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Geographical hash table (GHT) has been widely 
used to provide energy efficiency for data-centric stor-
age in wireless sensor networks. Such a mechanism, 
however, suffers from high communication cost when 
we apply multi-dimensional event search in the net-
work. In this work, we present MDS, a flexible, com-
plete, and efficient multi-dimensional search mecha-
nism atop traditional GHT based data-centric storage 
architecture. MDS utilizes bloom filters to reduce the 
communication cost of in-network intersection and 
union operations for multi-dimensional queries in 
wireless sensor networks. This scheme can be easily 
extended to support multi-dimensional range queries. 
Our mathematical analysis indicates the optimal set-
tings for the bloom filters that maximize the traffic sav-
ings according to the information popularities. We 
conduct comprehensive simulations to evaluate our 
design. Results show that MDS achieves significant 
performance improvement in terms of energy consump-
tions and thus improves the applicability of the multi-
dimensional search over the GHT based data-centric 
storage in sensor networks.  
 

1. Introduction 
 

The emerging wireless sensor networks (WSNs) [4, 
8, 13, 15, 21, 26] have been revolutionizing the ways 
of collecting information from the physical world. The 
community has envisioned a large variety of applica-
tions, such as environment monitoring, underground 
surveillance, and so on.  

Although sensor networks provide us unprece-
dented access to the detailed observations of the physi-
cal world, directly delivering large amount of sensory 
data back to the base station (sink) might quickly ex-
haust the energy of the sensor nodes [20]. Recently 
proposed data-centric storage (DCS) schemes [22, 23] 
explore alternative ways that organize the sensory data 
and store them within the network. External queries 
are scheduled in a DCS system to retrieve correspond-

ing data for query processing. For instance, a surveil-
lance WSN monitoring animal migration often collects 
many individual animal sightings. All the sighting 
events can be organized and stored in some given 
places within the network instead of directly delivering 
them back to the base station. The future queries can 
thus be forwarded to corresponding places and yield 
the time and location of all such sightings [23]. 

The key issue affecting the efficiency of the DCS 
scheme is how to organize the storage of the sensory 
data at appropriate rendezvous nodes for the consum-
ers to retrieve. Most existing schemes employ the Geo-
graphical Hash Table (GHT) [20] to disseminate dif-
ferent sensory data in the network, where event data 
are hashed by pre-defined event types to different geo-
graphical locations. A consumer node is able to apply 
corresponding hash functions to retrieve data from 
rendezvous nodes that store different types of events. 
The DCS scheme has been proven efficient for storing 
and processing information in large scale WSNs, espe-
cially for information search applications [14, 22]. For 
the queries concerning the events of a specific type of 
data, which we call singular events, DCS scheme pro-
vides much higher retrieval efficiency than previous 
data-centric routing schemes [12, 16], where data are 
stored at their origins and the discovery of the desired 
information relies on flooding the network. 

Recent advances in sensor hardware designs have 
enabled sensor nodes the capability of detecting multi-
ple types of environment elements [1]. It is expected 
that more functionalities can be added to sensors, ful-
filling the needs of monitoring complex environments 
involving multiple types of sensory data. Information 
queried by users thus can become highly selective - 
they might be interested in different subsets of envi-
ronment attributes. Under such conditions, desired 
events are likely being flexibly composed of multiple 
different data types, which we call multiplex event. 
Such search process is also referred to as a multi-
dimensional search [14]. 

There are two types of methods to design the store 
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and query of multiplex events: 1) the first one is that 
we define a complex event as a whole. When a node 
detects these complex events it stores them to some 
storage nodes determined by specific algorithms. In the 
querying phase, queries are simply forwarded to the 
corresponding storage nodes to retrieve results; 2) the 
second method is that we still define the multiple data 
types in a multiplex event as separate singular events, 
and then the multiplex events are composed only in the 
querying phase.  

The first method is efficient when the patterns of 
the event are known before deployment and never 
change. It has limitation, however, on the flexibility 
when users want to know a different undefined event. 
Typically schemes include DIM [14] and Double Rul-
ing [22].  The second type of method aims at achieving 
non-predefined multiplex events retrieval. For example, 
in our sea environment surveillance applications [2, 
25], scientists who analyze the growth of marine mi-
cro-organisms might be casually interested in the mul-
tiplex events that occurred within certain temperature 
and light conditions, e.g., “Find me all events that have 
temperatures above 20 celsius degree and light level 
above 15”. A naïve scheme is to utilize GHT infra-
structure to disseminate the two singular events to dif-
ferent GHT nodes across the network. During querying 
phase, each multiplex event is decomposed into two 
singular events, “events with temperature above 20” 
and “events with light level above 15”. Thus, to obtain 
the search result for such multiplex events, the two 
single-data-type queries are processed separately with 
a consequent intersection operation at the base station. 
Although only two rendezvous nodes need to be in-
volved during the search process, each sends a large 
amount of data through the network, introducing ex-
cessively heavy traffic overhead. 

To address the above issue, we propose a novel pro-
tocol, MDS, atop traditional GHT based DCS schemes, 
for flexible, complete, and efficient multi-dimensional 
search. MDS utilizes Bloom Filter (BF) [6, 18, 24] to 
encode the data set to transmit and achieves efficient 
distributed intersection and union operations in WSNs. 
By transmitting the BF instead of the raw data among 
the rendezvous nodes together with reverse verification, 
MDS achieves exact intersection and union on multi-
dimensional data in the network, largely reducing the 
traffic overhead. 

Through mathematical analysis, we demonstrate 
that the optimal BF setting for a query q is determined 
by the popularity of items relevant to the data types 
involved in q. We accordingly derive an effective ap-
proach to achieve optimal settings for BF through nu-
merical analysis. To further reduce the communication 
cost, we adopt caching strategy to avoid sending re-

dundant BFs across the network. By using model-
driven data acquisition schemes [10], we further ex-
tend MDS to handle multi-dimensional range queries.  

We conduct comprehensive simulations to evaluate 
the efficiency of MDS. The results show that, com-
pared with the baseline approaches, MDS achieves 
significant performance improvement in terms of en-
ergy consumption and thus largely improves the appli-
cability of multi-dimensional search over existing DCS 
scheme. 

The rest of the paper is organized as follows. Sec-
tion 2 discusses related works. Section 3 introduces the 
design of MDS. Section 4 shows how MDS can sup-
port a range query. We analyze the optimal settings of 
BF for MDS multi-dimensional search and evaluate the 
performance of this design in Section 5. We conclude 
the work in Section 6.  

  

2. Related Work 
 

There are mainly two different types of retrieval 
schemes in wireless sensor networks: data-centric rout-
ing [12, 16] and data-centric storage [14, 22, 23].  

In data-centric routing, data are stored at their ori-
gins while the discovery of the desired information 
usually relies on flooding the network, requiring com-
munication cost of O(n) for a query, where n is the 
number of sensor nodes in the network. Clearly, that 
kind of approaches mainly target at infrequent queries 
for streaming data type where the cost of flooding can 
be amortized by the following long-term data delivery 
that followed [12]. However, for queries from multiple 
consumers for the same data source, the performance 
deteriorates as data sources might be rediscovered 
separately by multiple consumers. DCS-based retrieval 
schemes map events to proper rendezvous nodes for 
the base station to retrieve [14, 22, 23]. A query only 
needs to visit the rendezvous location to acquire data 
of a given type at the cost of packet transmis-

sions ( )nO . DCS-based schemes greatly reduce the 

communication cost on event search by avoiding 
flooding. Using hash mapping, such schemes, however, 
have the limitation of exact-match, providing poor 
search capability.  

To support complex queries for multiplex events, 
existing DCS-based schemes commonly use an attrib-
ute vector to define a multiplex event. For example, 
DIM [14] leverages a locality-preserving geographic 
hash to map events with comparable attributes values 
to places nearby. DIM embeds a k-d tree [5] like index 
in a sensor network, with which the bounding rectan-
gle that contains all sensors within the network are 
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recursively divided into two halves until each zone 
contain only one sensor node. Each node acts as an 
index node of the zone. The zone and multi-
dimensional events are coded based on the same k-d 
tree scheme. Thus, any event with the pre-defined fix 
attribute vector can be hashed to a zone for the base 
station to retrieve. With k-d tree index, events with 
comparable attributes values are stored nearby and 
DIM can support multi-dimensional range queries. 
However, DIM only supports the fixed attribute vector. 
The attributes of interested events are predetermined in 
order to construct the DCS structure. In practice, it is 
likely and perhaps often the case that a user is only 
interested in a selected set of the attributes instead of 
all in the pre-defined event type.  

So far, there is not much research on addressing the 
flexible multi-dimensional search. One possible 
scheme is to organize a distributed global index which 
maps each data type to a set of events based on DCS 
mechanisms, such as GHT. Then, a multi-dimensional 
query is searched by retrieving the sets for each data 
type through the global index, and then performing an 
intersection/union operation. In such a scheme, al-
though only a few sensor nodes need to be contacted, 
each sends a potentially large amount of data across 
the entire network. Our MDS approach largely im-
proves the efficiency of the in-network intersec-
tion/union operations. 
 
3. System Design 
 

In this section, we first give a brief overview of the 
design of MDS. We then describe our approach of re-
ducing the communication cost using bloom filters. We 
illustrate the optimization strategies for both “and” and 
“or” queries separately in Sections 3.1 and 3.2. In Sec-
tion 3.3 we introduce the caching strategy to further 
reduce communication cost by avoiding transmitting 
redundant BFs among GHT nodes.   
 
3.1. System model 
 

Our design is based on the following search model. 
The base station searches for the multiplex events in-
volving one or more data types and the system should 
send back the set of events containing all the requested 
types of data. Our system model is based on recent 
works on DCS systems [22, 23]. We assume the pres-
ence of a large number of data types. According to the 
GHT principle, the singular events of each data type 
are mapped into a random location by predefined hash 
functions. Sensors at different locations are responsible 
for accommodating the singular events composed of 

the data types mapped to them. While our approach is 
general to any of the concrete GHT techniques [20, 22], 
for simplicity, our following discussion assumes the 
architecture closely related to the basic GHT design 
[20]. We also assume that the sensors are densely de-
ployed. Each sensor in the network detects different 
types of environmental data. Corresponding singular 
events of each data type are inserted into the global 
GHT index. The underlying geographic routing algo-
rithms support the data dissemination and query dis-
semination. 

A multi-dimensional query search based on such a 
GHT index includes looking up the sets for the singu-
lar events of different data types from multiple GHT 
nodes and returning the multiplex events by intersec-
tion/union on the accommodated events. In order to 
reduce the communication cost to achieve in-network 
intersection/union operations, each concerned rendez-
vous node sends a BF, a succinct data structure of a set, 
instead of the set itself to perform the intersec-
tion/union operation. The base station adjusts the BF 
parameters into optimal settings to achieve minimized 
communication cost. 

 

3.2. MDS protocol 
 
3.2.1. Bloom filter. Before we introduce our approach 
that reduces the communication cost, we briefly review 
the basis of bloom filters [6]. A BF is a bit vector bit-
vec_m with m bits, initially all set to 0. The BF facili-
tates membership test to a finite set S = {x1, x2,…, xn} 
of n elements from a universe U. It uses a set of k uni-
form and independent hash functions {h1, h2,…, hk} to 
map  the universe U to the bit address space [1-m]. For 
each element x belonging to S, the bits hi(x) are set to 1 
for 1 ≤ i ≤ k. To check whether or not an item y is in S, 
we check whether all hi(y) are set to 1. If not, y clearly 
is not a member of S. If all hi(y) are set to 1, y is in S 
with high probability which can be controlled by the 
parameters of BF.  

After all n elements of S are hashed and inserted 
into the BF, the probability that a specific bit of bit-
vec_m is still 0 is 

                   1(1 )k n kn m

m
p e−= − ≈                             (1) 

The probability of a false positive after n elements 
inserted in the bitvec_m is the probability that a new 
element is not in S, but can be separately hashed by the 
k hash functions to some k bits of  “1” in the bitvec_m. 

   (1 ) (1 )k kn m kf p e−== − −                (2) 
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Figure 1. Bloom Filter based in-network intersection 

Given an optimal choice of k hash functions, the 
false positive rate f can be minimized when ln 2

k nm ⋅=  

and the lower bound of the positive rate [18] is 

                     min 0.6185
m
nf =                                  (3) 

3.2.2. In-network intersection. A common require-
ment for multi-dimensional search in WSNs is to con-
duct a distributed intersection operation inside the net-
work. Figure 1.(a) gives an example of a two-data-type 
query q = (a and b). The query is first routed to the 
GHT node SA which is responsible to accommodate the 
singular events of data type a. Then A, the set of se-
lected event items of data type a, is transmitted to the 
GHT node SB which is responsible to accommodate the 
singular events of data type b. Node SB is thus able to 
obtain A∩B, where B is the set of selected event items 
of data type b. The final results are returned back to the 
base station.  

Although in the above in-network intersection op-
eration, only two nodes are involved, each of them 
sends a large amount of data across the WSN and the 
communication cost is expensive. For the same exam-
ple discussed above, MDS reduces the communication 
cost by sending a BF that contains the element infor-
mation of A, BF(A), instead of the raw set of A itself to 
node SB. As illustrated in Fig.1.(b), the gray box repre-
sents BF(A), the Bloom filter of set A. Our approach 
allows A∩B to be determined with much fewer bits 

transmitted compared with SA directly sending the en-
tire set A. When BF(A) is transmitted to node SB, it 
determines the intersection of A and B by checking 
each item in B according to the records in BF(A). Be-
cause the BF has no false negatives, the result set con-
tains all the elements of in the true intersection set. 
Due to the false positives, however, the result set might 
contain elements that are not in A. Typically, a client 
wishes to retrieve only the exact intersection result of 
A and B. Thus, the result set, denoted by B∩BF(A), is 
sent back to node SA for verification. SA removes the 
false positives from B∩BF(A) by calculating 
A∩(B∩BF(A)), which is equivalent to A∩B.  

Table 1. Notations in MDS Algorithm 

Notation Description 
A The set of the events containing a 

BF(A) The bloom filter for set A 
B∩BF(A) The estimated intersection of A and B 

based on BF(A) and B 
n Number of elements inserted into a BF 
m Size of the bit vector used as a BF 
k Number of hash functions used for a 

BF 
f False positive rate of a BF 

fmin Minimized false positive rate of a BF 
SA The GHT nodes responsible for a 
r The number of bits each item takes 

Sink SA SB A={1, 2, 3, 4, 5} B={3, 4, 5, 6} 

Sink

SA   

SB  

Query message
12345 

Sink

SA  

SB  

Query message  

(a) (b) 

(1)

(1)

(2)

(2)

(3)

(3)

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4){3, 4, 5}A B =∩
{1, 2, 3, 4, 5}A =

( , )q a b= ( , )q a b=
BF( )A

BF( ) {3, 4, 5 | 6}B A =∩
{3, 4, 5}A B =∩
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Figure 2. Asymmetry of communication cost of 
in-network intersection 

Figure 3. Trade-off between the loss rate and 
communication cost 

In the following we will analyze the communication 
cost of our algorithm. We will further discuss how our 
algorithm can be extended to support range queries in 
Section 4 and how to achieve optimal BF settings in 
our algorithm in Section 5. Before we introduce the 
optimization scheme, we summarize the notations used 
in our algorithm in Table 1. 

The communication cost of the BF based intersec-
tion is quantified as  

| | | |m A B r f B r+ +∩                         (4) 

We assume that each element in the set takes r bits. 
To evaluate the communication cost of BF-based dis-
tributed intersection, the cost of |A∩B| can be ignored 
since it represents the final intersection result, which 
anyhow will be sent back to the base station regardless 
of the choice of algorithms. We substitute f according 
to Eq.(2), and the extra communication cost for dis-
tributed intersection is given by 

| | | |( , ) (1 )k A m k B rf m k m e−= + −             (5) 

Given |A| and |B|, the minimal value of f (m,k) can 
be achieved by adjusting the parameters m and k of BF. 

We find that the minimal communication cost is not 
symmetric when sets A and B differ in their sizes and 
thus the order of the intersection operation is critical in 
minimizing the communication cost. In Fig. 2, we ob-
serve that when |A| =100, |B| = 1000, and k = 8, the 
minimal extra communication cost is 1,647 bits with an 
optimal setting m = 1410, while when |A| = 1000 and 
|B| = 100, the minimal extra communication cost is 
7,568 bits with an optimal setting m = 6,082. In such a 
case, we can achieve a 4.6× performance improvement 
in terms of communication cost if we send the BF of 
the event set of less popular data type to the GHT node 
accommodating the event set of more popular data type. 

In Section 5, we show how we can achieve BF optimal 
settings under different cases for a real system through 
further analysis. 

In our algorithm, it is also possible to send B∩BF(A) 
directly to the base station rather than first sending it 
back to node SA. This further reduces more communi-
cation cost but suffers from a slight loss in the result 
precision due to the false positive of BF. Given reason-
able values of |A|, |B|, k, and m, the number of the ex-
tra-transmitted elements is in proportion to the cardi-
nality of set B. B∩BF(A) contains | | | |(1 )k A m k Be−−  
extra elements that do not belong to set A. The preci-
sion of the final result will be slightly decreased to 

| |
| | 100%| | (1 ) | |k A m k
A B

A B e B− ×+ −
∩

∩                  (6) 

3.2.3. In-network union. In some applications, we 
may need to process the “or” queries, which demand 
the results containing all singular events of the ap-
pointed data type in the query. Fig. 4.(a) presents an 
example of the traditional strategy for processing a 
two-dimensional “or” query. First, two copies of the 
query are separately sent to the GHT nodes SA and SB,. 
SA and SB respectively send back their complete event 
sets. At last the search results of both data types are 
merged at the client. The total communication cost is 
(|A|+|B|) r. In our design, as shown in Fig. 4.(b), the 
query is first routed to node SA , which sends BF(A) to 
node SB, then SB picks up the items that are not in A by 
checking each item in B against BF(A). Only the items 
picked up, denoted as B-BF(A), are returned to the cli-
ent for a consequent union operation.  

The communication cost of the in-network union 
operation for data type A and B can be quantified by 

(| | (1 )(| | | |))m A f B A B r+ + − − ∩             (7)
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Figure 4. Bloom Filter based in-network union 

By avoiding repeatedly sending the intersection part 
of sets A and B, our algorithm for the in-network union 
is designed efficient in traffic cost. Note that B-BF(A) 
is slightly different from B-A due to the false positive 
in the BF: some elements in A∪B are missed in the 
final results. Given |A| and |B|, the loss rate can be 
quantified as follows. 

                   (| | | |) 100%| | | |
f B A B

A B
× −

×
+
∩                    (8) 

Figure 3 plots the theoretically calculated curves 
that exhibit the trade-off between the loss rate and the 
communication cost, where |A| =100, |B| = 100, 
|A∩B|= 60, k = 8, and r =192. It shows that when m is 
increased, the communication cost is increased while 
the loss rate is decreased. For example, the communi-
cation cost can be reduced from 38,400 bits to 23,500 
bits at a loss rate of 9.5%. 

The possible reduced communication cost by BF 
can be quantified as Msaved= (|A|+|B|) r- (m+|A| r+(1-f) 
|B-A| r) =(1-f) |A∩B| r+ f|B| r-m, where the size of in-
tersection A∩B can be estimated with the BF based 
algorithm first proposed in [19]. 

As described in Section 3.2.2, during the “and” 
query search, GHT nodes exchange BFs for their data 
types. Thus the intersection size can be calculated.   

               

MDS piggybacks the intersection size to the base 
station for future use. In MDS design we use a thresh-

old for strategy selection. If (| | | |)
savedM

A B r δ>+ , where δ is 

a predefined threshold, we use BF for distributed union 
operation, otherwise we use the straightforward strat-
egy. 

When we choose algorithms in the design for a real 
system, we may consider this trade-off between the 
search quality and system resource consumption. For 
example, we can minimize the false positive of BF to 
achieve the best recall rate. We substitute f in Eq. (6) 
according to Eq. (3), and the communication cost for 
distributed union is, 

| || | (1 0.6185 )(| | | |)
m

A A B rm A r B+ + − − ∩          (9) 

Where | |
ln 2
k Am ⋅= . 

In MDS in-network union algorithm we do not con-
sider a complete search mechanism using reverse veri-
fication like the in-network intersection algorithm, that 
achieves 100% recall but consumes even more com-
municational resources than the straightforward strat-
egy that simply transmits all the sets directly to the 
base station. 
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Figure 5. Cache for in-network intersection Figure 6. Cache for in-network union 

 
3.3. Caches 

 
GHT nodes may cache the posting list sent by BF to 

avoid transmitting them again for future queries. For 
example, in Fig. 1.(b), when node SB already has BF(A) 
in its cache, a search operation for the data types a and 
b may skip the first step, in which node SA sends its 
BF(A) to node SB. We can obtain more benefit from 
caching BFs compared with caching the entire data 
element match lists because the small size of the BF 
representation facilitates a cache of fixed size to store 
more data types.  

Assume a BF is in another node’s cache with prob-
ability p. The communication cost formula for the in-
network intersection in Eq. (5) can be altered, consid-
ering cache hit rate, p, as follows: 

| | | |(1 ) (1 )k A m k B rp m e−− + −                        (10) 

The communication cost formula for the in-network 
union in Eq. (7) can be altered as follows: 

| |(1 ) (| | (1 (1 ) )(| | | |))k A m km A e B A B rp −− + + − − − ∩      (11) 

Figure 5 illustrates the effect of cache hit rates on 
the communication cost for the in-network intersection 
operation in Eq. (10) where |A| = 1000, |B| = 1000. It 
shows that the minimized communication cost de-
creases when the cache hit rate increases. For example, 
when the hit rate, p, is 0.5, the minimum excess num-
ber of bits sent is 6,476 bits, representing 29.64:1 
compression when compared with sending A or B, 
which is a 1.8× improvement on the performance 
without cache strategy. When p is increased to 0.8, the 
minimum communication cost is further reduced to 
2,977 bits, which is a 3.9× improvement. Figure 6 
shows a similar effect of the cache scheme for the in-

network union operation.  
Intuitively, the more frequently two data types are 

related in the search process, the more communication 
cost can be saved by caching the transferred BF. MDS 
can adaptively adjust the cache rate by learning from 
the query experiences. Specifically, the base station 
can learn the correlation among data types from the 
query logs and compute the statistical query rate. MDS 
piggybacks the statistical information on queries, and 
sends them to involved GHT nodes to adjust their 
cache rates. Designing an optimal cache strategy is out 
of the scope of this paper, as it is highly related to the 
concrete application running atop the system and many 
efforts have been done for cache strategy design under 
different application systems [11]. Note that the repli-
cas of a BF can become slightly stale due to the update 
of local event records on corresponding rendezvous 
nodes. Although slight staleness on the BF information 
is acceptable, we handle the cache consistency with a 
TIMEOUT field in the cached BF. After a period of 
time, the BF for an updated set will be transmitted. 

 
4. Supporting Range Queries 
 

This section illustrates how MDS can also effec-
tively support range queries. Using a range query, a 
user may prefer events with data type values in certain 
ranges rather than simply of certain properties, e.g., 
“finding out all events that have temperature between 
40˚F and 50˚F and light level between 10 and 20”. As 
the analysis will be shown in Section 5, the optimal 
settings of a BF are determined by the popularities of 
data types. For a range query, we should know how 
many items are in each specified ranges. Since the 
ranges for each data type may vary frequently in the 
queries issued by users, caching such numbers in the 
base station is not applicable here. 

361

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 08:32 from IEEE Xplore.  Restrictions apply.



To solve this problem we adopt the model-driven 
method [10] to estimate such numbers. Specifically, 
the GHT nodes can derive the probability density func-
tion (PDF) p(x) for each data type x using standard 
algorithms (e.g., [17]). The PDF for data type x to-
gether with the popularity information |X| is then 
cached in the base station. Thus the base station can 
compute the probability of a specified range [t1, t2] by: 

                 2

11 2( [ , ]) ( )
t

t
p x t t p x dx∈ = ∫                     (12) 

The popularity of x in range [t1, t2] can be estimated 
by 

                          2

1
| | ( )

t

t
X p x dx∫                             (13) 

Using the PDF and the size of the event item list, 
the base station can estimate the number of items 
within any range. It is a cost-efficient way for a base 
station to get the optimal settings of a BF. 
 
5. Performance Evaluation 
 

In this section we first introduce our simulation 
setup and then we analyze how to achieve the optimial 
settings of a BF. Then we verify the efficiency of our 
algorithm. We compare the performance of MDS with 
that of the baseline algorithm which transmits the raw 
sets. 

 
5.1. Simulation setup 
 

In the simulation, we put 1296 nodes on the grid of 
a 600m × 600m rectangle and then perturb each point 
by a random shift which has been widely treated as an 
approximation for the manual deployment of sensor 
nodes [7]. We use the unit disk graph model for sensor 
communications. The communication radius of each 
node is set to 30m. Each node generates different sin-
gular events of three types of data. We assume that the 
data popularities within the sensor network follow a 
Zipf distribution with parameters α = 1.0 and n = 5000. 
Each type of data is hashed to a random rendezvous 
node by the name of the data type. Upon an event is 
detected, it is published to the GHT by hashing the 
data type it belongs to. According to the TinyOS stan-
dard [3, 9], every message in our design has a limited 
length of 46 bytes with 28 bytes payload, 11 bytes 
header information and 7 bytes metadata.  

We compute the energy consumption for transmit-

ting data Mi by: |i
i i

|ME = HL , where |Mi|  is the size of 

the transmitted data, L is the length of the payload in 
each packet and Hi is the hops the data transmitted 
from the source to the destination.  

During the searching process, we randomly select a 
node as the base station to issue queries containing at 
least three types of data.  

 
5.2. Optimal settings of bloom filter 
 

In this section, we show how we achieve the opti-
mal parameter settings of BF. We analyze the commu-
nication cost quantified by Eq. (5) with Matlab tools.  

We examine three situations (1) |A|<|B|, (2) |A|>|B|, 
and (3) |A| = |B|. In all the three cases, we find that the 
value of f(m, k) is significantly influenced by the vari-
able m, the length of BF, while it is slightly influenced 
by the value of k, the number of hash functions used in 
BF.  

When |A| ≤ |B|, the minimal communication cost can 
be achieved when m is set as an optimal value. Based 
on the observation, given |A|, |B| and k, the objective of 
our optimal in-network intersection algorithm is to 
choose an optimal m and the intersection order to 
achieve the minimal communication cost.  

Because the minimal communication cost is not 
symmetric due to different sizes of A and B. Thus, in 
our design, we first sort the number of singular events 
of each data type in a query in an increasing order ac-
cording to their popularities, |A| ≤ |B|. 

By varying the values of |A| and |B|, we get a set of 
sample values for an optimal m. We find that with the 
same values of |B|/|A|, the value of m/|A| is a constant, 
where m is the optimal setting. For simplicity, we use u 
to denote |B|/|A| and v to denote m/|A|. Thus, we can 
derive a function v = f (u). 

We used the least-squares polynomial curve-fitting 
tool in Matlab to find the best fits. Figure 7 shows the 
curves for the fits. The three cubed curve v = 0.0004u3 
- 0.0193u2 + 0.5493u + 10.0652 is the best to fit the 
distribution of the optimal m. Note that such a function 
is quite important for a sensor node to configure the 
BF with optimal settings because it incurs no extra 
configuration cost. Thus the base station can calculate 
the optimal m by: m = f (u) |A|, with the popularity in-
formation |A| and |B|.  

The popularity information of data types a and b 
can be easily achieved though looking up GHT. By 
caching the popularity information in the base station, 
MDS avoids frequently retrieving such statistical in-
formation. In order to update the popularity informa-
tion, MDS piggybacks the information in the search 
results to facilitate future queries. 
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Figure 7. Curve-fitting for optimal settings Figure 8. Energy cost for in-network intersec-
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Figure 9. Energy cost for in-network union Figure 10. Improvement with cache strategy 

  
 

5.3. Results 
 

To evaluate the performance of our MDS mecha-
nism, we compare the performance achieved by our BF 
based algorithm with the distributed intersection and 
union algorithms. 
 
5.3.1. In-network intersection. Figure 8 plots energy 
consumptions of all the tested queries. In this experi-
ment the straightforward distributed intersection (SDI) 
algorithm is used as a baseline approach. We examine 
how BF based algorithm can reduce the energy con-
sumptions. We mainly consider two strategies, the BF 
based algorithm with random intersection order (RBF) 
and the BF based distributed intersection algorithm 
with optimal BF settings and intersection order accord-
ing to the popularity information (MDS). 

The results show that about 80.5% queries using 
MDS algorithm have energy consumptions less than 
500, while only 9.8% queries of the baseline achieve 
such low energy consumption. About 44.1% queries 
using RBF algorithm have energy consumption less 

than 500. Such a result validates that our insight about 
the optimal BF settings based on popularity is quite 
effective. 

We compare the values of average energy consump-
tion per query in different algorithms. The results show 
that the energy consumption per query of SDI is 7,409, 
while the value of MDS is 337. This shows that MDS 
achieves a 22× performance improvement. 
 
5.3.2. In-network union. In this experiment, we evalu-
ate the performance of our BF based distributed union 
algorithm described in Section 3.2.3. We use the 
straightforward union algorithm as the baseline.  

Figures 9 shows the energy consumption of distrib-
uted union algorithm in MDS, where the base station 
decides the search strategy with the threshold fixed at δ 
= 0.1. The results show that about 48.9% involved que-
ries using MDS have energy consumptions less than 
5,000, while only 24.3% queries of the baseline 
achieves such energy consumption. Statistically the 
energy consumption per query is reduced by 12.52%.  
 
5.3.3. Caches. We combine the strategy of BF and 
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cache together and examine the total performance im-
provement. Figure 10 plots energy consumptions of all 
the queries when the hit rate is set to 0.5. The results 
show that about 93.5% MDS queries have energy con-
sumptions less than 200, while only 27.6% SDI queries 
and 67.2% RBF queries achieve such low energy con-
sumptions. According to the results, the complete MDS 
mechanism achieves a 45× performance improvement. 
 
6. Conclusions 
 

We propose MDS, a multi-dimensional search infra-
structure for WSNs. By utilizing bloom filters, MDS 
reduces the communication cost for distributed inter-
section/union operations during the multi-dimensional 
search process. We present the optimal settings for a 
BF through mathematical analysis, and a cache strategy 
is designed to further reduce the communication over-
head. Our simulation results show that MDS achieves 
significant performance improvement in terms of en-
ergy consumptions and makes the multi-dimensional 
search more applicable for existing GHT schemes.  
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