
MDS: Efficient Multi-dimensional Query Processing in Data-Centric WSNs

Hanhua Chen†, Mo Li‡, Hai Jin†, Yunhao Liu‡, Lionel M. Ni‡

†School of Computer Science and Technology
Huazhong Univ. of Science and Technology

{chenhanhua,hjin}@hust.edu.cn

‡Dept. of Computer Science and Engineering
Hong Kong Univ. of Science and Technology

{limo,liu,ni}@cse.ust.hk

Geographical hash table (GHT) has been widely
used to provide energy efficiency for data-centric stor-
age in wireless sensor networks. Such a mechanism,
however, suffers from high communication cost when
we apply multi-dimensional event search in the net-
work. In this work, we present MDS, a flexible, com-
plete, and efficient multi-dimensional search mecha-
nism atop traditional GHT based data-centric storage
architecture. MDS utilizes bloom filters to reduce the
communication cost of in-network intersection and
union operations for multi-dimensional queries in
wireless sensor networks. This scheme can be easily
extended to support multi-dimensional range queries.
Our mathematical analysis indicates the optimal set-
tings for the bloom filters that maximize the traffic sav-
ings according to the information popularities. We
conduct comprehensive simulations to evaluate our
design. Results show that MDS achieves significant
performance improvement in terms of energy consump-
tions and thus improves the applicability of the multi-
dimensional search over the GHT based data-centric
storage in sensor networks.

1. Introduction

The emerging wireless sensor networks (WSNs) [4,
8, 13, 15, 21, 26] have been revolutionizing the ways
of collecting information from the physical world. The
community has envisioned a large variety of applica-
tions, such as environment monitoring, underground
surveillance, and so on.

Although sensor networks provide us unprece-
dented access to the detailed observations of the physi-
cal world, directly delivering large amount of sensory
data back to the base station (sink) might quickly ex-
haust the energy of the sensor nodes [20]. Recently
proposed data-centric storage (DCS) schemes [22, 23]
explore alternative ways that organize the sensory data
and store them within the network. External queries
are scheduled in a DCS system to retrieve correspond-

ing data for query processing. For instance, a surveil-
lance WSN monitoring animal migration often collects
many individual animal sightings. All the sighting
events can be organized and stored in some given
places within the network instead of directly delivering
them back to the base station. The future queries can
thus be forwarded to corresponding places and yield
the time and location of all such sightings [23].

The key issue affecting the efficiency of the DCS
scheme is how to organize the storage of the sensory
data at appropriate rendezvous nodes for the consum-
ers to retrieve. Most existing schemes employ the Geo-
graphical Hash Table (GHT) [20] to disseminate dif-
ferent sensory data in the network, where event data
are hashed by pre-defined event types to different geo-
graphical locations. A consumer node is able to apply
corresponding hash functions to retrieve data from
rendezvous nodes that store different types of events.
The DCS scheme has been proven efficient for storing
and processing information in large scale WSNs, espe-
cially for information search applications [14, 22]. For
the queries concerning the events of a specific type of
data, which we call singular events, DCS scheme pro-
vides much higher retrieval efficiency than previous
data-centric routing schemes [12, 16], where data are
stored at their origins and the discovery of the desired
information relies on flooding the network.

Recent advances in sensor hardware designs have
enabled sensor nodes the capability of detecting multi-
ple types of environment elements [1]. It is expected
that more functionalities can be added to sensors, ful-
filling the needs of monitoring complex environments
involving multiple types of sensory data. Information
queried by users thus can become highly selective -
they might be interested in different subsets of envi-
ronment attributes. Under such conditions, desired
events are likely being flexibly composed of multiple
different data types, which we call multiplex event.
Such search process is also referred to as a multi-
dimensional search [14].

There are two types of methods to design the store

2008 Real-Time Systems Symposium

1052-8725/08 $25.00 © 2008 IEEE

DOI 10.1109/RTSS.2008.26

355

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

and query of multiplex events: 1) the first one is that
we define a complex event as a whole. When a node
detects these complex events it stores them to some
storage nodes determined by specific algorithms. In the
querying phase, queries are simply forwarded to the
corresponding storage nodes to retrieve results; 2) the
second method is that we still define the multiple data
types in a multiplex event as separate singular events,
and then the multiplex events are composed only in the
querying phase.

The first method is efficient when the patterns of
the event are known before deployment and never
change. It has limitation, however, on the flexibility
when users want to know a different undefined event.
Typically schemes include DIM [14] and Double Rul-
ing [22]. The second type of method aims at achieving
non-predefined multiplex events retrieval. For example,
in our sea environment surveillance applications [2,
25], scientists who analyze the growth of marine mi-
cro-organisms might be casually interested in the mul-
tiplex events that occurred within certain temperature
and light conditions, e.g., “Find me all events that have
temperatures above 20 celsius degree and light level
above 15”. A naïve scheme is to utilize GHT infra-
structure to disseminate the two singular events to dif-
ferent GHT nodes across the network. During querying
phase, each multiplex event is decomposed into two
singular events, “events with temperature above 20”
and “events with light level above 15”. Thus, to obtain
the search result for such multiplex events, the two
single-data-type queries are processed separately with
a consequent intersection operation at the base station.
Although only two rendezvous nodes need to be in-
volved during the search process, each sends a large
amount of data through the network, introducing ex-
cessively heavy traffic overhead.

To address the above issue, we propose a novel pro-
tocol, MDS, atop traditional GHT based DCS schemes,
for flexible, complete, and efficient multi-dimensional
search. MDS utilizes Bloom Filter (BF) [6, 18, 24] to
encode the data set to transmit and achieves efficient
distributed intersection and union operations in WSNs.
By transmitting the BF instead of the raw data among
the rendezvous nodes together with reverse verification,
MDS achieves exact intersection and union on multi-
dimensional data in the network, largely reducing the
traffic overhead.

Through mathematical analysis, we demonstrate
that the optimal BF setting for a query q is determined
by the popularity of items relevant to the data types
involved in q. We accordingly derive an effective ap-
proach to achieve optimal settings for BF through nu-
merical analysis. To further reduce the communication
cost, we adopt caching strategy to avoid sending re-

dundant BFs across the network. By using model-
driven data acquisition schemes [10], we further ex-
tend MDS to handle multi-dimensional range queries.

We conduct comprehensive simulations to evaluate
the efficiency of MDS. The results show that, com-
pared with the baseline approaches, MDS achieves
significant performance improvement in terms of en-
ergy consumption and thus largely improves the appli-
cability of multi-dimensional search over existing DCS
scheme.

The rest of the paper is organized as follows. Sec-
tion 2 discusses related works. Section 3 introduces the
design of MDS. Section 4 shows how MDS can sup-
port a range query. We analyze the optimal settings of
BF for MDS multi-dimensional search and evaluate the
performance of this design in Section 5. We conclude
the work in Section 6.

2. Related Work

There are mainly two different types of retrieval
schemes in wireless sensor networks: data-centric rout-
ing [12, 16] and data-centric storage [14, 22, 23].

In data-centric routing, data are stored at their ori-
gins while the discovery of the desired information
usually relies on flooding the network, requiring com-
munication cost of O(n) for a query, where n is the
number of sensor nodes in the network. Clearly, that
kind of approaches mainly target at infrequent queries
for streaming data type where the cost of flooding can
be amortized by the following long-term data delivery
that followed [12]. However, for queries from multiple
consumers for the same data source, the performance
deteriorates as data sources might be rediscovered
separately by multiple consumers. DCS-based retrieval
schemes map events to proper rendezvous nodes for
the base station to retrieve [14, 22, 23]. A query only
needs to visit the rendezvous location to acquire data
of a given type at the cost of packet transmis-

sions ()nO . DCS-based schemes greatly reduce the

communication cost on event search by avoiding
flooding. Using hash mapping, such schemes, however,
have the limitation of exact-match, providing poor
search capability.

To support complex queries for multiplex events,
existing DCS-based schemes commonly use an attrib-
ute vector to define a multiplex event. For example,
DIM [14] leverages a locality-preserving geographic
hash to map events with comparable attributes values
to places nearby. DIM embeds a k-d tree [5] like index
in a sensor network, with which the bounding rectan-
gle that contains all sensors within the network are

356

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

recursively divided into two halves until each zone
contain only one sensor node. Each node acts as an
index node of the zone. The zone and multi-
dimensional events are coded based on the same k-d
tree scheme. Thus, any event with the pre-defined fix
attribute vector can be hashed to a zone for the base
station to retrieve. With k-d tree index, events with
comparable attributes values are stored nearby and
DIM can support multi-dimensional range queries.
However, DIM only supports the fixed attribute vector.
The attributes of interested events are predetermined in
order to construct the DCS structure. In practice, it is
likely and perhaps often the case that a user is only
interested in a selected set of the attributes instead of
all in the pre-defined event type.

So far, there is not much research on addressing the
flexible multi-dimensional search. One possible
scheme is to organize a distributed global index which
maps each data type to a set of events based on DCS
mechanisms, such as GHT. Then, a multi-dimensional
query is searched by retrieving the sets for each data
type through the global index, and then performing an
intersection/union operation. In such a scheme, al-
though only a few sensor nodes need to be contacted,
each sends a potentially large amount of data across
the entire network. Our MDS approach largely im-
proves the efficiency of the in-network intersec-
tion/union operations.

3. System Design

In this section, we first give a brief overview of the
design of MDS. We then describe our approach of re-
ducing the communication cost using bloom filters. We
illustrate the optimization strategies for both “and” and
“or” queries separately in Sections 3.1 and 3.2. In Sec-
tion 3.3 we introduce the caching strategy to further
reduce communication cost by avoiding transmitting
redundant BFs among GHT nodes.

3.1. System model

Our design is based on the following search model.
The base station searches for the multiplex events in-
volving one or more data types and the system should
send back the set of events containing all the requested
types of data. Our system model is based on recent
works on DCS systems [22, 23]. We assume the pres-
ence of a large number of data types. According to the
GHT principle, the singular events of each data type
are mapped into a random location by predefined hash
functions. Sensors at different locations are responsible
for accommodating the singular events composed of

the data types mapped to them. While our approach is
general to any of the concrete GHT techniques [20, 22],
for simplicity, our following discussion assumes the
architecture closely related to the basic GHT design
[20]. We also assume that the sensors are densely de-
ployed. Each sensor in the network detects different
types of environmental data. Corresponding singular
events of each data type are inserted into the global
GHT index. The underlying geographic routing algo-
rithms support the data dissemination and query dis-
semination.

A multi-dimensional query search based on such a
GHT index includes looking up the sets for the singu-
lar events of different data types from multiple GHT
nodes and returning the multiplex events by intersec-
tion/union on the accommodated events. In order to
reduce the communication cost to achieve in-network
intersection/union operations, each concerned rendez-
vous node sends a BF, a succinct data structure of a set,
instead of the set itself to perform the intersec-
tion/union operation. The base station adjusts the BF
parameters into optimal settings to achieve minimized
communication cost.

3.2. MDS protocol

3.2.1. Bloom filter. Before we introduce our approach
that reduces the communication cost, we briefly review
the basis of bloom filters [6]. A BF is a bit vector bit-
vec_m with m bits, initially all set to 0. The BF facili-
tates membership test to a finite set S = {x1, x2,…, xn}
of n elements from a universe U. It uses a set of k uni-
form and independent hash functions {h1, h2,…, hk} to
map the universe U to the bit address space [1-m]. For
each element x belonging to S, the bits hi(x) are set to 1
for 1 ≤ i ≤ k. To check whether or not an item y is in S,
we check whether all hi(y) are set to 1. If not, y clearly
is not a member of S. If all hi(y) are set to 1, y is in S
with high probability which can be controlled by the
parameters of BF.

After all n elements of S are hashed and inserted
into the BF, the probability that a specific bit of bit-
vec_m is still 0 is

 1(1)k n kn m

m
p e−= − ≈ (1)

The probability of a false positive after n elements
inserted in the bitvec_m is the probability that a new
element is not in S, but can be separately hashed by the
k hash functions to some k bits of “1” in the bitvec_m.

 (1) (1)k kn m kf p e−== − − (2)

357

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

Figure 1. Bloom Filter based in-network intersection

Given an optimal choice of k hash functions, the
false positive rate f can be minimized when ln 2

k nm ⋅=

and the lower bound of the positive rate [18] is

 min 0.6185
m
nf = (3)

3.2.2. In-network intersection. A common require-
ment for multi-dimensional search in WSNs is to con-
duct a distributed intersection operation inside the net-
work. Figure 1.(a) gives an example of a two-data-type
query q = (a and b). The query is first routed to the
GHT node SA which is responsible to accommodate the
singular events of data type a. Then A, the set of se-
lected event items of data type a, is transmitted to the
GHT node SB which is responsible to accommodate the
singular events of data type b. Node SB is thus able to
obtain A∩B, where B is the set of selected event items
of data type b. The final results are returned back to the
base station.

Although in the above in-network intersection op-
eration, only two nodes are involved, each of them
sends a large amount of data across the WSN and the
communication cost is expensive. For the same exam-
ple discussed above, MDS reduces the communication
cost by sending a BF that contains the element infor-
mation of A, BF(A), instead of the raw set of A itself to
node SB. As illustrated in Fig.1.(b), the gray box repre-
sents BF(A), the Bloom filter of set A. Our approach
allows A∩B to be determined with much fewer bits

transmitted compared with SA directly sending the en-
tire set A. When BF(A) is transmitted to node SB, it
determines the intersection of A and B by checking
each item in B according to the records in BF(A). Be-
cause the BF has no false negatives, the result set con-
tains all the elements of in the true intersection set.
Due to the false positives, however, the result set might
contain elements that are not in A. Typically, a client
wishes to retrieve only the exact intersection result of
A and B. Thus, the result set, denoted by B∩BF(A), is
sent back to node SA for verification. SA removes the
false positives from B∩BF(A) by calculating
A∩(B∩BF(A)), which is equivalent to A∩B.

Table 1. Notations in MDS Algorithm

Notation Description
A The set of the events containing a

BF(A) The bloom filter for set A
B∩BF(A) The estimated intersection of A and B

based on BF(A) and B
n Number of elements inserted into a BF
m Size of the bit vector used as a BF
k Number of hash functions used for a

BF
f False positive rate of a BF

fmin Minimized false positive rate of a BF
SA The GHT nodes responsible for a
r The number of bits each item takes

Sink SA SB A={1, 2, 3, 4, 5} B={3, 4, 5, 6}

Sink

SA

SB

Query message
12345

Sink

SA

SB

Query message

(a) (b)

(1)

(1)

(2)

(2)

(3)

(3)

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4){3, 4, 5}A B =∩
{1, 2, 3, 4, 5}A =

(,)q a b= (,)q a b=
BF()A

BF() {3, 4, 5 | 6}B A =∩
{3, 4, 5}A B =∩

358

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5x 10
4

m (bits)

C
om

m
un

ic
at

io
n

co
st

 (
bi

ts
)

|A| = 100, |B| = 1000, r = 192, k = 8
|A| = 1000, |B| = 100, r = 192, k = 8

Figure 2. Asymmetry of communication cost of
in-network intersection

Figure 3. Trade-off between the loss rate and
communication cost

In the following we will analyze the communication
cost of our algorithm. We will further discuss how our
algorithm can be extended to support range queries in
Section 4 and how to achieve optimal BF settings in
our algorithm in Section 5. Before we introduce the
optimization scheme, we summarize the notations used
in our algorithm in Table 1.

The communication cost of the BF based intersec-
tion is quantified as

| | | |m A B r f B r+ +∩ (4)

We assume that each element in the set takes r bits.
To evaluate the communication cost of BF-based dis-
tributed intersection, the cost of |A∩B| can be ignored
since it represents the final intersection result, which
anyhow will be sent back to the base station regardless
of the choice of algorithms. We substitute f according
to Eq.(2), and the extra communication cost for dis-
tributed intersection is given by

| | | |(,) (1)k A m k B rf m k m e−= + − (5)

Given |A| and |B|, the minimal value of f (m,k) can
be achieved by adjusting the parameters m and k of BF.

We find that the minimal communication cost is not
symmetric when sets A and B differ in their sizes and
thus the order of the intersection operation is critical in
minimizing the communication cost. In Fig. 2, we ob-
serve that when |A| =100, |B| = 1000, and k = 8, the
minimal extra communication cost is 1,647 bits with an
optimal setting m = 1410, while when |A| = 1000 and
|B| = 100, the minimal extra communication cost is
7,568 bits with an optimal setting m = 6,082. In such a
case, we can achieve a 4.6× performance improvement
in terms of communication cost if we send the BF of
the event set of less popular data type to the GHT node
accommodating the event set of more popular data type.

In Section 5, we show how we can achieve BF optimal
settings under different cases for a real system through
further analysis.

In our algorithm, it is also possible to send B∩BF(A)
directly to the base station rather than first sending it
back to node SA. This further reduces more communi-
cation cost but suffers from a slight loss in the result
precision due to the false positive of BF. Given reason-
able values of |A|, |B|, k, and m, the number of the ex-
tra-transmitted elements is in proportion to the cardi-
nality of set B. B∩BF(A) contains | | | |(1)k A m k Be−−
extra elements that do not belong to set A. The preci-
sion of the final result will be slightly decreased to

| |
| | 100%| | (1) | |k A m k
A B

A B e B− ×+ −
∩

∩ (6)

3.2.3. In-network union. In some applications, we
may need to process the “or” queries, which demand
the results containing all singular events of the ap-
pointed data type in the query. Fig. 4.(a) presents an
example of the traditional strategy for processing a
two-dimensional “or” query. First, two copies of the
query are separately sent to the GHT nodes SA and SB,.
SA and SB respectively send back their complete event
sets. At last the search results of both data types are
merged at the client. The total communication cost is
(|A|+|B|) r. In our design, as shown in Fig. 4.(b), the
query is first routed to node SA , which sends BF(A) to
node SB, then SB picks up the items that are not in A by
checking each item in B against BF(A). Only the items
picked up, denoted as B-BF(A), are returned to the cli-
ent for a consequent union operation.

The communication cost of the in-network union
operation for data type A and B can be quantified by

(| | (1)(| | | |))m A f B A B r+ + − − ∩ (7)

0 200 400 600 800 10002

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8 x 10
4

m (bits)

C
om

m
un

ic
at

io
n

co
st

 (b
its

)

Communication cost

0%

5%

10%

15%

Lo
ss

 ra
te

Loss rate

20%

359

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

Figure 4. Bloom Filter based in-network union

By avoiding repeatedly sending the intersection part
of sets A and B, our algorithm for the in-network union
is designed efficient in traffic cost. Note that B-BF(A)
is slightly different from B-A due to the false positive
in the BF: some elements in A∪B are missed in the
final results. Given |A| and |B|, the loss rate can be
quantified as follows.

 (| | | |) 100%| | | |
f B A B

A B
× −

×
+
∩ (8)

Figure 3 plots the theoretically calculated curves
that exhibit the trade-off between the loss rate and the
communication cost, where |A| =100, |B| = 100,
|A∩B|= 60, k = 8, and r =192. It shows that when m is
increased, the communication cost is increased while
the loss rate is decreased. For example, the communi-
cation cost can be reduced from 38,400 bits to 23,500
bits at a loss rate of 9.5%.

The possible reduced communication cost by BF
can be quantified as Msaved= (|A|+|B|) r- (m+|A| r+(1-f)
|B-A| r) =(1-f) |A∩B| r+ f|B| r-m, where the size of in-
tersection A∩B can be estimated with the BF based
algorithm first proposed in [19].

As described in Section 3.2.2, during the “and”
query search, GHT nodes exchange BFs for their data
types. Thus the intersection size can be calculated.

MDS piggybacks the intersection size to the base
station for future use. In MDS design we use a thresh-

old for strategy selection. If (| | | |)
savedM

A B r δ>+ , where δ is

a predefined threshold, we use BF for distributed union
operation, otherwise we use the straightforward strat-
egy.

When we choose algorithms in the design for a real
system, we may consider this trade-off between the
search quality and system resource consumption. For
example, we can minimize the false positive of BF to
achieve the best recall rate. We substitute f in Eq. (6)
according to Eq. (3), and the communication cost for
distributed union is,

| || | (1 0.6185)(| | | |)
m

A A B rm A r B+ + − − ∩ (9)

Where | |
ln 2
k Am ⋅= .

In MDS in-network union algorithm we do not con-
sider a complete search mechanism using reverse veri-
fication like the in-network intersection algorithm, that
achieves 100% recall but consumes even more com-
municational resources than the straightforward strat-
egy that simply transmits all the sets directly to the
base station.

A={1, 2, 3, 4, 5}

Sink SA SB

B={3, 4, 5, 6}

A={1, 2, 3, 4, 5} B={3, 4, 5, 6}

Sink

SA

SB

B-BF(A)={6}

Sink

SA

SB

Query message q = (a)
Query message q = (b)

Query message q = (a)
Query message q = (b)

 BF(A) 12345

(a) (b)

(1)

(1)

(2)

(2)

(1)
(1)
(2)
(2)

(1)
(2)

(3)
(4)

(1)
(2)
(3)
(4)

360

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5

6x 10
4

m (bits)

C
om

m
un

ic
at

io
n

co
st

 (
bi

ts
)

 hit rate = 0
 hit rate = 0.5
 hit rate = 0.8
 hit rate = 0.95

 200 400 600 800 1000 1200 1400 1600
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9x 10
4

m (bits)

C
om

m
un

ic
at

io
n

co
st

 (
bi

ts
)

 hit rate = 0
 hit rate = 0.5
 hit rate = 0.8
 hit rate = 0.95

Figure 5. Cache for in-network intersection Figure 6. Cache for in-network union

3.3. Caches

GHT nodes may cache the posting list sent by BF to

avoid transmitting them again for future queries. For
example, in Fig. 1.(b), when node SB already has BF(A)
in its cache, a search operation for the data types a and
b may skip the first step, in which node SA sends its
BF(A) to node SB. We can obtain more benefit from
caching BFs compared with caching the entire data
element match lists because the small size of the BF
representation facilitates a cache of fixed size to store
more data types.

Assume a BF is in another node’s cache with prob-
ability p. The communication cost formula for the in-
network intersection in Eq. (5) can be altered, consid-
ering cache hit rate, p, as follows:

| | | |(1) (1)k A m k B rp m e−− + − (10)

The communication cost formula for the in-network
union in Eq. (7) can be altered as follows:

| |(1) (| | (1 (1))(| | | |))k A m km A e B A B rp −− + + − − − ∩ (11)

Figure 5 illustrates the effect of cache hit rates on
the communication cost for the in-network intersection
operation in Eq. (10) where |A| = 1000, |B| = 1000. It
shows that the minimized communication cost de-
creases when the cache hit rate increases. For example,
when the hit rate, p, is 0.5, the minimum excess num-
ber of bits sent is 6,476 bits, representing 29.64:1
compression when compared with sending A or B,
which is a 1.8× improvement on the performance
without cache strategy. When p is increased to 0.8, the
minimum communication cost is further reduced to
2,977 bits, which is a 3.9× improvement. Figure 6
shows a similar effect of the cache scheme for the in-

network union operation.
Intuitively, the more frequently two data types are

related in the search process, the more communication
cost can be saved by caching the transferred BF. MDS
can adaptively adjust the cache rate by learning from
the query experiences. Specifically, the base station
can learn the correlation among data types from the
query logs and compute the statistical query rate. MDS
piggybacks the statistical information on queries, and
sends them to involved GHT nodes to adjust their
cache rates. Designing an optimal cache strategy is out
of the scope of this paper, as it is highly related to the
concrete application running atop the system and many
efforts have been done for cache strategy design under
different application systems [11]. Note that the repli-
cas of a BF can become slightly stale due to the update
of local event records on corresponding rendezvous
nodes. Although slight staleness on the BF information
is acceptable, we handle the cache consistency with a
TIMEOUT field in the cached BF. After a period of
time, the BF for an updated set will be transmitted.

4. Supporting Range Queries

This section illustrates how MDS can also effec-
tively support range queries. Using a range query, a
user may prefer events with data type values in certain
ranges rather than simply of certain properties, e.g.,
“finding out all events that have temperature between
40˚F and 50˚F and light level between 10 and 20”. As
the analysis will be shown in Section 5, the optimal
settings of a BF are determined by the popularities of
data types. For a range query, we should know how
many items are in each specified ranges. Since the
ranges for each data type may vary frequently in the
queries issued by users, caching such numbers in the
base station is not applicable here.

361

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

To solve this problem we adopt the model-driven
method [10] to estimate such numbers. Specifically,
the GHT nodes can derive the probability density func-
tion (PDF) p(x) for each data type x using standard
algorithms (e.g., [17]). The PDF for data type x to-
gether with the popularity information |X| is then
cached in the base station. Thus the base station can
compute the probability of a specified range [t1, t2] by:

 2

11 2([,]) ()
t

t
p x t t p x dx∈ = ∫ (12)

The popularity of x in range [t1, t2] can be estimated
by

 2

1
| | ()

t

t
X p x dx∫ (13)

Using the PDF and the size of the event item list,
the base station can estimate the number of items
within any range. It is a cost-efficient way for a base
station to get the optimal settings of a BF.

5. Performance Evaluation

In this section we first introduce our simulation
setup and then we analyze how to achieve the optimial
settings of a BF. Then we verify the efficiency of our
algorithm. We compare the performance of MDS with
that of the baseline algorithm which transmits the raw
sets.

5.1. Simulation setup

In the simulation, we put 1296 nodes on the grid of
a 600m × 600m rectangle and then perturb each point
by a random shift which has been widely treated as an
approximation for the manual deployment of sensor
nodes [7]. We use the unit disk graph model for sensor
communications. The communication radius of each
node is set to 30m. Each node generates different sin-
gular events of three types of data. We assume that the
data popularities within the sensor network follow a
Zipf distribution with parameters α = 1.0 and n = 5000.
Each type of data is hashed to a random rendezvous
node by the name of the data type. Upon an event is
detected, it is published to the GHT by hashing the
data type it belongs to. According to the TinyOS stan-
dard [3, 9], every message in our design has a limited
length of 46 bytes with 28 bytes payload, 11 bytes
header information and 7 bytes metadata.

We compute the energy consumption for transmit-

ting data Mi by: |i
i i

|ME = HL , where |Mi| is the size of

the transmitted data, L is the length of the payload in
each packet and Hi is the hops the data transmitted
from the source to the destination.

During the searching process, we randomly select a
node as the base station to issue queries containing at
least three types of data.

5.2. Optimal settings of bloom filter

In this section, we show how we achieve the opti-
mal parameter settings of BF. We analyze the commu-
nication cost quantified by Eq. (5) with Matlab tools.

We examine three situations (1) |A|<|B|, (2) |A|>|B|,
and (3) |A| = |B|. In all the three cases, we find that the
value of f(m, k) is significantly influenced by the vari-
able m, the length of BF, while it is slightly influenced
by the value of k, the number of hash functions used in
BF.

When |A| ≤ |B|, the minimal communication cost can
be achieved when m is set as an optimal value. Based
on the observation, given |A|, |B| and k, the objective of
our optimal in-network intersection algorithm is to
choose an optimal m and the intersection order to
achieve the minimal communication cost.

Because the minimal communication cost is not
symmetric due to different sizes of A and B. Thus, in
our design, we first sort the number of singular events
of each data type in a query in an increasing order ac-
cording to their popularities, |A| ≤ |B|.

By varying the values of |A| and |B|, we get a set of
sample values for an optimal m. We find that with the
same values of |B|/|A|, the value of m/|A| is a constant,
where m is the optimal setting. For simplicity, we use u
to denote |B|/|A| and v to denote m/|A|. Thus, we can
derive a function v = f (u).

We used the least-squares polynomial curve-fitting
tool in Matlab to find the best fits. Figure 7 shows the
curves for the fits. The three cubed curve v = 0.0004u3
- 0.0193u2 + 0.5493u + 10.0652 is the best to fit the
distribution of the optimal m. Note that such a function
is quite important for a sensor node to configure the
BF with optimal settings because it incurs no extra
configuration cost. Thus the base station can calculate
the optimal m by: m = f (u) |A|, with the popularity in-
formation |A| and |B|.

The popularity information of data types a and b
can be easily achieved though looking up GHT. By
caching the popularity information in the base station,
MDS avoids frequently retrieving such statistical in-
formation. In order to update the popularity informa-
tion, MDS piggybacks the information in the search
results to facilitate future queries.

362

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100
8

10

12

14

16

18

20

u

v

 sampling data set

 0.0001u3 - 0.0095u2 + 0.4054u + 10.5832

 0.0004u3 - 0.0193u2 + 0.5493u + 10.0652

 10
0

10
1

10
2

10
3

10
4

10
50%

20%

40%

60%

80%

100%

Engergy consumption

%
 o

f q
ue

rie
s

SDI
RBF
MDS

Figure 7. Curve-fitting for optimal settings Figure 8. Energy cost for in-network intersec-

tion

0 2000 4000 6000 8000 10000 12000
0%

20%

40%

60%

80%

100%

Energy consumption

%
 o

f q
ue

rie
s

 MDS with =0.1 δ
 Straightforward Union

10

0
10

1
10

2
10

3
10

4
10

50%

20%

40%

60%

80%

100%

Energy consumption

%
 o

f q
ue

rie
s

SDI
RBF with cache hit rate = 0.5
MDS with cache hit rate = 0.5

Figure 9. Energy cost for in-network union Figure 10. Improvement with cache strategy

5.3. Results

To evaluate the performance of our MDS mecha-
nism, we compare the performance achieved by our BF
based algorithm with the distributed intersection and
union algorithms.

5.3.1. In-network intersection. Figure 8 plots energy
consumptions of all the tested queries. In this experi-
ment the straightforward distributed intersection (SDI)
algorithm is used as a baseline approach. We examine
how BF based algorithm can reduce the energy con-
sumptions. We mainly consider two strategies, the BF
based algorithm with random intersection order (RBF)
and the BF based distributed intersection algorithm
with optimal BF settings and intersection order accord-
ing to the popularity information (MDS).

The results show that about 80.5% queries using
MDS algorithm have energy consumptions less than
500, while only 9.8% queries of the baseline achieve
such low energy consumption. About 44.1% queries
using RBF algorithm have energy consumption less

than 500. Such a result validates that our insight about
the optimal BF settings based on popularity is quite
effective.

We compare the values of average energy consump-
tion per query in different algorithms. The results show
that the energy consumption per query of SDI is 7,409,
while the value of MDS is 337. This shows that MDS
achieves a 22× performance improvement.

5.3.2. In-network union. In this experiment, we evalu-
ate the performance of our BF based distributed union
algorithm described in Section 3.2.3. We use the
straightforward union algorithm as the baseline.

Figures 9 shows the energy consumption of distrib-
uted union algorithm in MDS, where the base station
decides the search strategy with the threshold fixed at δ
= 0.1. The results show that about 48.9% involved que-
ries using MDS have energy consumptions less than
5,000, while only 24.3% queries of the baseline
achieves such energy consumption. Statistically the
energy consumption per query is reduced by 12.52%.

5.3.3. Caches. We combine the strategy of BF and

363

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

cache together and examine the total performance im-
provement. Figure 10 plots energy consumptions of all
the queries when the hit rate is set to 0.5. The results
show that about 93.5% MDS queries have energy con-
sumptions less than 200, while only 27.6% SDI queries
and 67.2% RBF queries achieve such low energy con-
sumptions. According to the results, the complete MDS
mechanism achieves a 45× performance improvement.

6. Conclusions

We propose MDS, a multi-dimensional search infra-
structure for WSNs. By utilizing bloom filters, MDS
reduces the communication cost for distributed inter-
section/union operations during the multi-dimensional
search process. We present the optimal settings for a
BF through mathematical analysis, and a cache strategy
is designed to further reduce the communication over-
head. Our simulation results show that MDS achieves
significant performance improvement in terms of en-
ergy consumptions and makes the multi-dimensional
search more applicable for existing GHT schemes.

7. Acknowledgements

This work was supported in part by National 973 Basic
Research Program of China under grant
No.2006CB303000 and Hong Kong RGC grant
HKUST 6169/07E.

8. References

[1] Crossbow, http://www.xbow.com/, 2008.
[2] OceanSense, http://www.cse.ust.hk/~liu/Ocean/, 2008.
[3] TinyOS, http://www.tinyos.net/, 2008.
[4] X. Bai, D. Xuan, Z. Yun, T.-H. Lai, and W. Jia, "Complete
optimal deployment patterns for full-coverage and k-
connectivity (k<=6) wireless sensor networks," in Proceed-
ings of ACM MobiHoc, 2008.
[5] J. L. Bentley, "Multidimensional binary search trees used
for associative searching," Communications of the ACM, vol.
18, no. 9, pp. 509-517, 1975.
[6] B. H. Bloom, "Space/Time Trade-offs in Hash Coding
with Allowable Errors," Communication of the ACM, vol. 13,
no. 7, pp. 422-426, 1970.
[7] J. Bruck, J. Gao, and A. A. Jiang, "MAP: Medial Axis
Based Geometric Routing in Sensor Network," in Proceed-
ings of ACM MobiCom, 2005.
[8] M. Cardei, S. Yang, and J. Wu, "Algorithms for Fault-
Tolerant Topology in Heterogeneous Wireless Sensor Net-
works," IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 19, no. 4, pp. 545-558, 2008.
[9] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr,

"Efficient Memory Safety for TinyOS," in Proceedings of
ACM SenSys, 2007.
[10] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Heller-
stein, and W. Hong, "Model-Driven Data Acquistion in Sen-
sor Networks," in Proceedings of VLDB, 2004.
[11] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, "Summary
Cache: A Scalable Wide-area Web Cache Sharing Protocol,"
IEEE/ACM Transactions on Networking, vol. 8, no. 3, pp.
282-293, 2000.
[12] C. Intanagonwiwat, R. Govindan, and D. Estrin, "Di-
rected Diffusion: A Scalable and Robust Communication
Paradigm for Sensor Networks," in Proceedings of ACM
MobiCom, 2000.
[13] A. Koubaa, M. Alves, and E. Tovar, "Modeling and
Worst-Case Dimensioning of Cluster-Tree Wireless Sensor
Networks," in Proceedings of IEEE RTSS, 2006.
[14] X. Li, Y. J. Kim, R. Govindan, and W. Hong, "Multi-
dimensional Range Queries in Sensor Networks," in Proceed-
ings of ACM SenSys, 2003.
[15] M. Liu, J. Cao, Y. Zheng, and L. Xie, "A Energy-
Efficient Protocol for Data Gathering and Aggregation in
Wireless Sensor Networks," Journal of Supercomputing, vol.
43, pp. 107-125, 2008.
[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W.
Hong, "TAG: a Tiny AGgregation Service for Ad-Hoc Sensor
Networks," in Proceedings of OSDI, 2002.
[17] T. Mitchell, Machine Learning: McGraw Hill, 1997.
[18] M. Mitzenmacher, "Compressed Bloom Filters,"
IEEE/ACM Transactions on Networking, vol. 10, no. 5, pp.
604-612, 2002.
[19] J. K. Mullin, "Estimating the Size of a Relational Join,"
Information Systems, vol. 18, no. 3, pp. 189-196, 1993.
[20] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Go-
vindan, and S. Shenker, "GHT: A Geographic Hash Table for
Data Centric Storage," in Proceedings of WSNA, 2002.
[21] S. Ren, Q. Li, H. Wang, X. Chen, and X. Zhang, "Design
and Analysis of Sensing Scheduling Algorithms under Partial
Coverage for Object Detection in Sensor Networks," IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no.
3, pp. 334-350, 2007.
[22] R. Sarkar, X. Zhu, and J. Gao, "Double Rulings for In-
formation Brokerage in Sensor Networks," in Proceedings of
ACM MobiCom, 2006.
[23] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D.
Estrin, "Data-Centric Storage in Sensornets," in Proceedings
of ACM HotNets, 2002.
[24] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood,
"Fast Hash Table Lookup Using Extended Bloom Filter: An
Aid to Network Processing," in Proceedings of ACM SIG-
COMM, 2005.
[25] Z. Yang, M. Li, and Y. Liu, "Sea Depth Measurement
with Restricted Floating Sensors," in Proceedings of IEEE
RTSS, 2007.
[26] H. Zhai and Y. Fang, "Impact of Routing Metrics on
Path Capacity in Multirate and Multihop Wireless Ad Hoc
Networks," in Proceedings of ICNP, 2006.

364

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

