edu.cn

Feng Hong
Ocean University of China

hongfeng@ouc.edu.cn

ABSTRACT

Network diagnosis, an essential research topic for traditional
networking systems, has not received much attention for wireless
sensor networks. Existing sensor debugging tools like sympathy
or EmStar rely heavily on an add-in protocol that generates and
reports a large amount of status information from individual sen-
sor nodes, introducing network overhead to a resource constrained
and usually traffic sensitive sensor network. We report in this
study our initial attempt at providing a light-weight network diag-
nosis mechanism for sensor networks. We propose PAD, a prob-
abilistic diagnosis approach for inferring the root causes of ab-
normal phenomena. PAD employs a packet marking algorithm for
efficiently constructing and dynamically maintaining the inference
model. Our approach does not incur additional traffic overhead
for collecting desired information. Instead, we introduce a prob-
abilistic inference model which encodes internal dependencies
among different network elements, for online diagnosis of an
operational sensor network system. Such a model is capable of
additively reasoning root causes based on passively observed
symptoms. We implement the PAD design in our sea monitoring
sensor network test-bed and validate its effectiveness. We further
evaluate the efficiency and scalability of this design through ex-
tensive trace-driven simulations.

Categories and Subject Descriptors

C.2.3 [Network Operations]: Network monitoring

General Terms

Experimentation, Management, Measurement

Keywords

Wireless Sensor Networks, Diagnosis

1. INTRODUCTION

Wireless sensor networks (WSNs) have been widely employed
for enabling various applications such as environment surveil-
lance, scientific observation, traffic monitoring, etc [13, 26]. A
sensor network typically consists of a large number of resource
limited sensor nodes working in a self-organizing and distributed
manner. Having made increasing efforts [6, 7, 10-12, 15, 17-19,
25, 29] to improve the robustness and reliability of WSNs under
crucial and critical conditions, researchers however, have done
little work targeting the in-situ network diagnosis for testing op-
erational sensor networks. It is of great importance to provide
system developers useful information on a system’s working
status and guide further improvement to or maintenance on the
sensor network.

Due to the ad hoc working style, once deployed, the inner
structures and interactions within a WSN are difficult to observe
from the outside. Existing works for diagnosing WSNs mainly
rely on proactive approaches, which implant debugging agents
into sensor nodes, periodically reporting the internal status infor-
mation of each node to the sink, such as component failures, link
status, neighbor list, and the like. For example, Zhao et al. [31]
propose to scan the residual energy and monitor parameter aggre-
gates including link loss rate and packet count. Such information
is collected locally at each node and transmitted back to the sink
for analysis. Sympathy [21] actively collects run-time status from
sensor nodes like routing table and flow information and detects
possible faults by analyzing node status together with observed
network exceptions. The proactive information generation and
retrieval exerts extra computational operations on sensors and
imposes a large communication burden on a WSN which is usu-
ally fragile at high traffic loads. Those approaches work more like
debugging or evaluation [24] tools before the system is released
for use outside laboratory settings. While such tools are effective
for offline debugging when sensor behavior and network scale can
be strictly controlled, they may not be suitable for in-situ network
diagnosis of a deployed operational WSN since they continuously
generate a large amount of traffic and aggressively consume com-
putation, communication and energy resources. Also, integrating
those complex debugging agents with application programs at
each sensor node introduces difficulties for system development.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.
SenSys'08, November 4-7, 2008, Raleigh, North Carolina, USA.
Copyright 2008 ACM 978-1-59593-990-6/08/11...$5.00.

This work is motivated from our ongoing sea monitoring pro-
ject [4, 28]. As shown in Fig. 1, for this project we launched a
working prototype WSN consisting of tens of nodes that float on
the sea surface and collect scientific data such as sea depth, ambi-
ent illumination, pollution, and so on. Recently, in the field de-
ployment tests, we often observed abnormal energy depletion that
never occurred in the controlled laboratory experiments. We sus-
pect that such a phenomenon is due to the usage of the MultiHo-

pRouter (integrated in SURGE) component that frequently
switches the optimized routing tree of the network owing to the
highly instable environment of the sea. We also observed other
problems on the sink side such as high delay of data sampling and
unbalanced packet loss. Fast and accurate identification of the
root causes is necessary before taking any further action such as
issuing reboot messages to certain nodes or physically examining
the suspicious links. With current debugging tools, it is indeed
difficult to integrate their agents with our application programs. It
is even worse if we implant proactive information collectors in the
network, which would inevitably speed up the depletion of energy
and rapidly reduce the expected lifetime of the sensor network.

In this work, we propose an online diagnosis approach which
passively observes the network symptoms from the sink. Using
probabilistic inference models, this approach effectively deduces
the root causes of abnormal symptoms in the network. Compared
with proactive debugging tools, the passive diagnosis approach
observes data from routine application packets for back end
analysis. It can also be maintained in a running system at light-
weight cost, thus is expected to accommodate the application
system in a timely manner without degrading performance.

Inference-based network diagnosis methods have been widely
investigated and applied in enterprise networks [5]. Various types
of inference models, both deterministic and nondeterministic,
have been proposed for inferring the root causes of service fail-
ures. Most models are built on expert knowledge or trained from
historical data from the network. The construction of such models
can be very complicated and once constructed, the models are
often viewed as remaining unchanged for a relatively long period
[5], as enterprise networks are usually stable with few dynamics in
their structures. WSNs, however, cannot easily adopt such slow
start approaches as sensors are self-organized without any prior
information on the dependencies among network elements. The
high dynamics of the WSN structure also leads to the infeasibility

of those inference models built from static data. In addition, the
high computational complexity of those information rich models
largely restricts their applicability for the resource constrained
WSN systems.

We address the above challenges as follows. First, we intro-
duce a packet marking scheme, which marks the normal commu-
nicating packets to continuously reveal their communication de-
pendencies within the network. Using the output of the scheme,
the sink constructs and dynamically maintains a probabilistic in-
ference model. This scheme works in a light-weight manner with-
out any extra transmission in the network and can adapt to fre-
quent network changes. Second, we employ a hierarchical infer-
ence model that captures multi-level dependencies in the network.
This model takes both positive and negative symptoms as input,
and reports the inferred posterior probability of possible root
causes. Third, we design an inference engine capable of additively
reasoning the root causes such that it works even with incomplete
or suspicious inputs in a nondeterministic manner. The major
contributions of this study are as follows.

(1) To the best of our knowledge, we are the first to investigate a
light-weight method of passively diagnosing wireless sensor
networks.

(2) According to the unique features of sensor networks, we
design an efficient packet marking scheme that reveals the
inner dependencies of sensor networks without injecting ex-
tra transmissions.

(3) We propose hierarchical inference models which capture the
multi-level dependencies among the network elements and
achieve high accuracy. We further introduce a fast inference
scheme which reduces the computational complexity and is
thus scalable for large scale WSNs.

(4) We implement our diagnosis approach, PAD, and test its
effectiveness in our sea monitoring project with 24 sensors.
The results of our field test show that PAD indeed helps in
exploring the root causes of observed symptoms. Relying on
the output of PAD, we have successfully improved our appli-
cation programs.

(5) We further analyze and evaluate the scalability and effective-
ness of PAD design through extensive simulations under var-
ied conditions using the trace we collect from the prototype
implementation.

The rest of this paper is organized as follows: Section 2 intro-
duces related work. Section 3 describes the framework of our
system. We introduce the packet marking scheme in Section 4 and
discuss the two inference models based on Belief Network and
Causality Diagram in Section 5 and 6. In Section 7, we present
our implementation and simulation results. We conclude this work
in Section 8.

2. RELATED WORK

Most existing approaches for sensor network diagnosis are
proactive, in which each sensor employs a debugging agent to
collect its status information and reports to the sink by periodi-

Figure 1. OceanSense project

cally transmitting specific control messages. Some researchers
propose to monitor sensor networks by scanning the residual en-
ergy [31] of each sensor and collecting the aggregates of parame-
ters of sensors where in-network processing is leveraged. By col-
lecting such information the sink is aware of the network condi-
tions. Some debugging systems [21, 27] aim to detect and debug
software failures in sensor nodes. For example, Clairvoyant [27]
focuses on debugging sensor nodes at source-level, and enables
developers to wirelessly connect to a remote sensor in the network
and execute standard debugging commands on that node includ-
ing break, step, and the like. Sympathy [21] is an advanced de-
bugging tool that detects and debugs the failures in a sensor net-
work. It actively collects in-network information periodically from
each sensor node such as neighbor list, traffic flow, and the like,
and analyzes the network status at the sink. By carefully selecting
an optimal set of information metrics, Sympathy aims at minimiz-
ing the diagnosis cost so as to be applicable to resource-limited
sensor networks. It also applies an empirical decision tree to de-
termine the most likely root causes for an observed exception.

Much effort has been expended on network diagnosis for en-
terprise networks. Commercial tools [1-3] independently monitor
servers and routers with various control messages and alerts are
automatically generated from the implanted agents in different
network equipment. Those tools, being effective for diagnosing
large scale networks, are too complicated and energy consuming
for resource constrained sensor networks. There have been some
passive diagnosis approaches proposed for enterprise networks
that collect a network’s operational status from routine data pack-
ets so as to deduce the possible root causes of exceptions by an
inference model. For example, Score [16] troubleshoots via
shared risk modeling. It adopts a simplified two-level graph as the
inference model and formulates the problem of locating fault roots
as a minimal set cover problem. Kandula et al. explore the bipar-
tite graph inference model and propose Shrink, introducing a
probabilistic inference scheme [14]. The bipartite graph model
approximates the dependencies in enterprise networks and greatly
simplifies the complexity of the inference process. Steinder and
Sethi [22, 23] also assume a bipartite graph model and apply Be-
lief Networks [20] with the bipartite graph to represent relations
among links and end to end communications. The above schemes
either require pre-knowledge of the network dependencies, which
are obtained through Shared Risk Link Groups or SNMP in a
relatively stable enterprise network, or adopt simplified models to
approximate the network dependencies. A WSN, however, is fea-
tured by its hierarchical multi-level structures which can hardly be
approximated by the bipartite graph model. It is also unpractical
to maintain the network dependencies as stable inputs in highly
dynamic and self-organized sensor networks.

The recently proposed Sherlock is the only work that adopts a
multi-state and multi-level inference graph for the network diag-
nosis [5]. They use a scoring function to derive the best explana-
tions (root causes) for observed service exceptions. In their ap-
proach, network dependencies are derived through software
agents running on each host. In order to avoid NP-hard computa-
tion complexity, they assume that there are at most a small con-
stant number of failures in the enterprise network. This assump-
tion is not valid for the unreliable and lossy WSNs.

3. SYSTEM FRAMEWORK

We view the sensor network as a method for data acquisition,
in which source nodes periodically sample data and deliver them
back to the sink through multi-hop communication. We do not
assume any specific routing strategy, that is, our approach deals
with networks of various communication topologies such as span-
ning tree or directed acyclic graph (DAG).

We design a passive diagnosis approach, PAD, for such sensor
networks. PAD aims to help network managers to explore the root
causes of exceptions in a running sensor system. PAD implants a
tiny light-weight probe into each sensor node that sporadically
marks routine application packets passing by, so that the sink can
reassemble a big picture of the network conditions from those
small clues. Nevertheless, information from marking probes is
quite limited and not sufficiently accurate. PAD employs a prob-
abilistic model to infer the statuses of unobservable network ele-
ments and reveal the root faults in the network. PAD denotes the
observed abnormal situations as negative symptoms such as a long
time delay of data arrival or frequent packet loss. It denotes any
successfully packet reception as positive symptoms. The inference
model inputs both negative and positive symptoms to derive net-
work statuses.

As illustrated in Fig. 2, PAD is mainly composed of four com-
ponents: a packet marking module, a mark parsing module, a
probabilistic inference model, and an inference engine. The
packet marking module resides in each sensor node and sporadi-
cally marks routine application packets passing by. At the sink
side, the mark parsing module extracts and analyzes the marks
carried by the received data packets. The network topology can
thus be reconstructed and dynamically updated according to the
analysis results. The mark parsing module also generates prelimi-
nary diagnosis information such as packets loss on certain links,
route dynamics, and so on. The inference model builds a graph of
dependencies among network elements based on the outputs from
the parsing module. Using the inference model and observed
negative and positive symptoms as inputs, the inference engine is
able to yield a fault report, which reveals the root causes of excep-
tions by setting the posterior probabilities of each network com-
ponent being problematic. The inference results are also taken as
feedback to help improve and update the inference model.

Indeed, network analysis can be achieved at different levels. In
the exhaustive diagnosis tools, a lot of information, such as the
routing table, data flow, buffer statuses, and residual energy are
collected to assist determination. On the contrary, in our design,
we desire to use some hints obtained from the operational network,
such as coarse topology information, the recipient of common
application packets, and so on. Nevertheless, there is still a trade-
off between the diagnosis granularity and its overhead. Compre-
hensive diagnosis usually requires detailed information collection
and incurs heavy communicational overhead. In this work, how-
ever, we aim to minimize the overhead while preserving the qual-
ity of diagnosis, so that this diagnosis tool can work as a longlived
component together with regular applications.

Figure 2. PAD system overview

4. PACKET MARKING

Since a sensor network has a self-organized time-varying net-
work structure, unlike the case in an enterprise network, no prior
knowledge can be obtained for constructing the inference model.
Also, as a WSN topology is highly dynamic, we need to acquire
the network statuses continually to maintain the topology in real-
time. To address the above requirements, we design a packet
marking algorithm in PAD, which dynamically captures the net-
work topology and extracts the inner dependencies among net-
work components. Before the analysis results are directed to the
inference engine for further reasoning, we can generate a prelimi-
nary diagnosis report on some basic network exceptions.

The main operation of this marking algorithm is to let sensor
nodes stamp their IDs on passing data packets. Due to the size
limitations of the data packets used in sensor networks, however,
the marking scheme only adds two bytes to each data packet that
records one node ID. During the packet delivery, only one se-
lected sensor node marks its ID and updates the hop count field
on each packet based on a set of rules. At the sink side, the mark
parsing module traces back the paths from each source node
through analyzing sporadically marked packets. Through assem-
bling the paths from different source nodes, the network topology
can be reconstructed along with the regular data delivery of the
system. If the network remains static, the packet marking process
automatically converges and stops after the entire network topol-
ogy is constructed. When network conditions vary, such as when
packet loss or route changes occur, the packet marking process
restarts somewhere close to the exceptional event. A strength of
this design is that it does not inject any extra message into the
network and strictly limits the overhead of marks attached to each
data packet.

4.1 Marking Scheme on Sensor Nodes

Figure 3 depicts an example of data packet marking. We as-
sume that each original data packet contains (1) a source node ID
denoting the source node of this packet, (2) a sequence number

identifying the packet, and (3) a hop count recording the number
of hops it travels. If there is no such information recorded in the
application, the marking scheme adds them to the packets. The
mark added to the original packet is the pass node ID which re-
cords the ID of a sensor that participates in delivering this packet.
When the source node issues a new data packet, it leaves the pass

node ID field empty.

Algorithm 1 Packet_Marking (packet p)

1: if p has been marked

2: return;

3: else

4: check cache;

5: if no entry for source node of p

6: mark p;

7: create entry with source node ID and sequence number in p;

8: else if entry exists and sequence number continuous

9: update entry with new sequence number;

10: increase hop count in p by 1;

11: else if entry exists and sequence number not continuous

12: mark p;

13: update entry with new sequence number;

14: end if

15: end if

16: return;

Every intermediate node maintains a cache for its down-stream
source nodes. As illustrated in Fig. 3, each cache entry consists of
a source node ID and the sequence number of the recently re-
ceived packet from the source. As shown in algorithm 1, upon
receiving a packet, an intermediate node first checks whether the
packet has been marked. If yes (the pass node ID is not empty), it
forwards the packet with no further operations. Otherwise, the
node checks its own cache. If there is no entry for the source node

ID of this packet, it marks the packet by filling the pass node ID
field with its own ID. It also creates a new entry for this source

node in its cache and records the sequence number for the packet.
If there exists an entry in the cache for the source node and the
sequence number in the packet is consistent with the cache entry,
the intermediate node updates the cache entry with the new se-

quence number. To prevent duplicate marking, the intermediate
node does not fill the pass node ID field, instead it increments the
hop count in the packet by 1 and forwards the packet. If the se-

quence number of the packet is not consistent with that recorded
in the cache entry, it might be due to the packet loss or routing
variations. The intermediate node marks the packet by filling the
packet pass node ID field with its own ID. The node then updates
its cache entry with the new sequence number of this packet and
forwards it. The sink also participates in the marking process and
creates a table recording source nodes and their packet sequence
numbers. Using this marking scheme, the received packet in the
sink records the ID of one intermediate node in the routing path
together with its hop count to the source node. We avoid duplicate
marks of the same node on the same path to save communication
costs. We can further reduce the memory usage in each sensor
node by organizing its cache table into bloom filters. Each inter-
mediate node inserts and extracts the source node information on
the bloom filter. The error rate introduced by the bloom filter
introduces negligible adverse impact in the lossy by-nature sensor
network.

4.2 Parsing the Marks

At the sink, the mark parsing module extracts and parses the
marks piggybacked from the received packets. For each source
node, we keep a data structure denoted as path to record node IDs
along the path from the source node to the sink. A path contains
an array of slots and each slot records a node ID along the path
hop by hop. The path also has a field which records the sequence

number of the latest arrived packet from each source.

On receiving a new packet, the mark parsing module checks
the existence of a path structure associated with its source node. If
there is no such path, it means it is the first time the sink has re-
ceived packets from that source. The sink creates a new path for
the source node and records the source node ID at the first slot.
The mark parsing module then examines whether the packet has
been marked (the pass node ID field has been filled). If it has
been marked, the sink updates the associated slot in the path to be
the recorded node ID according to the hop count in the packet.

For the packets from the recorded path, the parsing module op-
erates according to the recorded sequence number. We denote d
as the difference between the sequence number of the received
packet and the sequence number recorded in the path. Normally,
without packet loss, d = 1, and we directly add the marked node
ID into the path. Inconsistence of the sequence numbers (d > 1)
indicates that the packet loss occurs and triggers a preliminary
diagnosis report on packet loss. A mismatch of the recorded pass

node ID in the packet and the recorded node ID in corresponding
slot in the path indicates a route variation at the hop count re-
corded in the packet and its d hops upwards, otherwise the mark-
ing should be taken earlier. The parsing algorithm then generates
a preliminary report of a route switch. In such a case, the recorded
path from d hops before the hop count position to sink becomes
inaccurate, so we clear all those slots. The reception of the packet
without any marks triggers a preliminary report of a successful
delivery. The mark parsing function is shown in algorithm 2.

The mark parsing module constructs and updates the network
topology with the recorded paths. Once a new packet is received,
the path associated to its source node is updated. This indicates
that all links along the current path have just participated in the
transmission of a packet. For each link in the network topology,
we keep a counter to count the number of transmissions experi-
enced by this link. Such information facilitates the construction of
the inference model as it tells the strength of the dependency be-
tween the parent and its successive nodes.

Obviously, the number of packets we need for capturing the
entire path for a source node is at most the maximum hop count.
Even under frequent route switches, the number can be bounded
to a small constant. Since links in sensor networks are usually
shared by many paths, we do not need to collect path information
for all paths before we are able to construct the complete network
topology. Indeed, our packet marking scheme captures the net-
work topology with a small number of packet receptions, as dem-
onstrated in our field experiment.

Algorithm 2 Mark Parsing(packet p)

1: if p.sourceNodeID has no associated path

2: create new path for p.sourceNodeID;

3: end if

4: d = p.sequenceNumber – path.sequenceNumber;

5: if d <= 1 //no packet loss

6: if path[hopCount] != p.passNodeID //route switch

7: path[hopCount] = p.passNodeID;

8: clear all slots in path after path[hopCount];

9: generates route switch report;

10: end if

11: else //packet loss detected

12: generate packet loss report;

13: if path[hopCount] != p.passNodeID //route switch

14: clear all slots in path after path[hopCount - d];

15: path[hopCount] = p.passNodeID;

16: end if

17: end if

Figure 3. The marked data packet and the cache content of

intermediate nodes

Clearly, in this design we propose to mark simple messages
only; but if we insert more marks into the data packets, we obtain
richer information on the network statuses and make the diagnosis
process more straightforward. Nevertheless, in resource con-
strained sensor networks, we have to minimize the communication
overhead introduced by our diagnosis model. Therefore, we
choose to only use simplified marks to additively reconstruct the
network. We give details about this issue in later discussions.

4.3 Preliminary Diagnosis Reports

Before the final diagnosis results are obtained from the infer-
ence engine, some preliminary diagnosis reports can be yielded
from the mark parsing module, which help to analyze the network
statuses. The preliminary diagnosis briefly infers the following
reports.

1) Success delivery report. When the sink receives a packet with-
out any mark, it indicates a successful delivery along the cur-
rent path. This report tells us that the route from the source
sensor node to the sink is still the same and all links along this
path have just conducted a successful transmission that con-
firms the active state of those links.

2) Packet loss report. As described above, if the difference d be-
tween the sequence number recorded in the path and the se-

quence number of the packet is more than one, it can be in-
ferred that the packet loss occurs. The number of packet loss is
quantified as d - 1. In this case, according to our marking
scheme, the packet must have been marked by some intermedi-
ate node. This report can further locate the packet loss location
if there is no route switch accompanying the packet loss.

3) Route Switch Report. The mismatch of the pass node ID in the
packet and the recorded ID in the corresponding slot in the
path indicates that the previous routing path has been altered.
The position of the switch is between the hop count recorded in
the packet and d hops upward.

5. PROBABILISTIC INFERENCE

The packet mark parsing module provides a coarse abstraction
and incomplete report. At the sink, the successive probabilistic in-
ference helps to reveal the inner dependencies among different net-
work elements in the sensor network and expose the hidden root
causes of the exterior symptoms. Network elements are inner corre-
lated, for example, the crash of an upstream node causes all its chil-
dren to disconnect from the sink. In contrast, simultaneous conges-
tion of multiple paths may indicate a high probability of a malfunc-
tion at a common link. Based on such observations, we explore the
dependencies among network elements (link status, sensing function,
path status, etc.) on the constructed communication topology and
encode them with a probabilistic model. Exterior symptoms like
delay or loss of data samples are considered as inputs. When spe-
cific symptoms are observed by our inference algorithm, we can
deduce the probability of the failures of each network element and
find the most probable root causes.

We first apply the Belief Network [20] as our inference model.
Belief Network is a well-known probabilistic model that has been

widely used in research domains like artificial intelligence and
system engineering. In Belief Network, each possible root cause
or symptom is represented by a variable. Each variable might have
multiple values (e.g. 1 for a link in active state and 0 for in trou-

ble). Causal relationships between different variables are denoted
as directional arcs. Inferences can be conducted on this model to
deduce the probability of particular values to our interested vari-
ables once the values of some other variables have been observed
(e.g. symptoms like the high delay of data samplings). To further
speedup the process, we propose a simplified inference model,
Causality Diagram. According to the characteristics of sensor
networks, we can design a simplified Causality Diagram which
accurately approximates the inference results and reduces the
overhead.

5.1 Belief Network

A Belief Network (or Bayesian Network) is a Directed Acyclic

Graph (DAG) that represents a set of variables and their probabil-
istic relationships. Each vertex in the graph denotes a random
variable. In the rest of this paper, we use “vertex” and “variable”
interchangeably. A directional arc connecting vertex X1 to X2 in-
dicates a causal relation between the two variables. The cause X1
is called a parent of the outcome X2. The strength of the relation
between a parent and its child is defined by the conditional prob-
abilities. We then formulate a Belief Network as a binary (G, P),
where G = {V, E} is a DAG and P = {Pi} specifies a Conditional

Probability Distribution (CPD) in G. Here, V = {Vi} represents
the set of vertices in G, and E = {Ej} denotes all arcs (or edges). Pi
specifies the conditional probability distribution of each variable
given its parents. When the value domain of variable is discrete,
the CPD can be represented as a Conditional Probability Table
(CPT).

Figure 4 illustrates a simple example of a Belief Network
which contains four variables A, B, C and D. Each variable has
two possible discrete values denoted as True and False. The ta-
bles associated with variables in Fig. 4 specify their CPTs. For
example, variable D has two parents B and C, so each entry in its
CPT gives the probability of D to take a certain value given the
particular assignment of B and C. Since variable A has no parents,
its CPD is a prior probability distribution.

Figure 4. The Belief Network

Given certain evidence (values of some variables), the Belief
Network can answer three major types of queries[20]: 1) Posterior
probability assessment, 2) Maximum posterior hypothesis, and 3)
Most probable explanation. The first type of query, which esti-
mates posterior probabilities of certain variables given some evi-
dence variables, best fits our requirements in this work. For ex-
ample, in the Belief Network in Fig. 4, while given D = True, the
posterior probability of B = True and C = True can be calculated
as follows.

)Pr(

),,,Pr(

)Pr(

),Pr(
)|Pr(

,

TrueD

TrueDcCTrueBaA

TrueD

TrueDTrueB
TrueDTrueB

ca

=

====

=

=

==

===

∑

,

)Pr(

),,,Pr(

)Pr(

),Pr(
)|Pr(

,

TrueD

TrueDTrueCbBaA

TrueD

TrueDTrueC
TrueDTrueC

ba

=

====

=

=

==

===

∑

,

Where

∑ ======
cba

TrueDcCbBaATrueD
,,

),,,Pr()Pr(.

5.2 Inferring through Belief Network

Our inference model automatically constructs and maintains a
Belief Network from the output of the mark parsing module. The
inference engine accordingly infers from this model hidden
statuses of the network. In our PAD approach, the Belief Network
structure is assembled from the current network topology obtained
from the mark parsing module.

5.2.1 Constructing a Belief Network

Figure 5 (a) depicts a simple example topology composed of a
sink and three sensor nodes. The directional edge between two
nodes denotes a wireless link and the direction of data transmit-
ting along the link. There are five types of variables in our Belief
Network, each of which has the value domain of {Up, Down} that
denotes a normal or abnormal working status, respectively.

For each source node, we add a variable Di to the Belief Net-
work which denotes the status of the data reception of the source
node. For example, if the sink observes a long time delay in the
data reception from a source, the corresponding Di variable of this
node will be set to Down. Note that in many applications some
sensor nodes do not sample data but only relay messages for other
nodes. Some of the nodes simply relay packets for other sensors,
so there are no data reception variables for those nodes. The status
of the data report variable Di depends on two parent variables, the
sensing variable Si and the connection variable Ci. The sensing
variable Si indicates the sensing function of the corresponding
source node and the connection variable Ci describes the condi-
tion of the network connectivity from the source node to the sink.
We add two arcs from Si and Ci to Di to represent the dependen-
cies between them. Si and Ci are thus called the parent variables of
Di in the Belief Network. Both the sensing functionality and the
network connectivity condition will affect the success of the data
reported from the source node.

The connectivity from a source node to the sink relies on one
or more paths connecting them. For example, node 2 in Fig. 5(a)
can choose to deliver packets through two parents; node 1 and
node 3, so in the corresponding Belief Network the connection
variable C2 has two parent variables P2-1-0 and P2-3-0. They are
called path variables. The subscript of each path variable sequen-
tially denotes the ID of the start node on the path, the ID of the
next hop node from the start node, and the ID of the end node on
the path. As illustrated in Fig. 5(b), the status of each path vari-
able depends on two parent variables. One is the link variable on
the first hop from the start node and the other is the connection
variable of its parent node. The link variable Lm-n represents the
communication conditions of a wireless link between two nodes m
and n.

We connect each pair of variables that has a dependency with a
directional arc from the cause variable to the outcome variable.
Eventually we obtain a hierarchical network composed of these
five types of variables in which dependencies among network
elements are encoded. Among the five types of variables, the
statuses of the link and sensing variables are hidden from the exte-
rior observations that most need to be inferred. The path and con-
nection variables are intermediate variables which are usually
combinational results of other parent variables. The data report
variables are outputs of the mark parsing module that we directly
observe at the sink. The Belief Network structure consisting of the
variables is automatically maintained and updated when network
topology and communication conditions vary over time.

5.2.2 Inference on Belief Network

Once the Belief Network structure is constructed, a critical is-
sue is how to assign CPTs for variables that specify the condi-
tional probabilities between parents and their children. Different
logistic relations between parents and their children lead to differ-
ent methods for calculating the CPT. For example, the sensing
variable and connection variable affect their children variable of
data report in a logical OR manner, i.e., if one of them is in the
Down state, the data report variable should be switched onto the

Figure 5. Belief Network constructed from the communication

topology

Down state. Due to the diverse routing schemes and high dynam-
ics in sensor networks, a sensor may maintain multiple parents for
relaying its data. Consequently, in our inference model, multiple
path variables affect the same connection variable in SELECT
mode where the status of selected paths will determine the status
of the connection variable. In PAD, we employ the noisy-OR gate
[20] and Select gate [5] to encode these operations.

Figure 6 (a) shows the CPT in a noisy-OR gate where any one
of the parent variables in Down status results in the Down status
of the child variable. In Fig. 6, h1 and h2 represent the noisy prop-
erty that means even if both parent variables are in the Up status,
the child variable still has a chance to fail (in Down status). In
PAD, noisy-OR gates exist in several cases such as when the sens-
ing and connection variables affect the data report variables, the
link and connection variables affect the path variables, and so on.
The relation between multiple path variables and a connection
variable is represented by the Select gate as illustrated in Fig. 6 (b).
Here d denotes the dependency strength of each parent and in the
case of Fig. 6 (b), d is the probability that the child connection
variable selects a certain path to relay data. Thus, the probability
that a connection variable is in the Up status is given by

∑
=

==
UpP ini

i

dPPPPUpchild)...,...,|Pr(21
.

In the Belief Network, each noisy-OR gate connects two parent
variables to a child variable, so the CPT calculation is quick. The
Select gate might connect more parent variables to a child variable
but the maximum number of parent variables for one gate is
bounded by the number of neighbors for a sensor node. The num-
ber of neighbors is normally treated as a constant. Hence, the CPT
calculation for Select gate is also efficient. In the initial stages, the
prior fault probability distribution of the link and sensing vari-
ables are assigned according to experience data. The value of each
di is assigned by estimating the percentage of transmissions deliv-
ered through each path in a connection. Such information is input
from the mark parsing module.

The outputs of the inference process are the status estimations
about the link and sensing variables. Such estimations reveal
deeper understanding of the network operation. For example, a
single link failure might be caused by environmental interference
to the wireless communications, and multiple weak links relating

to one sensor node might indicate a faulty node. We have more
discussions in Section 6 on how we detect the network faults from
the output of our inference process.

5.3 Fast Inference Scheme

The Belief Network model is a widely used tool in dealing with
inference tasks that achieve high performance even with incom-
plete or suspicious inputs. The inference process in a general Be-
lief Network, however, is NP-Hard [8], and even some approxi-
mate approaches have been proven to be NP-Hard [9]. While
previous studies in comparatively stable enterprise networks are
able to simplify [22, 23] the Belief Network into bipartite graphs
or polytrees, the hierarchical multi-level characteristic of sensor
networks makes it impractical. To speedup the inference for large
scale sensor networks, we further propose a new inference model
based on the Causality Diagram [30].

Similar to Belief Network, Causality Diagram is a graphic in-
ference model. Instead of conditional probability, Causality Dia-
gram uses dependency strength to represent the relationships be-
tween vertices and exploit logistic computation in the probabilis-
tic inference process.

As shown in Fig. 7, a Causality Diagram is a directed graph
consisting of four types of elements including basic events, inter-
mediate events, arc events and logic gates. Each vertex or arc in a
Causality Diagram denotes an event. Rectangles like B1 denote the
basic events that are independent causes of other events. Cyclic
vertices like X5 represent intermediate events that can be outcomes
or causes of other events. An arc connecting two vertices is called
an arc event that specifies a causal relation between the two events.
The associated strength on an arc denotes the probability that the
parent event affects its child event. Note that if there is no addi-
tional parameter on an arc, it means that the parent event has an
impact on the child event at a probability of 1. The logic gates like
G5 specify how multiple parent events jointly influence one child
event.

Taking the same example network topology in Fig. 5, Fig. 8
shows how to construct a Causality Diagram for our inference
engine. Different from that in Belief Network, each vertex in a
Causality Diagram denotes a fault event. Those vertices without
parents (rectangular in shape) are basic events that are independ-
ent root causes. Other cyclic vertices denote intermediate events.

The traditional inference algorithm is NP-hard [30] on general
Causality Diagrams and is thus infeasible for our approach. Nev-
ertheless, in this design, due to the characteristics of WSNs, we
are able to use only OR and Select gates to model the dependency
relationships between node behaviors. This enables us to apply a
fast inference scheme, leveraging the particular structure of our
model. Our scheme contains four stages:

1) We represent each intermediate event by its first order cut set
(CS1) expression.

2) We adopt an early disjointing mechanism. Before generating
the final cut sets (CSf) expressions, we directly disjoint the CS1 ex-
pressions. Based on the definition of the Select gate, the cut sets in a
CS1 expression of the connection failure events are already exclu-
sive.

Figure 6. CPTs of noisy-OR and select gates

3) We calculate final disjoint cut sets (DCSf) expressions by it-
eratively replacing intermediate events in each expression. Since all
negative events generated from step 2 are basic events, we avoid the
complex NOT operations and the replacement process can be oper-
ated efficiently.

4) We estimate the posterior probabilities of user specified
events. Given observed events E (evidences), we can calculate the
posterior probability of interested events H (root causes). E = E1
∩ E2 ∩…∩ Ek. According to the Bayesian formula:

)Pr(

)Pr(

)Pr(

)Pr(

)(Pr

)Pr(
)|Pr(

21

21

k

k

EEE

EEEH

E

EH

E

HE
EH

III

IIIII

⋅⋅⋅

⋅⋅⋅

===

Both H and Ei have been expressed as DCSf and the result of
operating logic AND on two DCSf expressions is still a DCSf
expression. Hence, expressions on numerator and denominator are
both DCSf and the posterior probability of H can be calculated
algebraically.

6. CHARACTERIZING THE FAULTS

After the inference process, both the packet mark parsing mod-
ule and the inference engine output the fault reports about the
sensor network statuses. In this section, we discuss how PAD
further characterizes the faults in the network through timely
analysis of the fault reports.

Compared with enterprise networks, WSNs are highly dynamic
and suffer more from environmental variations. As such, the pos-
sible faults in WSNs are much more complex than in enterprise
networks where the network faults can simply be characterized as
host or link failures. For example, most of the time, the failure of
communication among a group of sensor nodes is not due to hard-
ware or software failures, but because of a temporal interference
from an outside environment. According to the complexity of
sensor network faults, in PAD, we trace the fault reasons by char-
acterizing their fault patterns as follows.

1) Physical damage. In many field applications, physical damage
might occur and destroy a portion of or the entire hardware of sensor

nodes. For example, the battery component usually falls off the mote
board due to the ocean waves, as we already experienced in our sea
monitoring project. The sensing unit of a sensor node can also be
damaged by cruel environment conditions. To locate the physical
damage to a sensor node, we need to confirm its faults for a long
period without obtaining any positive symptoms, for example, when
there is no successful transmission report from all observed links
associated with that sensor node, our inference engine outputs a
high error probability of both sensing and communication functions
for the node. The route switch of the child nodes that previously
used this node to relay data will enhance the belief in the physical
failure of the node. When a physical fault is detected, the repair
actions include checking sensor nodes or redeploying sensors in the
certain region.

2) Software crashes. Software crashes include local problems on
the sensor node such as a send queue overflow or busy CPU in those
nodes that are physically intact. PAD detects the sensor nodes in a
software crash by both the diagnosis information from the mark
parsing module and the posterior probability estimations from the
inference engine. If all the links around a certain node are reported
to lose an extraordinary amount of packets with sporadic successful
transmissions, PAD issues a software crash report at this node. PAD
distinguishes a software crash from physical damage by the sporadic
positive feedback like successful packet delivery or establishment of
new links around the node. To repair the software crash faults, the
sink can issue reboot commands to targeted sensors.

3) Network congestion. Network congestion relates to a group of
sensors or traffic flows. The occurrence of network congestion usu-
ally leads to a high packet loss rate within the influenced region.
However, unlike the case of physical damage, there are still some
positive reports from the targeted source nodes. Due to such a fea-
ture of this type of faults, the observed symptoms are usually tempo-
ral and distributed across a large time and space span. In our imple-
mentation experiment, we examine the burst loss rate for each link
and the sequence of normal and lossy links to identify congestion.

Figure 7. The Causality Diagram

Sink

D2

S2

C2

L21

C1L10

L23

C3

Pa210 Pa230D1

S1

Pa310

L31

S3

D3

OR gate

Select gate

L SLink failure event Sensing failure event

P Path failure event C Connection failure event

D Data report failure event

(a)

(b)

P210 P230

0

2 3

1

Figure 8. The Causality Diagram constructed from the com-

munication graph

One way of repairing network congestion faults is to decrease the
data generation at source nodes.

4) Environmental interferences. Environmental interference can
significantly degrade the performance of WSNs even without any
internal problems within the WSN itself. The environment interfer-
ence usually has high spatial correlation, that is, a large number of
nodes in the same region experience degradation of performance at
the same time. We infer environment interference as the root cause
by observing link degradation across a wide area and lasting for a
certain time period. To address this issue, a network manager needs
to check the possible sources of interference and reduce the work-
load or even temporarily turn off some nodes to protect them from
unnecessary physical damage or power wastage.

5) Application flaws. As the application programs might con-
tain flawed components, the network might suffer from some

inefficiency that does not lead to system crashes but consumes
computational or communicational resources. A typical example
is the instability of the routing selection. Indeed, when we apply
PAD to our sea monitoring project, we observe frequent route
switches for the packet delivery, incurring a large amount of con-
trol messages to the network but no improvement to the commu-
nication quality. This observation confirms our suspicions about
the rapid depletion of sensor energy. Such types of faults are usu-
ally highly related to the applications and are indeed difficult for a
light-weight network diagnosis tool to detect without any applica-
tion control information. It is more like a byproduct of PAD.

7. EVALUATION

We conduct comprehensive simulations and implement field
experiments to evaluate the performance of PAD. For the imple-
mentation, we used the BNJ implementation of the Belief Net-
work inference as part of our inference engine. We implemented
the packet marking scheme for TelosB motes on the TinyOS plat-
form with nesC language. We implemented the mark parsing
module on the java based back end.

7.1 Simulations

We first examine the effectiveness and efficiency of PAD
through simulations. We simulate a sensor network on the java
platform which is organized into grids, with the sink located at the
centre. Sensors periodically generate data and deliver to the sink
through multi-hop routes. Two routing schemes are applied in the
simulation. Various types of faults are inserted into links or nodes
according to different test settings.

20 30 40 50 60
0.7

0.75

0.8

0.85

0.9

0.95

1

Network Size

D
e
te

c
ti
o
n
 R

a
te

BN-Tree

CD-Tree

BN-DAG

CD-DAG

20 30 40 50 60
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Network Size

F
a
ls

e
 P

o
s
it
iv

e
 R

a
ti
o

BN-Tree

CD-Tree

BN-DAG

CD-DAG

Figure 10 (a) Sensing failure detection rate Figure 10 (b) Sensing failure false positive ratio

0 20 40 60 80 100
0

100

200

300

400

500

Network Size

N
u
m

b
e
r

o
f

P
a
c
k
e
ts

Tree

DAG

Figure 9. Convergence time on varying network sizes

20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

Network Size

D
e
te

c
ti
o
n
 R

a
te

BN-Tree

CD-Tree

BN-DAG

CD-DAG

20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

Network Size

F
a
ls

e
 P

o
s
it
iv

e
 R

a
ti
o

BN-Tree

CD-Tree

BN-DAG

CD-DAG

Figure 11 (a) Node failure detection rate Figure 11 (b) Node failure false positive ratio

1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

Number of Faults

D
e
te

c
ti
o
n
 R

a
te

BN

CD

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

Number of Faults

F
a
ls

e
 P

o
s
it
iv

e
 R

a
ti
o

BN

CD

Figure 12 (a) Detection rate for multiple faults Figure 12 (b) False positive ratio for multiple faults

7.1.1 The efficiency of the packet marking scheme

We evaluate the convergence time of the packet marking scheme
under various network conditions. In this test we simulate a data
acquisition network using both spanning tree based routing and
DAG based routing schemes. We measure the convergence time by
counting the number of data packets needed for constructing the
entire network topology. The smaller number of packets needed
indicates faster convergence. Different routing schemes lead to dif-
ferent types of topologies. Term Tree denotes a spanning tree topol-
ogy rooted at the sink and DAG represents a multi-path routing
strategy where each sensor node has multiple parents. Figure 9
shows the number of packets required in the packet marking process
under the two topologies. For both cases, the number linearly in-
creases as the network size increases. In other words, the average
packets sent from each source node is relatively stable. The DAG
network has a more complicated topology, so the marking scheme
requires more packets to figure it out.

7.1.2 The performance of inference models

We then evaluate the performance of the two inference models
with four different groups of tests. We inject artificially created
errors into the network and let both inference models generate fault
reports according to the posterior probability estimations.

We first inject sensing failures into sensor nodes and compare the
detection rate and false positive ratio of both models. We randomly
invalidate the sensing capabilities of 10% of the nodes. BN-Tree and
BN-DAG denote inference results of the Belief Network model on
the spanning tree topology and DAG topology. CD-Tree and CD-
DAG represent the inference results of Causality Diagram model.
We vary the network size from 16 nodes to 64 nodes. Figure 10 (a)
plots the detection rates, where we can see both models achieve
detection rates higher than 90% in most situations. Belief Network
model has a slightly higher detection rate than Causality Diagram
model as it adopts exactly accurate inference. Figure 10 (b) shows

the false positive ratio of the two models. We see that for both two
models, the false positive ratio decreases as the network size in-

creases. By analyzing the false reports, we find that most false posi-
tive reports relate to the leaf nodes. As those nodes lie on the
boundary of the network field and do not relay data for others, if
they do not report data to sink, there are few clues as to whether it is
due to a sensing failure or a communication failure.

We then inject node failure of both sensing and communication
errors into sensor nodes; see Fig. 11 for the results. As the network
size increases, the detection rate decreases and the false positive
ratio increases. Both inference models achieve comparable detection
rates under different topologies while Belief Network is slightly
better than Causality Diagram with a lower false positive ratio.

We conduct simulations to test how the inference models per-
form against multiple errors in the network. In this test, we simulate
a network with 25 sensor nodes. We randomly select 1 to 5 sensor
nodes and simultaneously insert errors into them. The results are
shown in Fig. 12. We find that when multiple faults simultaneously
occur, the detection rate decreases and the false positive ratio in-
creases. This is because the existence of multiple errors introduces
mutual interference in the inference model and degrades the per-
formance. As Fig. 12 shows, a single error is easy to detect and 5
simultaneous errors lead to worse results.

The last group of simulations compares the computational effi-
ciency of the two inference models. As shown in Fig. 13, the com-
putation overhead of Belief Network is much larger than Causality
Diagram and their difference increases quickly as the network size
increases. Although as previous simulation shows, Causality Dia-
gram model provides approximated inference with less accuracy
than the Belief Network model, it largely reduces the computational
overhead and thus is more viable for practical usage.

7.2 Implementations and Field Experiments

We implement and test the effectiveness of the PAD approach
through a field study in our sea monitoring sensor network system
[28]. The experiment is conducted over a long period and we fetch
and analyze a segment of 22,416 received packets as well as the
marks in them.

7.2.1 Observations in the field study

The analysis results from PAD confirm our concern about the en-
ergy efficiency of the system. We indeed observe extraordinarily
high frequency of topology variations in the sensor network. Figure
14 compares the topology variations with the packet receptions
during the sea monitoring system operation. We summarize the
number of topology variations throughout each ten minutes interval.
From results in Fig. 14 (a), we find that every ten minutes there are
topology variations of 10 to more than 40 times that in the network.
As shown in Fig. 14 (b), however, there is no apparent correspon-
dence between the topology variations and the packet receptions.
Thus, most of the topology variations occur but do not significantly
improve the network communication quality. Figure 15 exhibits a
group of topology snapshots of a certain region in the network. The
interval between each pair of consecutive subfigures is two minutes.
According to the algorithm used in the MultiHopRouter component,
the topology variations indeed always incur large traffic overhead in
the network.

40 60 80 100
0

500

1000

1500

2000

Network Size

T
im

e
 (

m
ill

is
e
c
o
n
d
)

BN

CD

Figure 13. Computation time of two inference models

0 20 40 60 80
0

10

20

30

40

Time (10 minutes)

N
u
m

b
e
r

o
f

T
o
p
o
lo

g
y
 C

h
a
n
g
e
s

Topology Variation

Figure 14 (a) Topology variation statistics over time

0 20 40 60 80
0

100

200

300

400

Time (10 minutes)

N
u
m

b
e
r

o
f

R
e
c
e
iv

e
d
 P

a
c
k
e
ts

Packet Reception

Figure 14 (b) Packets reception statistics over time

This observation confirms our concern that the network
quickly depletes the node energy due to the frequent route
switches, while most of them occur because of the instability of
link quality between the floating sensor nodes. Clearly, frequent
route switches may lead to high energy cost that largely constrains
the lifetime of our monitoring system. We improve our applica-
tion program by setting adequate redundancy in measuring the
link quality and switching the routes. Currently, our system has
been operating neatly with much fewer unnecessary routing dy-
namics.

7.2.2 Traffic overhead

Through analyzing the received packets, we compare the extra
overhead introduced by PAD and Sympathy. We use empirical
cumulative distribution functions (ECDF) to quantify the over-
head. In Fig. 16, the x axis denotes the ratio of the diagnosis over-
head to the total network traffic and the y axis denotes the ECDF.
For example, a point with value (0.3, 0.8) on x and y axes respec-
tively indicates the fact that 80% of the time, the diagnosing
transmission dominates less than 30% of the total network traffic.
A curve to the left represents a small cumulative overhead. Differ-
ent curves for the Sympathy approach denote the cases of differ-
ent report intervals in sending the diagnosis metrics. As Fig. 16
shows, PAD significantly outperforms Sympathy in terms of the
traffic overhead.

7.2.3 Diagnosis for the problematic network

In this experiment, we artificially inject sensing and communi-
cation faults into two sensor nodes respectively and mix them into
the network. We let the two nodes interchangeably work under
normal and exceptional statuses. We turn off the wireless radio of
one sensor node (NodeA) every 5 minutes and invalidate the sens-
ing module of the other node (NodeB) every 5 minutes. As shown

in Fig. 17, the red curve represents the inferred posterior fault
probability of the sensing functionality in NodeB. The inference
result accurately captures the periodical faults of the sensing
module in NodeB. The three other curves denote the inferred fault
probabilities of three links associated with NodeA which indicate
the faults in those links. We can see that PAD correctly captures
the periodical communication failures of NodeA. According to
Sympathy performance report, Sympathy is able to detect any
failure injected into the network if the system parameters are
properly set. From our experimental results, as a comparison,
PAD achieves more than a 90% detection rate and around 80%
accuracy, but with significantly reduced overhead.

8. CONCLUSIONS AND FUTURE WORK

Although there have been many approaches proposed for de-
bugging the operation of sensor network systems in a controlled
laboratory, few works have been done towards an in-situ diagno-

Figure 15. Topology evolutions over time in field study

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Overhead (%)

E
C

D
F

PAD

9 min Sym.

6 min Sym.

3 min Sym.

Figure 16. System overhead (PAD v.s. Sympathy)

0 5 10 15 20
0.2

0.4

0.6

0.8

1

Time (minute)

F
a
u
lt
 P

ro
b
a
b
ili

ty

NodeA-Link1

NodeA-Link2

NodeA-Link3

NodeB-Sensing

Figure 17. Diagnosis results for detecting the manually in-

jected faults in our field study

sis tool for monitoring the statuses of operational systems in the
field. In this paper, we propose PAD, a passive diagnosis ap-
proach, which can be efficiently implemented and applied to a
normally working sensor network system providing in-situ net-
work diagnosis. The proposed light-weight packet marking
scheme collects necessary hints without injecting extra traffic
overhead to the original system. The probabilistic inference model
residing at the sink captures the unique features of the sensor
networks and yields accurate results. The inference engine works
well even with incomplete or suspicious inputs in a nondetermin-
istic manner. We implement our diagnosis approach and validate
its effectiveness in a field test in our sea monitoring project. The
sea monitoring project is an undergoing project. We are currently
utilizing PAD as an important diagnosis tool to detect possible
faulty components in the system and guarantee its correct opera-
tions. On the other hand, we are relying on such a platform to
further test the effectiveness and efficiency of PAD and hope to
improve it according to our future observations.

ACKNOWLEDGEMENT

The authors would like to thank the shepherd, Deepak Ganesan,
for his constructive feedback and valuable input. Thanks also to
anonymous reviewers for reading this paper and giving valuable
comments. This work is supported in part by the Hong Kong RGC
grant HKUST6169/07E, the National Basic Research Program of
China (973 Program) under grant No. 2006CB303000, the Na-
tional High Technology Research and Development Program of
China (863 Program) under grant No. 2007AA01Z180, HKUST
Nansha Research Fund NRC06/07.EG01, and NSFC Key Project
grant No. 60533110.

REFERENCES

[1] "IBM Tivoli," http://www.ibm.com/software/tivoli/

[2] "HP Openview," http://www.openview.hp.com/

[3] "Microsoft Operations Manager," http://www.microsoft.com/mom/

[4] "OceanSense: Sensor Network for Sea Monitoring,"
http://www.cse.ust.hk/~liu/Ocean/index.html

[5] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. Maltz, and M. Zhang,
"Towards Highly Reliable Enterprise Network Services Via Inference of
Multi-level Dependencies," In Proc. of ACM SIGCOMM, 2007.

[6] X. Bai, D. Xuan, Z. Yun, T. Lai, and W. Jia, "Complete Optimal De-
ployment Patterns for Full-Coverage and k-Connectivity (k <=6) Wire-
less Sensor Networks," In Proc. of ACM MobiHoc, 2008.

[7] J. Cao, L. Zhang, J. Yang, and S. Das, "A Reliable Mobile Agent Com-
munication Protocol," In Proc. of IEEE ICDCS, 2004.

[8] G. Cooper, "Probabilistic Inference using Belief Networks is NP-Hard,"
Stanford Knowledge Systems Laboratory, Technical Report 1987.

[9] P. Dagum and M. Luby, "Approximately Probabilistic Reasoning in
Bayesian Belief Networks is NP-hard," Artificial Intelligence, pp. 141-
153, 1993.

[10] Q. Fang, J. Gao, and L. Guibas, "Locating and Bypassing Routing Holes
in Sensor Networks," In Proc. of IEEE INFOCOM, 2004.

[11] R. Ganti, P. Jayachandran, H. Luo, and T. Abdelzaher, "Datalink
Streaming in Wireless Sensor Networks," In Proc. of ACM SenSys,
2006.

[12] B. Gedik, L. Liu, and P. Yu, "ASAP: An Adaptive Sampling Approach
to Data Collection in Sensor Networks," IEEE Transactions on Parallel

and Distributed Systems (TPDS), vol. 18, pp. 1766-1783, 2007.

[13] T. He, S. Krishnamurthy, J. Stankovic, T. Abdelzaher, L. Luo, R. Stol-
eru, T. Yan, L. Gu, J. Hui, and B. Krogh, "Energy-Efficient Surveillance
System using Wireless Sensor Networks," In Proc. of ACM MobiSys,
2004.

[14] S. Kandula, D. Katabi, and J. Vasseur, "Shrink: A Tool for Failure Di-
agnosis in IP Networks," In Proc. of MineNet Workshop at ACM SIG-
COMM, 2005.

[15] K. Klues, G. Hackmann, O. Chipara, and C. Lu, "A Component-Based
Architecture for Power-Efficient Media Access Control in Wireless Sen-
sor Networks," In Proc. of ACM SenSys, 2007.

[16] R. Kompella, J. Yates, A. Greenberg, and A. Snoeren, "IP Fault Local-
ization Via Risk Modeling," In Proc. of USENIX NSDI, 2005.

[17] S. Lim, C. Yu, and C. Das, "Rcast: A Randomized Communication
Scheme for Improving Energy Efficiency in MANETs," In Proc. of
IEEE ICDCS, 2005.

[18] H. Liu, P. Wan, C. Yi, X. Jia, S. Makki, and N. Pissinou, "Maximal
Lifetime Scheduling in Sensor Surveillance Networks," In Proc. of IEEE
INFOCOM, 2005.

[19] Y. Liu, Q. Zhang, and L. Ni, "Opportunity-based Topology Control in
Wireless Sensor Networks," In Proc. of IEEE ICDCS, 2008.

[20] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference: Morgan Kaufmann, 1988.

[21]N. Ramanathan, K. Chang, L. Girod, R. Kapur, E. Kohler, and D. Estrin,
"Sympathy for the Sensor Network Debugger," In Proc. of ACM SenSys,
2005.

[22] M. Steinder and A. Sethi, "Increasing Robustness of Fault Localization
Through Analysis of Lost, Spurious, and Positive Symptoms," In Proc.
of IEEE INFOCOM, 2002.

[23] M. Steinder and A. Sethi, "Probabilistic Fault Localization in Commu-
nication Systems using Belief Networks," IEEE/ACM Transactions on

Networking (TON), vol. 12, pp. 809 - 822, 2004.

[24] M. Varshney, D. Xu, M. Srivastava, and R. Bagrodia, "SenQ: A Scal-
able Simulation and Emulation Environment for Sensor Networks," In
Proc. of IEEE/ACM IPSN, 2007.

[25] J. Wu and S. Yang, "SMART: A Scan-Based Movement-Assisted Sen-
sor Deployment Method in Wireless Sensor Networks," In Proc. of IEEE
INFOCOM, 2005.

[26] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govin-
dan, and D. Estrin, "A Wireless Sensor Network For Structural Monitor-
ing," In Proc. of ACM SenSys, 2004.

[27] J. Yang, M. Soffa, L. Selavo, and K. Whitehouse, "Clairvoyant: A Com-
prehensive Source-Level Debugger for Wireless Sensor Networks," In
Proc. of ACM SenSys, 2007.

[28] Z. Yang, M. Li, and Y. Liu, "Sea Depth Measurement with Restricted
Floating Sensors," In Proc. of IEEE RTSS, 2007.

[29] H. Zhai and Y. Fang, "Impact of Routing Metrics on Path Capacity in
Multi-rate and Multi-hop Wireless Ad Hoc Networks," In Proc. of IEEE
ICNP, 2006.

[30] Q. Zhang, "Probabilistic Reasoning Based on Dynamic Causality
Trees/Diagrams," Reliability Engineering and System Safety, vol. 46, pp.
202-220, 1994.

[31] J. Zhao, R. Govindan, and D. Estrin, "Residual Energy Scan for Moni-
toring Sensor Networks," In Proc. of IEEE WCNC, 2002.

