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ABSTRACT 

Network diagnosis, an essential research topic for traditional 
networking systems, has not received much attention for wireless 
sensor networks. Existing sensor debugging tools like sympathy 
or EmStar rely heavily on an add-in protocol that generates and 
reports a large amount of status information from individual sen-
sor nodes, introducing network overhead to a resource constrained 
and usually traffic sensitive sensor network. We report in this 
study our initial attempt at providing a light-weight network diag-
nosis mechanism for sensor networks. We propose PAD, a prob-
abilistic diagnosis approach for inferring the root causes of ab-
normal phenomena. PAD employs a packet marking algorithm for 
efficiently constructing and dynamically maintaining the inference 
model. Our approach does not incur additional traffic overhead 
for collecting desired information. Instead, we introduce a prob-
abilistic inference model which encodes internal dependencies 
among different network elements, for online diagnosis of an 
operational sensor network system. Such a model is capable of 
additively reasoning root causes based on passively observed 
symptoms. We implement the PAD design in our sea monitoring 
sensor network test-bed and validate its effectiveness. We further 
evaluate the efficiency and scalability of this design through ex-
tensive trace-driven simulations. 

Categories and Subject Descriptors 

C.2.3 [Network Operations]: Network monitoring 

General Terms 

Experimentation, Management, Measurement 
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1. INTRODUCTION 

Wireless sensor networks (WSNs) have been widely employed 
for enabling various applications such as environment surveil-
lance, scientific observation, traffic monitoring, etc [13, 26]. A 
sensor network typically consists of a large number of resource 
limited sensor nodes working in a self-organizing and distributed 
manner. Having made increasing efforts [6, 7, 10-12, 15, 17-19, 
25, 29] to improve the robustness and reliability of WSNs under 
crucial and critical conditions, researchers however, have done 
little work targeting the in-situ network diagnosis for testing op-
erational sensor networks. It is of great importance to provide 
system developers useful information on a system’s working 
status and guide further improvement to or maintenance on the 
sensor network.  

Due to the ad hoc working style, once deployed, the inner 
structures and interactions within a WSN are difficult to observe 
from the outside. Existing works for diagnosing WSNs mainly 
rely on proactive approaches, which implant debugging agents 
into sensor nodes, periodically reporting the internal status infor-
mation of each node to the sink, such as component failures, link 
status, neighbor list, and the like. For example, Zhao et al. [31] 
propose to scan the residual energy and monitor parameter aggre-
gates including link loss rate and packet count. Such information 
is collected locally at each node and transmitted back to the sink 
for analysis. Sympathy [21] actively collects run-time status from 
sensor nodes like routing table and flow information and detects 
possible faults by analyzing node status together with observed 
network exceptions. The proactive information generation and 
retrieval exerts extra computational operations on sensors and 
imposes a large communication burden on a WSN which is usu-
ally fragile at high traffic loads. Those approaches work more like 
debugging or evaluation [24] tools before the system is released 
for use outside laboratory settings. While such tools are effective 
for offline debugging when sensor behavior and network scale can 
be strictly controlled, they may not be suitable for in-situ network 
diagnosis of a deployed operational WSN since they continuously 
generate a large amount of traffic and aggressively consume com-
putation, communication and energy resources. Also, integrating 
those complex debugging agents with application programs at 
each sensor node introduces difficulties for system development. 
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This work is motivated from our ongoing sea monitoring pro-
ject [4, 28]. As shown in Fig. 1, for this project we launched a 
working prototype WSN consisting of tens of nodes that float on 
the sea surface and collect scientific data such as sea depth, ambi-
ent illumination, pollution, and so on. Recently, in the field de-
ployment tests, we often observed abnormal energy depletion that 
never occurred in the controlled laboratory experiments. We sus-
pect that such a phenomenon is due to the usage of the MultiHo-

pRouter (integrated in SURGE) component that frequently 
switches the optimized routing tree of the network owing to the 
highly instable environment of the sea. We also observed other 
problems on the sink side such as high delay of data sampling and 
unbalanced packet loss. Fast and accurate identification of the 
root causes is necessary before taking any further action such as 
issuing reboot messages to certain nodes or physically examining 
the suspicious links. With current debugging tools, it is indeed 
difficult to integrate their agents with our application programs. It 
is even worse if we implant proactive information collectors in the 
network, which would inevitably speed up the depletion of energy 
and rapidly reduce the expected lifetime of the sensor network. 

In this work, we propose an online diagnosis approach which 
passively observes the network symptoms from the sink. Using 
probabilistic inference models, this approach effectively deduces 
the root causes of abnormal symptoms in the network. Compared 
with proactive debugging tools, the passive diagnosis approach 
observes data from routine application packets for back end 
analysis. It can also be maintained in a running system at light-
weight cost, thus is expected to accommodate the application 
system in a timely manner without degrading performance. 

Inference-based network diagnosis methods have been widely 
investigated and applied in enterprise networks [5]. Various types 
of inference models, both deterministic and nondeterministic, 
have been proposed for inferring the root causes of service fail-
ures. Most models are built on expert knowledge or trained from 
historical data from the network. The construction of such models 
can be very complicated and once constructed, the models are 
often viewed as remaining unchanged for a relatively long period 
[5], as enterprise networks are usually stable with few dynamics in 
their structures. WSNs, however, cannot easily adopt such slow 
start approaches as sensors are self-organized without any prior 
information on the dependencies among network elements. The 
high dynamics of the WSN structure also leads to the infeasibility 

of those inference models built from static data. In addition, the 
high computational complexity of those information rich models 
largely restricts their applicability for the resource constrained 
WSN systems. 

We address the above challenges as follows. First, we intro-
duce a packet marking scheme, which marks the normal commu-
nicating packets to continuously reveal their communication de-
pendencies within the network. Using the output of the scheme, 
the sink constructs and dynamically maintains a probabilistic in-
ference model. This scheme works in a light-weight manner with-
out any extra transmission in the network and can adapt to fre-
quent network changes. Second, we employ a hierarchical infer-
ence model that captures multi-level dependencies in the network. 
This model takes both positive and negative symptoms as input, 
and reports the inferred posterior probability of possible root 
causes. Third, we design an inference engine capable of additively 
reasoning the root causes such that it works even with incomplete 
or suspicious inputs in a nondeterministic manner. The major 
contributions of this study are as follows. 

(1) To the best of our knowledge, we are the first to investigate a 
light-weight method of passively diagnosing wireless sensor 
networks. 

(2) According to the unique features of sensor networks, we 
design an efficient packet marking scheme that reveals the 
inner dependencies of sensor networks without injecting ex-
tra transmissions. 

(3) We propose hierarchical inference models which capture the 
multi-level dependencies among the network elements and 
achieve high accuracy. We further introduce a fast inference 
scheme which reduces the computational complexity and is 
thus scalable for large scale WSNs. 

(4) We implement our diagnosis approach, PAD, and test its 
effectiveness in our sea monitoring project with 24 sensors. 
The results of our field test show that PAD indeed helps in 
exploring the root causes of observed symptoms. Relying on 
the output of PAD, we have successfully improved our appli-
cation programs. 

(5) We further analyze and evaluate the scalability and effective-
ness of PAD design through extensive simulations under var-
ied conditions using the trace we collect from the prototype 
implementation. 

The rest of this paper is organized as follows: Section 2 intro-
duces related work. Section 3 describes the framework of our 
system. We introduce the packet marking scheme in Section 4 and 
discuss the two inference models based on Belief Network and 
Causality Diagram in Section 5 and 6. In Section 7, we present 
our implementation and simulation results. We conclude this work 
in Section 8. 

2. RELATED WORK 

Most existing approaches for sensor network diagnosis are 
proactive, in which each sensor employs a debugging agent to 
collect its status information and reports to the sink by periodi-

 

Figure 1. OceanSense project 



cally transmitting specific control messages. Some researchers 
propose to monitor sensor networks by scanning the residual en-
ergy [31] of each sensor and collecting the aggregates of parame-
ters of sensors where in-network processing is leveraged. By col-
lecting such information the sink is aware of the network condi-
tions. Some debugging systems [21, 27] aim to detect and debug 
software failures in sensor nodes.  For example, Clairvoyant [27] 
focuses on debugging sensor nodes at source-level, and enables 
developers to wirelessly connect to a remote sensor in the network 
and execute standard debugging commands on that node includ-
ing break, step, and the like. Sympathy [21] is an advanced de-
bugging tool that detects and debugs the failures in a sensor net-
work. It actively collects in-network information periodically from 
each sensor node such as neighbor list, traffic flow, and the like, 
and analyzes the network status at the sink. By carefully selecting 
an optimal set of information metrics, Sympathy aims at minimiz-
ing the diagnosis cost so as to be applicable to resource-limited 
sensor networks. It also applies an empirical decision tree to de-
termine the most likely root causes for an observed exception. 

Much effort has been expended on network diagnosis for en-
terprise networks. Commercial tools [1-3] independently monitor 
servers and routers with various control messages and alerts are 
automatically generated from the implanted agents in different 
network equipment. Those tools, being effective for diagnosing 
large scale networks, are too complicated and energy consuming 
for resource constrained sensor networks. There have been some 
passive diagnosis approaches proposed for enterprise networks 
that collect a network’s operational status from routine data pack-
ets so as to deduce the possible root causes of exceptions by an 
inference model. For example, Score [16] troubleshoots via 
shared risk modeling. It adopts a simplified two-level graph as the 
inference model and formulates the problem of locating fault roots 
as a minimal set cover problem. Kandula et al. explore the bipar-
tite graph inference model and propose Shrink, introducing a 
probabilistic inference scheme [14]. The bipartite graph model 
approximates the dependencies in enterprise networks and greatly 
simplifies the complexity of the inference process. Steinder and 
Sethi [22, 23] also assume a bipartite graph model and apply Be-
lief Networks [20] with the bipartite graph to represent relations 
among links and end to end communications. The above schemes 
either require pre-knowledge of the network dependencies, which 
are obtained through Shared Risk Link Groups or SNMP in a 
relatively stable enterprise network, or adopt simplified models to 
approximate the network dependencies. A WSN, however, is fea-
tured by its hierarchical multi-level structures which can hardly be 
approximated by the bipartite graph model. It is also unpractical 
to maintain the network dependencies as stable inputs in highly 
dynamic and self-organized sensor networks. 

The recently proposed Sherlock is the only work that adopts a 
multi-state and multi-level inference graph for the network diag-
nosis [5]. They use a scoring function to derive the best explana-
tions (root causes) for observed service exceptions. In their ap-
proach, network dependencies are derived through software 
agents running on each host. In order to avoid NP-hard computa-
tion complexity, they assume that there are at most a small con-
stant number of failures in the enterprise network. This assump-
tion is not valid for the unreliable and lossy WSNs.  

3. SYSTEM FRAMEWORK 

We view the sensor network as a method for data acquisition, 
in which source nodes periodically sample data and deliver them 
back to the sink through multi-hop communication. We do not 
assume any specific routing strategy, that is, our approach deals 
with networks of various communication topologies such as span-
ning tree or directed acyclic graph (DAG). 

We design a passive diagnosis approach, PAD, for such sensor 
networks. PAD aims to help network managers to explore the root 
causes of exceptions in a running sensor system. PAD implants a 
tiny light-weight probe into each sensor node that sporadically 
marks routine application packets passing by, so that the sink can 
reassemble a big picture of the network conditions from those 
small clues. Nevertheless, information from marking probes is 
quite limited and not sufficiently accurate. PAD employs a prob-
abilistic model to infer the statuses of unobservable network ele-
ments and reveal the root faults in the network. PAD denotes the 
observed abnormal situations as negative symptoms such as a long 
time delay of data arrival or frequent packet loss. It denotes any 
successfully packet reception as positive symptoms. The inference 
model inputs both negative and positive symptoms to derive net-
work statuses. 

As illustrated in Fig. 2, PAD is mainly composed of four com-
ponents: a packet marking module, a mark parsing module, a 
probabilistic inference model, and an inference engine. The 
packet marking module resides in each sensor node and sporadi-
cally marks routine application packets passing by. At the sink 
side, the mark parsing module extracts and analyzes the marks 
carried by the received data packets. The network topology can 
thus be reconstructed and dynamically updated according to the 
analysis results. The mark parsing module also generates prelimi-
nary diagnosis information such as packets loss on certain links, 
route dynamics, and so on. The inference model builds a graph of 
dependencies among network elements based on the outputs from 
the parsing module. Using the inference model and observed 
negative and positive symptoms as inputs, the inference engine is 
able to yield a fault report, which reveals the root causes of excep-
tions by setting the posterior probabilities of each network com-
ponent being problematic. The inference results are also taken as 
feedback to help improve and update the inference model. 

Indeed, network analysis can be achieved at different levels. In 
the exhaustive diagnosis tools, a lot of information, such as the 
routing table, data flow, buffer statuses, and residual energy are 
collected to assist determination. On the contrary, in our design, 
we desire to use some hints obtained from the operational network, 
such as coarse topology information, the recipient of common 
application packets, and so on. Nevertheless, there is still a trade-
off between the diagnosis granularity and its overhead. Compre-
hensive diagnosis usually requires detailed information collection 
and incurs heavy communicational overhead. In this work, how-
ever, we aim to minimize the overhead while preserving the qual-
ity of diagnosis, so that this diagnosis tool can work as a longlived 
component together with regular applications. 



 

 

Figure 2. PAD system overview 

 

 

 

4. PACKET MARKING 

Since a sensor network has a self-organized time-varying net-
work structure, unlike the case in an enterprise network, no prior 
knowledge can be obtained for constructing the inference model. 
Also, as a WSN topology is highly dynamic, we need to acquire 
the network statuses continually to maintain the topology in real-
time. To address the above requirements, we design a packet 
marking algorithm in PAD, which dynamically captures the net-
work topology and extracts the inner dependencies among net-
work components. Before the analysis results are directed to the 
inference engine for further reasoning, we can generate a prelimi-
nary diagnosis report on some basic network exceptions. 

The main operation of this marking algorithm is to let sensor 
nodes stamp their IDs on passing data packets. Due to the size 
limitations of the data packets used in sensor networks, however, 
the marking scheme only adds two bytes to each data packet that 
records one node ID. During the packet delivery, only one se-
lected sensor node marks its ID and updates the hop count field 
on each packet based on a set of rules. At the sink side, the mark 
parsing module traces back the paths from each source node 
through analyzing sporadically marked packets. Through assem-
bling the paths from different source nodes, the network topology 
can be reconstructed along with the regular data delivery of the 
system. If the network remains static, the packet marking process 
automatically converges and stops after the entire network topol-
ogy is constructed. When network conditions vary, such as when 
packet loss or route changes occur, the packet marking process 
restarts somewhere close to the exceptional event. A strength of 
this design is that it does not inject any extra message into the 
network and strictly limits the overhead of marks attached to each 
data packet. 

4.1 Marking Scheme on Sensor Nodes 

Figure 3 depicts an example of data packet marking. We as-
sume that each original data packet contains (1) a source node ID 
denoting the source node of this packet, (2) a sequence number 

identifying the packet, and (3) a hop count recording the number 
of hops it travels. If there is no such information recorded in the 
application, the marking scheme adds them to the packets. The 
mark added to the original packet is the pass node ID which re-
cords the ID of a sensor that participates in delivering this packet. 
When the source node issues a new data packet, it leaves the pass 

node ID field empty. 

 

Algorithm 1 Packet_Marking (packet p) 

1: if p has been marked 

2:   return; 

3: else 

4:   check cache; 

5:   if no entry for source node of p 

6:     mark p; 

7:     create entry with source node ID and sequence number in p; 

8:   else if entry exists and sequence number continuous 

9:        update entry with new sequence number; 

10:       increase hop count in p by 1; 

11:  else if entry exists and sequence number not continuous 

12:        mark p; 

13:        update entry with new sequence number; 

14:  end if 

15: end if 

16: return; 

 

Every intermediate node maintains a cache for its down-stream 
source nodes. As illustrated in Fig. 3, each cache entry consists of 
a source node ID and the sequence number of the recently re-
ceived packet from the source. As shown in algorithm 1, upon 
receiving a packet, an intermediate node first checks whether the 
packet has been marked. If yes (the pass node ID is not empty), it 
forwards the packet with no further operations. Otherwise, the 
node checks its own cache. If there is no entry for the source node 

ID of this packet, it marks the packet by filling the pass node ID 
field with its own ID. It also creates a new entry for this source 



node in its cache and records the sequence number for the packet. 
If there exists an entry in the cache for the source node and the 
sequence number in the packet is consistent with the cache entry, 
the intermediate node updates the cache entry with the new se-

quence number. To prevent duplicate marking, the intermediate 
node does not fill the pass node ID field, instead it increments the 
hop count in the packet by 1 and forwards the packet. If the se-

quence number of the packet is not consistent with that recorded 
in the cache entry, it might be due to the packet loss or routing 
variations. The intermediate node marks the packet by filling the 
packet pass node ID field with its own ID. The node then updates 
its cache entry with the new sequence number of this packet and 
forwards it. The sink also participates in the marking process and 
creates a table recording source nodes and their packet sequence 
numbers. Using this marking scheme, the received packet in the 
sink records the ID of one intermediate node in the routing path 
together with its hop count to the source node. We avoid duplicate 
marks of the same node on the same path to save communication 
costs. We can further reduce the memory usage in each sensor 
node by organizing its cache table into bloom filters. Each inter-
mediate node inserts and extracts the source node information on 
the bloom filter. The error rate introduced by the bloom filter 
introduces negligible adverse impact in the lossy by-nature sensor 
network. 

4.2 Parsing the Marks 

At the sink, the mark parsing module extracts and parses the 
marks piggybacked from the received packets. For each source 
node, we keep a data structure denoted as path to record node IDs 
along the path from the source node to the sink. A path contains 
an array of slots and each slot records a node ID along the path 
hop by hop. The path also has a field which records the sequence 

number of the latest arrived packet from each source.  

On receiving a new packet, the mark parsing module checks 
the existence of a path structure associated with its source node. If 
there is no such path, it means it is the first time the sink has re-
ceived packets from that source. The sink creates a new path for 
the source node and records the source node ID at the first slot. 
The mark parsing module then examines whether the packet has 
been marked (the pass node ID field has been filled). If it has 
been marked, the sink updates the associated slot in the path to be 
the recorded node ID according to the hop count in the packet. 

For the packets from the recorded path, the parsing module op-
erates according to the recorded sequence number. We denote d 
as the difference between the sequence number of the received 
packet and the sequence number recorded in the path. Normally, 
without packet loss, d = 1, and we directly add the marked node 
ID into the path. Inconsistence of the sequence numbers (d > 1) 
indicates that the packet loss occurs and triggers a preliminary 
diagnosis report on packet loss. A mismatch of the recorded pass 

node ID in the packet and the recorded node ID in corresponding 
slot in the path indicates a route variation at the hop count re-
corded in the packet and its d hops upwards, otherwise the mark-
ing should be taken earlier. The parsing algorithm then generates 
a preliminary report of a route switch. In such a case, the recorded 
path from d hops before the hop count position to sink becomes 
inaccurate, so we clear all those slots. The reception of the packet 
without any marks triggers a preliminary report of a successful 
delivery. The mark parsing function is shown in algorithm 2. 

The mark parsing module constructs and updates the network 
topology with the recorded paths. Once a new packet is received, 
the path associated to its source node is updated. This indicates 
that all links along the current path have just participated in the 
transmission of a packet. For each link in the network topology, 
we keep a counter to count the number of transmissions experi-
enced by this link. Such information facilitates the construction of 
the inference model as it tells the strength of the dependency be-
tween the parent and its successive nodes. 

Obviously, the number of packets we need for capturing the 
entire path for a source node is at most the maximum hop count. 
Even under frequent route switches, the number can be bounded 
to a small constant. Since links in sensor networks are usually 
shared by many paths, we do not need to collect path information 
for all paths before we are able to construct the complete network 
topology. Indeed, our packet marking scheme captures the net-
work topology with a small number of packet receptions, as dem-
onstrated in our field experiment. 

 

Algorithm 2 Mark Parsing(packet p) 

1: if p.sourceNodeID has no associated path 

2:   create new path for p.sourceNodeID; 

3: end if 

4: d = p.sequenceNumber – path.sequenceNumber; 

5: if d <= 1                                     //no packet loss 

6:   if path[hopCount] != p.passNodeID          //route switch 

7:     path[hopCount] = p.passNodeID; 

8:     clear all slots in path after path[hopCount]; 

9:     generates route switch report; 

10: end if 

11: else                                    //packet loss detected 

12:   generate packet loss report; 

13:   if path[hopCount] != p.passNodeID          //route switch 

14:     clear all slots in path after path[hopCount - d]; 

15:     path[hopCount] = p.passNodeID; 

16:   end if 

17: end if 

 

 

Figure 3. The marked data packet and the cache content of 

intermediate nodes 



Clearly, in this design we propose to mark simple messages 
only; but if we insert more marks into the data packets, we obtain 
richer information on the network statuses and make the diagnosis 
process more straightforward. Nevertheless, in resource con-
strained sensor networks, we have to minimize the communication 
overhead introduced by our diagnosis model. Therefore, we 
choose to only use simplified marks to additively reconstruct the 
network. We give details about this issue in later discussions. 

4.3 Preliminary Diagnosis Reports 

Before the final diagnosis results are obtained from the infer-
ence engine, some preliminary diagnosis reports can be yielded 
from the mark parsing module, which help to analyze the network 
statuses. The preliminary diagnosis briefly infers the following 
reports. 

1) Success delivery report. When the sink receives a packet with-
out any mark, it indicates a successful delivery along the cur-
rent path. This report tells us that the route from the source 
sensor node to the sink is still the same and all links along this 
path have just conducted a successful transmission that con-
firms the active state of those links. 

2) Packet loss report. As described above, if the difference d be-
tween the sequence number recorded in the path and the se-

quence number of the packet is more than one, it can be in-
ferred that the packet loss occurs. The number of packet loss is 
quantified as d - 1. In this case, according to our marking 
scheme, the packet must have been marked by some intermedi-
ate node. This report can further locate the packet loss location 
if there is no route switch accompanying the packet loss. 

3) Route Switch Report. The mismatch of the pass node ID in the 
packet and the recorded ID in the corresponding slot in the 
path indicates that the previous routing path has been altered. 
The position of the switch is between the hop count recorded in 
the packet and d hops upward. 

5. PROBABILISTIC INFERENCE 

The packet mark parsing module provides a coarse abstraction 
and incomplete report. At the sink, the successive probabilistic in-
ference helps to reveal the inner dependencies among different net-
work elements in the sensor network and expose the hidden root 
causes of the exterior symptoms. Network elements are inner corre-
lated, for example, the crash of an upstream node causes all its chil-
dren to disconnect from the sink. In contrast, simultaneous conges-
tion of multiple paths may indicate a high probability of a malfunc-
tion at a common link. Based on such observations, we explore the 
dependencies among network elements (link status, sensing function, 
path status, etc.) on the constructed communication topology and 
encode them with a probabilistic model. Exterior symptoms like 
delay or loss of data samples are considered as inputs. When spe-
cific symptoms are observed by our inference algorithm, we can 
deduce the probability of the failures of each network element and 
find the most probable root causes. 

We first apply the Belief Network [20] as our inference model. 
Belief Network is a well-known probabilistic model that has been 

widely used in research domains like artificial intelligence and 
system engineering. In Belief Network, each possible root cause 
or symptom is represented by a variable. Each variable might have 
multiple values (e.g. 1 for a link in active state and 0 for in trou-

ble). Causal relationships between different variables are denoted 
as directional arcs. Inferences can be conducted on this model to 
deduce the probability of particular values to our interested vari-
ables once the values of some other variables have been observed 
(e.g. symptoms like the high delay of data samplings). To further 
speedup the process, we propose a simplified inference model, 
Causality Diagram. According to the characteristics of sensor 
networks, we can design a simplified Causality Diagram which 
accurately approximates the inference results and reduces the 
overhead. 

5.1 Belief Network 

A Belief Network (or Bayesian Network) is a Directed Acyclic 

Graph (DAG) that represents a set of variables and their probabil-
istic relationships. Each vertex in the graph denotes a random 
variable. In the rest of this paper, we use “vertex” and “variable” 
interchangeably. A directional arc connecting vertex X1 to X2 in-
dicates a causal relation between the two variables. The cause X1 
is called a parent of the outcome X2. The strength of the relation 
between a parent and its child is defined by the conditional prob-
abilities. We then formulate a Belief Network as a binary (G, P), 
where G = {V, E} is a DAG and P = {Pi} specifies a Conditional 

Probability Distribution (CPD) in G. Here, V = {Vi} represents 
the set of vertices in G, and E = {Ej} denotes all arcs (or edges). Pi 
specifies the conditional probability distribution of each variable 
given its parents. When the value domain of variable is discrete, 
the CPD can be represented as a Conditional Probability Table 
(CPT). 

Figure 4 illustrates a simple example of a Belief Network 
which contains four variables A, B, C and D. Each variable has 
two possible discrete values denoted as True and False. The ta-
bles associated with variables in Fig. 4 specify their CPTs. For 
example, variable D has two parents B and C, so each entry in its 
CPT gives the probability of D to take a certain value given the 
particular assignment of B and C. Since variable A has no parents, 
its CPD is a prior probability distribution. 

 

Figure 4. The Belief Network 



Given certain evidence (values of some variables), the Belief 
Network can answer three major types of queries[20]: 1) Posterior 
probability assessment, 2) Maximum posterior hypothesis, and 3) 
Most probable explanation. The first type of query, which esti-
mates posterior probabilities of certain variables given some evi-
dence variables, best fits our requirements in this work. For ex-
ample, in the Belief Network in Fig. 4, while given D = True, the 
posterior probability of B = True and C = True can be calculated 
as follows. 
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5.2 Inferring through Belief Network 

Our inference model automatically constructs and maintains a 
Belief Network from the output of the mark parsing module. The 
inference engine accordingly infers from this model hidden 
statuses of the network. In our PAD approach, the Belief Network 
structure is assembled from the current network topology obtained 
from the mark parsing module. 

5.2.1 Constructing a Belief Network 

Figure 5 (a) depicts a simple example topology composed of a 
sink and three sensor nodes. The directional edge between two 
nodes denotes a wireless link and the direction of data transmit-
ting along the link. There are five types of variables in our Belief 
Network, each of which has the value domain of {Up, Down} that 
denotes a normal or abnormal working status, respectively.  

For each source node, we add a variable Di to the Belief Net-
work which denotes the status of the data reception of the source 
node. For example, if the sink observes a long time delay in the 
data reception from a source, the corresponding Di variable of this 
node will be set to Down. Note that in many applications some 
sensor nodes do not sample data but only relay messages for other 
nodes. Some of the nodes simply relay packets for other sensors, 
so there are no data reception variables for those nodes. The status 
of the data report variable Di depends on two parent variables, the 
sensing variable Si and the connection variable Ci. The sensing 
variable Si indicates the sensing function of the corresponding 
source node and the connection variable Ci describes the condi-
tion of the network connectivity from the source node to the sink. 
We add two arcs from Si and Ci to Di to represent the dependen-
cies between them. Si and Ci are thus called the parent variables of 
Di in the Belief Network. Both the sensing functionality and the 
network connectivity condition will affect the success of the data 
reported from the source node. 

The connectivity from a source node to the sink relies on one 
or more paths connecting them. For example, node 2 in Fig. 5(a) 
can choose to deliver packets through two parents; node 1 and 
node 3, so in the corresponding Belief Network the connection 
variable C2 has two parent variables P2-1-0 and P2-3-0. They are 
called path variables. The subscript of each path variable sequen-
tially denotes the ID of the start node on the path, the ID of the 
next hop node from the start node, and the ID of the end node on 
the path. As illustrated in Fig. 5(b), the status of each path vari-
able depends on two parent variables. One is the link variable on 
the first hop from the start node and the other is the connection 
variable of its parent node. The link variable Lm-n represents the 
communication conditions of a wireless link between two nodes m 
and n.  

We connect each pair of variables that has a dependency with a 
directional arc from the cause variable to the outcome variable. 
Eventually we obtain a hierarchical network composed of these 
five types of variables in which dependencies among network 
elements are encoded. Among the five types of variables, the 
statuses of the link and sensing variables are hidden from the exte-
rior observations that most need to be inferred. The path and con-
nection variables are intermediate variables which are usually 
combinational results of other parent variables. The data report 
variables are outputs of the mark parsing module that we directly 
observe at the sink. The Belief Network structure consisting of the 
variables is automatically maintained and updated when network 
topology and communication conditions vary over time. 

5.2.2 Inference on Belief Network 

Once the Belief Network structure is constructed, a critical is-
sue is how to assign CPTs for variables that specify the condi-
tional probabilities between parents and their children. Different 
logistic relations between parents and their children lead to differ-
ent methods for calculating the CPT. For example, the sensing 
variable and connection variable affect their children variable of 
data report in a logical OR manner, i.e., if one of them is in the 
Down state, the data report variable should be switched onto the 

 

Figure 5. Belief Network constructed from the communication 

topology 



Down state. Due to the diverse routing schemes and high dynam-
ics in sensor networks, a sensor may maintain multiple parents for 
relaying its data. Consequently, in our inference model, multiple 
path variables affect the same connection variable in SELECT 
mode where the status of selected paths will determine the status 
of the connection variable. In PAD, we employ the noisy-OR gate 
[20] and Select gate [5] to encode these operations. 

Figure 6 (a) shows the CPT in a noisy-OR gate where any one 
of the parent variables in Down status results in the Down status 
of the child variable. In Fig. 6, h1 and h2 represent the noisy prop-
erty that means even if both parent variables are in the Up status, 
the child variable still has a chance to fail (in Down status). In 
PAD, noisy-OR gates exist in several cases such as when the sens-
ing and connection variables affect the data report variables, the 
link and connection variables affect the path variables, and so on. 
The relation between multiple path variables and a connection 
variable is represented by the Select gate as illustrated in Fig. 6 (b). 
Here d denotes the dependency strength of each parent and in the 
case of Fig. 6 (b), d is the probability that the child connection 
variable selects a certain path to relay data. Thus, the probability 
that a connection variable is in the Up status is given by 

∑
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In the Belief Network, each noisy-OR gate connects two parent 
variables to a child variable, so the CPT calculation is quick. The 
Select gate might connect more parent variables to a child variable 
but the maximum number of parent variables for one gate is 
bounded by the number of neighbors for a sensor node. The num-
ber of neighbors is normally treated as a constant. Hence, the CPT 
calculation for Select gate is also efficient. In the initial stages, the 
prior fault probability distribution of the link and sensing vari-
ables are assigned according to experience data. The value of each 
di is assigned by estimating the percentage of transmissions deliv-
ered through each path in a connection. Such information is input 
from the mark parsing module.  

The outputs of the inference process are the status estimations 
about the link and sensing variables. Such estimations reveal 
deeper understanding of the network operation. For example, a 
single link failure might be caused by environmental interference 
to the wireless communications, and multiple weak links relating 

to one sensor node might indicate a faulty node. We have more 
discussions in Section 6 on how we detect the network faults from 
the output of our inference process. 

5.3 Fast Inference Scheme 

The Belief Network model is a widely used tool in dealing with 
inference tasks that achieve high performance even with incom-
plete or suspicious inputs. The inference process in a general Be-
lief Network, however, is NP-Hard [8], and even some approxi-
mate approaches have been proven to be NP-Hard [9]. While 
previous studies in comparatively stable enterprise networks are 
able to simplify [22, 23] the Belief Network into bipartite graphs 
or polytrees, the hierarchical multi-level characteristic of sensor 
networks makes it impractical. To speedup the inference for large 
scale sensor networks, we further propose a new inference model 
based on the Causality Diagram [30]. 

Similar to Belief Network, Causality Diagram is a graphic in-
ference model. Instead of conditional probability, Causality Dia-
gram uses dependency strength to represent the relationships be-
tween vertices and exploit logistic computation in the probabilis-
tic inference process. 

As shown in Fig. 7, a Causality Diagram is a directed graph 
consisting of four types of elements including basic events, inter-
mediate events, arc events and logic gates. Each vertex or arc in a 
Causality Diagram denotes an event. Rectangles like B1 denote the 
basic events that are independent causes of other events. Cyclic 
vertices like X5 represent intermediate events that can be outcomes 
or causes of other events. An arc connecting two vertices is called 
an arc event that specifies a causal relation between the two events. 
The associated strength on an arc denotes the probability that the 
parent event affects its child event. Note that if there is no addi-
tional parameter on an arc, it means that the parent event has an 
impact on the child event at a probability of 1. The logic gates like 
G5 specify how multiple parent events jointly influence one child 
event. 

Taking the same example network topology in Fig. 5, Fig. 8 
shows how to construct a Causality Diagram for our inference 
engine. Different from that in Belief Network, each vertex in a 
Causality Diagram denotes a fault event. Those vertices without 
parents (rectangular in shape) are basic events that are independ-
ent root causes. Other cyclic vertices denote intermediate events. 

The traditional inference algorithm is NP-hard [30] on general 
Causality Diagrams and is thus infeasible for our approach. Nev-
ertheless, in this design, due to the characteristics of WSNs, we 
are able to use only OR and Select gates to model the dependency 
relationships between node behaviors. This enables us to apply a 
fast inference scheme, leveraging the particular structure of our 
model. Our scheme contains four stages: 

1) We represent each intermediate event by its first order cut set 
(CS1) expression. 

2) We adopt an early disjointing mechanism. Before generating 
the final cut sets (CSf) expressions, we directly disjoint the CS1 ex-
pressions. Based on the definition of the Select gate, the cut sets in a 
CS1 expression of the connection failure events are already exclu-
sive. 

 

Figure 6. CPTs of noisy-OR and select gates 



3) We calculate final disjoint cut sets (DCSf) expressions by it-
eratively replacing intermediate events in each expression. Since all 
negative events generated from step 2 are basic events, we avoid the 
complex NOT operations and the replacement process can be oper-
ated efficiently. 

4) We estimate the posterior probabilities of user specified 
events. Given observed events E (evidences), we can calculate the 
posterior probability of interested events H (root causes). E = E1 
∩ E2 ∩…∩ Ek. According to the Bayesian formula: 
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Both H and Ei have been expressed as DCSf and the result of 
operating logic AND on two DCSf expressions is still a DCSf 
expression. Hence, expressions on numerator and denominator are 
both DCSf and the posterior probability of H can be calculated 
algebraically. 

6. CHARACTERIZING THE FAULTS 

After the inference process, both the packet mark parsing mod-
ule and the inference engine output the fault reports about the 
sensor network statuses. In this section, we discuss how PAD 
further characterizes the faults in the network through timely 
analysis of the fault reports. 

Compared with enterprise networks, WSNs are highly dynamic 
and suffer more from environmental variations. As such, the pos-
sible faults in WSNs are much more complex than in enterprise 
networks where the network faults can simply be characterized as 
host or link failures. For example, most of the time, the failure of 
communication among a group of sensor nodes is not due to hard-
ware or software failures, but because of a temporal interference 
from an outside environment. According to the complexity of 
sensor network faults, in PAD, we trace the fault reasons by char-
acterizing their fault patterns as follows. 

1) Physical damage. In many field applications, physical damage 
might occur and destroy a portion of or the entire hardware of sensor 

nodes. For example, the battery component usually falls off the mote 
board due to the ocean waves, as we already experienced in our sea 
monitoring project. The sensing unit of a sensor node can also be 
damaged by cruel environment conditions. To locate the physical 
damage to a sensor node, we need to confirm its faults for a long 
period without obtaining any positive symptoms, for example, when 
there is no successful transmission report from all observed links 
associated with that sensor node, our inference engine outputs a 
high error probability of both sensing and communication functions 
for the node. The route switch of the child nodes that previously 
used this node to relay data will enhance the belief in the physical 
failure of the node. When a physical fault is detected, the repair 
actions include checking sensor nodes or redeploying sensors in the 
certain region. 

2) Software crashes. Software crashes include local problems on 
the sensor node such as a send queue overflow or busy CPU in those 
nodes that are physically intact. PAD detects the sensor nodes in a 
software crash by both the diagnosis information from the mark 
parsing module and the posterior probability estimations from the 
inference engine. If all the links around a certain node are reported 
to lose an extraordinary amount of packets with sporadic successful 
transmissions, PAD issues a software crash report at this node. PAD 
distinguishes a software crash from physical damage by the sporadic 
positive feedback like successful packet delivery or establishment of 
new links around the node. To repair the software crash faults, the 
sink can issue reboot commands to targeted sensors. 

3) Network congestion. Network congestion relates to a group of 
sensors or traffic flows. The occurrence of network congestion usu-
ally leads to a high packet loss rate within the influenced region. 
However, unlike the case of physical damage, there are still some 
positive reports from the targeted source nodes. Due to such a fea-
ture of this type of faults, the observed symptoms are usually tempo-
ral and distributed across a large time and space span. In our imple-
mentation experiment, we examine the burst loss rate for each link 
and the sequence of normal and lossy links to identify congestion. 
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Figure 8. The Causality Diagram constructed from the com-

munication graph 



One way of repairing network congestion faults is to decrease the 
data generation at source nodes. 

4) Environmental interferences. Environmental interference can 
significantly degrade the performance of WSNs even without any 
internal problems within the WSN itself. The environment interfer-
ence usually has high spatial correlation, that is, a large number of 
nodes in the same region experience degradation of performance at 
the same time. We infer environment interference as the root cause 
by observing link degradation across a wide area and lasting for a 
certain time period. To address this issue, a network manager needs 
to check the possible sources of interference and reduce the work-
load or even temporarily turn off some nodes to protect them from 
unnecessary physical damage or power wastage. 

5) Application flaws. As the application programs might con-
tain flawed components, the network might suffer from some 

inefficiency that does not lead to system crashes but consumes 
computational or communicational resources. A typical example 
is the instability of the routing selection. Indeed, when we apply 
PAD to our sea monitoring project, we observe frequent route 
switches for the packet delivery, incurring a large amount of con-
trol messages to the network but no improvement to the commu-
nication quality. This observation confirms our suspicions about 
the rapid depletion of sensor energy. Such types of faults are usu-
ally highly related to the applications and are indeed difficult for a 
light-weight network diagnosis tool to detect without any applica-
tion control information. It is more like a byproduct of PAD. 

7. EVALUATION 

We conduct comprehensive simulations and implement field 
experiments to evaluate the performance of PAD. For the imple-
mentation, we used the BNJ implementation of the Belief Net-
work inference as part of our inference engine. We implemented 
the packet marking scheme for TelosB motes on the TinyOS plat-
form with nesC language. We implemented the mark parsing 
module on the java based back end. 

7.1 Simulations 

We first examine the effectiveness and efficiency of PAD 
through simulations. We simulate a sensor network on the java 
platform which is organized into grids, with the sink located at the 
centre. Sensors periodically generate data and deliver to the sink 
through multi-hop routes. Two routing schemes are applied in the 
simulation. Various types of faults are inserted into links or nodes 
according to different test settings. 
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Figure 10 (a) Sensing failure detection rate Figure 10 (b) Sensing failure false positive ratio 

 

0 20 40 60 80 100
0

100

200

300

400

500

Network Size

N
u
m

b
e
r 

o
f 

P
a
c
k
e
ts

 

 

Tree

DAG

 

Figure 9. Convergence time on varying network sizes 
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Figure 11 (a) Node failure detection rate Figure 11 (b) Node failure false positive ratio 
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Figure 12 (a) Detection rate for multiple faults Figure 12 (b) False positive ratio for multiple faults 

 

7.1.1 The efficiency of the packet marking scheme 

We evaluate the convergence time of the packet marking scheme 
under various network conditions. In this test we simulate a data 
acquisition network using both spanning tree based routing and 
DAG based routing schemes. We measure the convergence time by 
counting the number of data packets needed for constructing the 
entire network topology. The smaller number of packets needed 
indicates faster convergence. Different routing schemes lead to dif-
ferent types of topologies. Term Tree denotes a spanning tree topol-
ogy rooted at the sink and DAG represents a multi-path routing 
strategy where each sensor node has multiple parents. Figure 9 
shows the number of packets required in the packet marking process 
under the two topologies. For both cases, the number linearly in-
creases as the network size increases. In other words, the average 
packets sent from each source node is relatively stable. The DAG 
network has a more complicated topology, so the marking scheme 
requires more packets to figure it out. 

7.1.2 The performance of inference models 

We then evaluate the performance of the two inference models 
with four different groups of tests. We inject artificially created 
errors into the network and let both inference models generate fault 
reports according to the posterior probability estimations. 

We first inject sensing failures into sensor nodes and compare the 
detection rate and false positive ratio of both models. We randomly 
invalidate the sensing capabilities of 10% of the nodes. BN-Tree and 
BN-DAG denote inference results of the Belief Network model on 
the spanning tree topology and DAG topology. CD-Tree and CD-
DAG represent the inference results of Causality Diagram model. 
We vary the network size from 16 nodes to 64 nodes. Figure 10 (a) 
plots the detection rates, where we can see both models achieve 
detection rates higher than 90% in most situations. Belief Network 
model has a slightly higher detection rate than Causality Diagram 
model as it adopts exactly accurate inference. Figure 10 (b) shows 



the false positive ratio of the two models. We see that for both two 
models, the false positive ratio decreases as the network size in-

creases. By analyzing the false reports, we find that most false posi-
tive reports relate to the leaf nodes. As those nodes lie on the 
boundary of the network field and do not relay data for others, if 
they do not report data to sink, there are few clues as to whether it is 
due to a sensing failure or a communication failure. 

We then inject node failure of both sensing and communication 
errors into sensor nodes; see Fig. 11 for the results. As the network 
size increases, the detection rate decreases and the false positive 
ratio increases. Both inference models achieve comparable detection 
rates under different topologies while Belief Network is slightly 
better than Causality Diagram with a lower false positive ratio. 

We conduct simulations to test how the inference models per-
form against multiple errors in the network. In this test, we simulate 
a network with 25 sensor nodes. We randomly select 1 to 5 sensor 
nodes and simultaneously insert errors into them. The results are 
shown in Fig. 12. We find that when multiple faults simultaneously 
occur, the detection rate decreases and the false positive ratio in-
creases. This is because the existence of multiple errors introduces 
mutual interference in the inference model and degrades the per-
formance. As Fig. 12 shows, a single error is easy to detect and 5 
simultaneous errors lead to worse results. 

The last group of simulations compares the computational effi-
ciency of the two inference models. As shown in Fig. 13, the com-
putation overhead of Belief Network is much larger than Causality 
Diagram and their difference increases quickly as the network size 
increases. Although as previous simulation shows, Causality Dia-
gram model provides approximated inference with less accuracy 
than the Belief Network model, it largely reduces the computational 
overhead and thus is more viable for practical usage. 

7.2 Implementations and Field Experiments 

We implement and test the effectiveness of the PAD approach 
through a field study in our sea monitoring sensor network system 
[28]. The experiment is conducted over a long period and we fetch 
and analyze a segment of 22,416 received packets as well as the 
marks in them. 

7.2.1 Observations in the field study 

The analysis results from PAD confirm our concern about the en-
ergy efficiency of the system. We indeed observe extraordinarily 
high frequency of topology variations in the sensor network. Figure 
14 compares the topology variations with the packet receptions 
during the sea monitoring system operation. We summarize the 
number of topology variations throughout each ten minutes interval. 
From results in Fig. 14 (a), we find that every ten minutes there are 
topology variations of 10 to more than 40 times that in the network. 
As shown in Fig. 14 (b), however, there is no apparent correspon-
dence between the topology variations and the packet receptions. 
Thus, most of the topology variations occur but do not significantly 
improve the network communication quality. Figure 15 exhibits a 
group of topology snapshots of a certain region in the network. The 
interval between each pair of consecutive subfigures is two minutes. 
According to the algorithm used in the MultiHopRouter component, 
the topology variations indeed always incur large traffic overhead in 
the network. 
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Figure 13. Computation time of two inference models 
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Figure 14 (a) Topology variation statistics over time 
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Figure 14 (b) Packets reception statistics over time 



This observation confirms our concern that the network 
quickly depletes the node energy due to the frequent route 
switches, while most of them occur because of the instability of 
link quality between the floating sensor nodes. Clearly, frequent 
route switches may lead to high energy cost that largely constrains 
the lifetime of our monitoring system. We improve our applica-
tion program by setting adequate redundancy in measuring the 
link quality and switching the routes. Currently, our system has 
been operating neatly with much fewer unnecessary routing dy-
namics. 

7.2.2 Traffic overhead 

Through analyzing the received packets, we compare the extra 
overhead introduced by PAD and Sympathy. We use empirical 
cumulative distribution functions (ECDF) to quantify the over-
head. In Fig. 16, the x axis denotes the ratio of the diagnosis over-
head to the total network traffic and the y axis denotes the ECDF. 
For example, a point with value (0.3, 0.8) on x and y axes respec-
tively indicates the fact that 80% of the time, the diagnosing 
transmission dominates less than 30% of the total network traffic. 
A curve to the left represents a small cumulative overhead. Differ-
ent curves for the Sympathy approach denote the cases of differ-
ent report intervals in sending the diagnosis metrics. As Fig. 16 
shows, PAD significantly outperforms Sympathy in terms of the 
traffic overhead. 

7.2.3 Diagnosis for the problematic network 

In this experiment, we artificially inject sensing and communi-
cation faults into two sensor nodes respectively and mix them into 
the network. We let the two nodes interchangeably work under 
normal and exceptional statuses. We turn off the wireless radio of 
one sensor node (NodeA) every 5 minutes and invalidate the sens-
ing module of the other node (NodeB) every 5 minutes. As shown 

in Fig. 17, the red curve represents the inferred posterior fault 
probability of the sensing functionality in NodeB. The inference 
result accurately captures the periodical faults of the sensing 
module in NodeB. The three other curves denote the inferred fault 
probabilities of three links associated with NodeA which indicate 
the faults in those links. We can see that PAD correctly captures 
the periodical communication failures of NodeA. According to 
Sympathy performance report, Sympathy is able to detect any 
failure injected into the network if the system parameters are 
properly set. From our experimental results, as a comparison, 
PAD achieves more than a 90% detection rate and around 80% 
accuracy, but with significantly reduced overhead. 

8. CONCLUSIONS AND FUTURE WORK 

Although there have been many approaches proposed for de-
bugging the operation of sensor network systems in a controlled 
laboratory, few works have been done towards an in-situ diagno-

 

Figure 15. Topology evolutions over time in field study 
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Figure 16. System overhead (PAD v.s. Sympathy) 
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Figure 17. Diagnosis results for detecting the manually in-

jected faults in our field study 



sis tool for monitoring the statuses of operational systems in the 
field. In this paper, we propose PAD, a passive diagnosis ap-
proach, which can be efficiently implemented and applied to a 
normally working sensor network system providing in-situ net-
work diagnosis. The proposed light-weight packet marking 
scheme collects necessary hints without injecting extra traffic 
overhead to the original system. The probabilistic inference model 
residing at the sink captures the unique features of the sensor 
networks and yields accurate results. The inference engine works 
well even with incomplete or suspicious inputs in a nondetermin-
istic manner. We implement our diagnosis approach and validate 
its effectiveness in a field test in our sea monitoring project. The 
sea monitoring project is an undergoing project. We are currently 
utilizing PAD as an important diagnosis tool to detect possible 
faulty components in the system and guarantee its correct opera-
tions. On the other hand, we are relying on such a platform to 
further test the effectiveness and efficiency of PAD and hope to 
improve it according to our future observations. 
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