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Abstract. Abnormal events in rail systems, including train service
delays and disruptions, are pains of the public transit system that have
plagued urban cities for many years. The prediction of when and where
an abnormal event may occur, can benefit train service providers for
taking early actions to mitigate the impact or to eliminate the faults.
Prior works rely on rich sources of sensor or log data that require exten-
sive efforts in sensor deployment, data gathering and preparation. In this
article, we aim at predicting abnormal events by leveraging only basic
information of historical events (e.g., dates, technical causes) that can
be easily obtained from existing open records. We propose a non-trivial
method which categorizes event pairs based on their basic information,
and then characterizes inter-event influence between event pairs via a
multivariate Hawkes process. The proposed method overcomes the major
hurdle of data sparsity in abnormal events, and retains its efficacy in cap-
turing the underlying dynamics of event sequences. We conduct experi-
ments with a real-world dataset containing Singapore’s 5-year abnormal
rail events, and compare with a wide range of baseline methods. The
results demonstrate the effectiveness of our method.

Keywords: Abnormal event prediction - Multivariate Hawkes
process + Data sparsity

1 Introduction

Mass Rapid Transit (MRT) rail system usually provides the backbone of the pub-
lic transit system. MRT-related abnormal events including train service delays
and disruptions are a crucial problem that has plagued urban cities like Singa-
pore for many years. The occurrence of an abnormal event can impair the journey
of thousands to tens of thousands of commuters. The causes of these events vary,
but the majority are due to technical faults such as power failures, signal errors,
etc. On 7th July, 2015, one of the most severe MRT abnormal events in Singa-
pore, which was caused by electrical power trips, crippled two major rail lines in
Singapore during evening peak hours and affected up to 413,000 commuters. The
operator was fined $5.4 million to take responsibility for this event [22]. Reduc-
ing the number of abnormal events, or mitigating their impact on commuters
are thus vital tasks for train service providers.
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Fig. 1. Distribution of abnormal events from year 2015 (top left) to 2018 (bottom right)
on the East-West line of Singapore. Each event is represented by a line segment with
two bounding circles, indicating the stretch of abnormal stations. An event is marked
in red if it is close to some other event(s) on both temporal (i.e., within 1week) and
spatial (i.e., stretches of stations overlap) scales.

Predictive analysis of MRT abnormal events benefits train service providers
and commuters. On one hand, it helps with the predictive maintenance of the
MRT system to eliminate hazards proactively, as well as prompt post-event
actions to transfer affected commuters. On the other hand, prediction results
can enhance public awareness of the operational conditions of the MRT system,
and can help them to make decisions about their travel choices. Existing studies
related to rail system failures leverage rich sources of data from sensors such as
temperature, infrared and strain [8], etc., which are practically hard to execute
due to the costly deployment of sensors; as well as data from logs such as main-
tenance logs, equipment details [11], etc., comprising heterogeneous data sources
that require extensive efforts in data gathering, storing and pre-processing.

This paper aims at predicting when (i.e., date) and where (i.e., rail line and
stations) will a future abnormal event occur. We leverage historical event data
with event attributes including date, the abnormal rail line and stations, as well
as the type of technical fault that causes the event. The data are easily accessi-
ble from two public channels, namely, official tweets posted by Singapore MRT
operators (i.e., SMRT and SBS) and local news feeds (e.g., The Straits Times).
We collect data about the abnormal events from January 2015 to December
2019 and perform the study. Figurel shows the spatial-temporal distribution
of abnormal events on the East-West line, one of the most popular MRT lines
in Singapore. The figure suggests certain locality on both temporal and spatial
scales when events take place. It is likely that after one event occurs other events
of overlapping stretches may follow, and as a result the sequence of events dis-
play a clustered dynamic pattern. This paper makes use of such a pattern, i.e.,
the excitation influence between events, to model event sequence and therefore
forecast future events.

Executing this approach, however, entails special challenges due to a major
issue of data sparsity, i.e., the number of abnormal events is extremely limited to
capture the sophisticated inter-event influences. Specificaly, the influence decays
as the interval between two events’ timings increases, and events of different
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technical causes may be distinctive in the pattern of triggering future events.
Other factors like whether the two events are on the same rail line, or whether
their stretches of abnormal stations overlap, may lead to a difference on the
magnitude of influence between them. In addition, it is also necessary to quantify
by how much an event occurs innately, 7.e., occurs as natural arrivals. We need
learn from very limited historical events as the training set in order to derive a
unified model to numerically quantify the dependencies.

Contributions. This paper proposes a novel method based on multivariate
Hawkes process, PAbEve (Predicting Abnormal Event in MRT system), to
address the above challenges in predicting MRT abnormal events. Leveraging
the information of historical events, which is lightweight and publicly accessible,
PAbEve retains its efficacy in modeling the abnormal event sequence, including
the timings and locations, and then utilize it to predict the timings and loca-
tions of future events. PAbEve captures non-trivial inter-event influences and its
parameters are expressive for those influences. We conduct extensive experiments
with a real-world dataset containing Singapore’s 5-year MRT abnormal events,
and evaluate PAbEve in comparison with a wide range of alternative approaches.
The results suggest PAbEve outperforms other methods in overall performance.

2 Related Work

Abnormal Event Prediction. Predicting abnormal events has attracted
extensive attention in recent years. We divide existing works into three cate-
gories according to the object being studied. The first category studies on time
series of instances in equal-length time steps, and treats those of extreme values
as abnormal instances, such as key timings of flu seasons [1], congestion in traffic
streams [9], and financial crisis in stock price series [4]. The second category of
works attempts to construct indicative features or to find precursors of abnormal
events, and use them as predictors for future events. For instances, some works
conduct predictive analysis on a rich set of sensor, logging (e.g., maintenance
logs) and/or contextual data (e.g., weather), to construct meaningful features
for the prediction of railway point failures [11], railway service interruptions [8]
and medical equipment failures [21]. Some studies focus on mining media arti-
cles (e.g., tweets) to find precursors of social events like protests [3,14,23]. The
third category of works directly studies event occurrences and utilize the inter-
event correlation to predict future events, such as crime, vehicle collision, etc.
[16]. Generally, the number of abnormal events is limited, resulting in a major
challenge of data sparsity. Our work falls into this category. Only a few prior
works of abnormal event prediction address the issue of data sparsity [1,15,23].
However, those approaches cannot be applied to our case, as their prediction
problems fall into the first/second categories. We are unable to conduct contex-
tual analysis of rich data sources because other relevant information for MRT
abnormal events is also limited. Relevant information like the technical cause of
event will be instead used as auxiliary covariates in this paper.
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Point Process. As a mathematical approach for modeling event sequences,
point process has been widely adopted to deal with prediction tasks, such as
the prediction of taxi pickup, crime, neuronal activity, etc. Generally, a point
process is characterized by a conditional intensity function. Classical point pro-
cesses, such as Hawkes process [7], formulate the conditional intensity function
based on a strong assumption on the dynamic pattern of event sequences. In
the past decades, many non-trivial models extend these classical models to 3D
spatio-temporal or multivariate space [2,12,19,24]. Recent deep learning tech-
niques incubate state-of-the-art point processes, which are usually able to embed
long-term memory of historical events and make very few assumptions on the
dynamic pattern of event sequences [5,13,17,25]. Some existing works also pro-
pose intensity-free models to develop more general point processes using frame-
works such as adversarial learning [10,20].

3 Preliminaries

Temporal Point Process. A temporal point process is a random process
of event occurrence characterized by a conditional intensity function, \(t|Hz),
which is the event rate at time ¢ € R conditioned on historical events H; before
t. For convenience, we omit the notation H; in the rest of the paper. The func-
tional form of A(t) is usually designed according to the dynamic pattern of event
sequences. For example, Hawkes process is a kind of temporal point process that
characterizes the self-exciting dynamic pattern, i.e., the occurrence of an event
can raise the event rate in the near future.

Multivariate Hawkes Process. A multivariate Hawkes process can be
regarded as a sequence of correlated Hawkes processes of multiple event types.
Formally, for a U-dimensional Hawkes process, the conditional intensity function
of the u-th event type, A, (t), u=1,..U, is defined as

1ty <t

where p,, is the natural arrival rate (i.e., background rate) of the u-th event
type, qu, is the trigger coefficient between the u-th and u;-th event types, and
g(At) is the trigger function that usually decays with the increase of At.

4 Methodology

4.1 Problem Definition

In the MRT system, suppose there are R rail lines, and U possible technical
faults that cause abnormal events. We use r (r = 1,..., R) and u (u = 1,...,U)
to denote the indices of rail lines and technical faults, respectively. Each rail line
is divided into M equal-size segments so that rail lines are of equal numbers of
segments (i.e., “lengths”). We then denote a stretch of stations as ¢ = [x_, x ],
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where x_ and x4 are the indices of the two bounding segments on a specific
rail line, 1 <x_ < x4 < M. The list of distinct stretches of the r-th rail line is
denoted by X7, with size S = |X"| = w that is identical for all rail lines.
We use s to denote the index of a stretch (s =1, ...,.5). Suppose we are given an
abnormal event sequence e, ..., e,, where e; = (t;,74,8;), with t; € Z the time
of event in terms of day. The causes of events are denoted by u, ..., u,, each of
which is the index of technical fault. Given the information of n historical events
above, we aim to predict the time, abnormal rail line and stretch of stations of
the next event, €,4+1 = (tnt1, "n+1, Snt1)-

4.2 Categorization of Event Pairs

We categorize an event pair (e;, e;), where ¢ > j, hierarchically using the loca-
tions and technical faults of both events. The categorization is of three levels.
For the first level, we divide event pairs based on their technical faults. For sim-
plicity, we assume that inter-event influence only exists between two events that
are caused by the same type of technical fault. According to the official tweets
posted by MRT operators, there are 6 main types of technical faults, namely,
train fault, track fault, power fault, signal fault, platform fault (mostly the screen
door errors), and others. Therefore, for the first level, event pairs are divided into
6 groups of different fault types. For the second level, we distinguish intra-line
pairs, for which two events occur on the same rail line (i.e., r; = r;), from inter-
line pairs, for which two events occur on different rail lines (i.e., r; # r;). The
influence between inter-line pair of events is possible as the two rail lines can be
run by the same transit operator. For the third level, we further divide event
pairs into overlapping pairs or non-overlapping pairs, according to whether the
two events’ stretches of abnormal stations overlap (i.e., X7 N X:j # ()) or not
(ie., X'NX Zj = (). Note that the stretches of an inter-line pair can also overlap
via interchange stations.

4.3 Multivariate Hawkes Process

We propose a multivariate Hawkes process that can capture the specific inter-
event influence of each category of event pairs. We first derive the conditional
intensity function, and then present the procedure of prediction.

Conditional Intensity Function. The occurrence rate of abnormal events on
the r-th rail line at the s-th stretch of stations in X", is specified by a conditional
intensity function defined as

U
A(t,r,s) = Z Au(t, 7, 8) (2)
u=1

)‘u(t7 T, 3) = furs + Z (ij (7“, Tj, 8, Sj)g(t - tj) (3)

j:tj <t,uj=u

where A\, (¢, 7, s) is a subordinate conditional intensity function of technical fault
u, with w = 1,...,U. pyrs represents the natural arrival rate of events of the
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type indicated by the subscript indices. The second term of A\, (¢, 7, s) represents
the trigger rates that are brought by events before ¢. According to the 3-level
categorization described in Sect. 4.2, we assign each category of event pairs with
a distinct trigger coefficient specified by ¢, (+), and it is defined as
g r#r and X7 N X;",/ =

by, r#r and XT N X;",/ £ 0
Cu r=r"and XN X", =0

dy, r:r'andXSTﬂXST;#@

¢u(r7 7'/7 S, S/) =

(4)

in which a,, by, ¢, and d, are the trigger coefficients for the u-th fault type,
for inter-line non-overlapping, inter-line overlapping, intra-line non-overlapping
and intra-line overlapping event pairs, respectively. The trigger function g(At) is
defined in order to weaken the influence as time elapses. Particularly, it is defined
in a non-parametric way, i.e., At is discretized as At = kdt, for k =0, ..., K. The
hyper-parameters K and 6t control the span and granularity of time intervals,
respectively. Then the trigger function g(At) is specified by a sequence of scalars
[gk]5_,. When At > Két, g(At) equals to zero.

Parameter Learning. The parameters are optimized iteratively using the max-
imum likelihood estimation. The likelihood of event e; is defined as

t U R S
Li = Ay (ti,ri, ) - exp {—/ <Z Z Au(T, T, 3)) dT} ()
ti—1 1

u=1r=1s=

where the exponential term of Eq. (5) means no event during the time interval
(ti—1,t;) [18]. A lower-bound of the log-likelihood logL of an n-length event
sequence is then derived as

- JT. Gu, (1,75, 86, 55)9(ts — t5)
logL > Z piillog——— + Z pijlog

i=1 v Jiti<ti,uj=u; pij
U R S R S n tn
SURTD 3 9 WIS 3 3 ol (WEDRITY RPESATY
u=1r=1s=1 r=1s=1j=1 tj

(6)
based on Jensen’s inequality (log(E[X]) > E[log(X)]). The weights p;; and p;;,
j=1,...,i—1 are computed following [24].

Hou;r; s, pii = ¢uj (Tivrhsivsj)g(ti _tj)
)‘ui(ti’ri?si)’ “ )‘uz (tivrivsi)

Pii = (7)
Specifically, p;; denotes the probability that event e; arrives naturally, while p;;
denotes the probability that it is rather triggered by a previous event e;.

Given the lower-bound of logL, the analytical solutions of the parameters can
be obtained by setting the first derivative of the lower-bound with respect to each
parameter to zero and then solving the equations. Specifically, the solutions of
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Algorithm 1: Iterative algorithm for parameter learning

Input: events [e;]i—, faults [u;]i=;, randomly initialized weights p;;’s and ps;’s
Output: values of parameters

1 repeat

2 Update piurs by Eq. (8) foru=1,....U,r=1,..,R, and s =1, ..., 5;

3 Update a, by Eq. (9), similarly for b, ¢, and d,, for u =1, ..., U;

4 Update g by Eq. (10) for £ =0, ..., K;

5 fori=1,..nandj=1,....,i—1do

6 Update p;; by Eq. (7);

7 L Update p;; by Eq. (7) if ¢t; — t; < Két and u; == u; else set p;; = 0.

8 until pi; s and p;j’s converge;

Lurss G (and adapted to by, ¢, and d,, according to Eq. (4)) and g are depicted
in Eq. (8), (9) and (10), respectively, where I[-] is the indicator function.
Z;;l Piiﬂ[ui =U,Tr =T,85; = S]
Murs = (8)
tn - tO
Ay = Z’?:l Zj:tj<ti71tj:ui pij]I[ = U, Ty 7& TJ’XM n XT] - } (9)
u T =R S
Zr:lZs:lZ?:lH[uj:u’r#rj’XgﬂXS _Q ft T_t
. S D ity <tsuy—uy Pigl[kOt < i — 5 < (k +1)dt] 10)
k= R 5 ,
Y 1> 22:1 Gu, (1,75, 8, 55)1[kdt <t — 1]

Provided n historical abnormal events, we first initialize the weights p;;’s and
pij’s by random. After that, a loop is used to iteratively optimize the values of
all parameters and weights until convergence, i.e., until the values of parameters
(or weights p;;’s and p;;’s) do not change substantially in a single iteration. The
iterative algorithm is shown in Algorithm 1.

Prediction. Given the conditional intensity functions and historical abnormal
events, the probability density function of some t € (t,,,+00),, s being the time,
rail line, and stretch of the next event is given as

t
ft,r 8) = A, 7, s) - exp {—/ )\(T)dT} (11)
t’VL
We predict the timing of event e, 11 by taking its expectation as

T e (SR S5 ftrs) ) i
(ST fers) at

n

£7L+1 - E[t|th] - (12)

where T is a sufficiently large time duration (e.g., T = 150). After that, the
abnormal rail line as well as the stretch of stations are predicted as follows:
s

Fpy1 = argmax,. f(fni1,7) = argmax, Z f(tny1,m,8) (13)
s=1
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Table 1. Distribution of events by fault.

Fault type Train | Track | Power | Signal | Platform | Others
Num. of events | 86 81 19 27 22 19

Zsszl X§1L+l ‘ f(tAn+1) f’n+17 S)
Zle f(tAn—i-lz 72n+17 5)

in which &,,41 = [£_, %], with Z_ and Z; the indices of the two bounding seg-
ments that specify a stretch of stations on the 7,1 1-th rail line. All the integrals
in the equations above are approximated using summation.

Int1 = El|Hy,  tyg1, Pns] = (14)

5 Experiments

5.1 Experimental Setup

Dataset. We collect MRT abnormal events from January 2015 to December
2019, from two open sources, i.e., official tweets posted by operators and local
news feeds'. The provided information includes date, approximate time of the
day, rail line, cause, and the stretch of affected stations. We set the causes of a
few events with no cause specified as the “others” type of technical fault. After
filtering out isolated incidents with system irrelevant causes (e.g., passenger’s
fall, animal invasion), we finally obtain 254 events, the distribution of which by
fault type is shown in Table 1. We sort the events by date and use the first 75%
for training and the last 25% for testing. There is no validation set due to the
scarcity of observed events. But we provide sensitivity analysis which shows clear
trends of the impact of hyper-parameters on the performance.

Baselines. We compare PAbEve with 9 baseline methods, where 5 are for timing
prediction only (i.e., NextDay, Auto-regressive, Hawkes parametric, Hawkes non-
parametric and NNPP), and the rest 4 for both timing and location prediction
(i.e., Poisson loc, MMEL loc, MMEL fault+loc and RMTPP loc).

— NextDay: a naive baseline which uses the next day of the most recent event
as the prediction result, e.g., t,41 = t, + 1.

— Poisson loc: a homogeneous Poisson process with the conditional intensity

function A(t,r,s) = %ﬁgs:s] that is constant over time.

— Auto-regressive [6]: which assumes the most recent ! inter-event intervals are
linearly correlated. We select [ as 6.

— Hawkes parametric (Hawkes p) [7]: a temporal Hawkes process with trigger
function g defined parametrically as g(t — t') = e~ Pt~

! An example tweet on 17th February, 2015, is “11:27:37 [EWL] Due to a train fault
at Jurong East, there will be no train service from Lakeside to Clementi on the east
bound...”. The event data is accessible via https://github.com/PAbEve/data.
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Table 2. Prediction performance of evaluated approaches.

NextDay Auto-reg. | Hawkes p Hawkes n/p | NNPP
MAE 8.156 7.131 6.634 6.797 74.878

Poisson loc | MMEL loc | MMEL fault+loc | RMTPP loc | PAbEve
MAE 6.562 6.869 9.588 7.438 6.156
Hit rate | 0.453 0.503 0.478 0.547 0.578
CosSim |0.437 0.485 0.458 0.473 0.562

— Hawkes non-parametric (Hawkes n/p): a temporal Hawkes process with trigger
function g estimated non-parametrically, i.e., g = {g(kdt)|k =0,1,...}.

— MMEL loc [24]: a multivariate Hawkes process with the u/-th dimensional
conditional intensity function A,/ (¢) given in Eq. (1), where {u' = (r,s)|r =

4 R;s=1,...,5}. Hyper-parameters D is set as 1 and « as 0 for simplicity

without losing generality.

— MMEL loc+fault [24]: which uses the same settings as MMEL loc, but with
{v=(rys,0)|r=1,..,R;s=1,....,80v=1,..,U}.

— RMTPP loc [5]: a neural marked temporal point process with its marks being
the items in {u = (r,s)|r =1,...,R;s =1,...,S}.

— NNPP [17]: a fully neural temporal point process which models the cumulative
conditional intensity function and obtain the conditional intensity function
via its derivative.

Metrics. We use 3 kinds of metrics to evaluate the performance of compared
methods on m test events, including (1) MAE, which is the mean absolute error
in days between the predicted and ground-truth times, i.e., = > {40 — tyal;
(2) Hit rate, which is the proportion of test events where the predicted and
ground-truth rail lines are the same, i.e., = 3" I[f 11 = 7ppq]; (3) CosSim,
which is the mean cosine similarity between the predicted and ground-truth
stretches, i.e., Zl 1 Im"“ L ‘]I[Tn_H = p11]. For MAE, smaller values are

Tppt][Entt
better, while for Hit rate and CosSim, larger values are preferred.

5.2 Experimental Results

We run each evaluated method for 10 rounds, and take the average of 10 rounds
for each metric. We set the hyper-parameters as 6t = 1, K = 25 and M = 10.
The results of prediction are summarized in Table 2.

Results of Timing Prediction. In terms of MAE, we may draw the follow-
ing conclusions. First, parametric methods are neither superior nor inferior to
semi-parametric methods according to the experiment results. Semi-parametric
method refers to those with a part of the model (e.g., the trigger function)
designed in a non-parametric way, including all Hawkes-based evaluated meth-
ods except Hawkes p. We see among the top 5 performing methods, there are
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semi-parametric methods PAbEve with MAE 6.156, Hawkes n/p with MAE 6.797
and MMEL loc with MAE 6.869, and also parametric methods Poisson loc with
MAE 6.562 and Hawkes p with MAE 6.634. Second, among the parametric meth-
ods, however, only light-weight methods, i.e., Poisson loc, Hawkes p and Auto-
regressive, can compete with semi-parametric methods. Heavy-weight methods
which may not be able to express the sparse data may perform arbitrarily bad,
such as NNPP which yield a MAE of 74.878. Particularly, the naive Poisson loc
outperforms all the other evaluated methods except PAbEve, which indicates
that those non-trivial methods may degrade when trained on insufficient data.
Third, among the semi-parametric Hawkes-based methods, we see Hawkes n/p
of 6.797 outperforms MMEL loc of 6.869, and MMEL loc outperforms MMEL
fault+loc of 9.588. We suspect that increasing the number of inputs (e.g., rail
line, technical fault) is probable to worsen the performance, as the number of
parameters to learn are increased as well. Overall PAbEve outperforms the others
as it properly incorporates all aspects of information via the dedicated design of
inter-event influences.

Results of Location Prediction. Location prediction consists of the predic-
tion of abnormal rail line and the stretch of stations. We evaluate 5 methods
that can conduct location prediction, and PAbEve outperforms the others. For
the prediction of abnormal rail lines, RMTPP loc performs close to PAbEve’s, but
it uses unadjustable prediction for all events (i.e., standard deviation is zero),
and so is Poisson loc. Comparison between MMEL loc and MMEL fault+loc shows
increasing the number of inputs may worsen the performance. For the predic-
tion of abnormal stretches, PAbEve again outperforms all others. Among them
RMTPP loc predicts trivially using the entire rail line. Both RMTPP loc and
Poisson loc predict using the same value for all events.

Model Interpretation. To interpret PAbEve, we visualize the estimated back-
ground rates, trigger coefficients, trigger function and weights. The results are
shown in Fig. 2. From Fig. 2(a) and (b), we see events of the highest background
rates are those on both rail lines caused by train fault or track fault, and the cat-
egory of inter-line overlapping event pairs caused by “others” fault has the most
significant inter-event influences. For the trigger function, as shown in Fig. 2(c),
it fluctuates between 0 and 0.67, which is dissimilar to exponential or power law
functions and this may simply be resulted from the data sparsity issue. Finally,
for each of the 5 Hawkes-based evaluated methods, we investigate the proba-
bilities of an event being natural arrival (represented by the sum of p;;’s) or
triggered event (represented by the sum of p;;’s). PAbEve is the one with the
largest ratio of background versus trigger (i.e., about 3 to 1).

Results of Sensitivity Tests. We explore the impact of hyper-parameters dt,
K and M, on the prediction performance. Each result is averaged over 10 rounds.
The results are depicted in Fig. 3. We test the impact of §t by setting K to 25,
and changing ¢ from 1 to 10 with PAbEve. The MAEs shown in Fig. 3(a) depict
a clear trend that increasing ¢ will probably worsen the performance. When
ot < 2, PAbEve outperform all other evaluated methods. Similarly, we test the
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Fig. 2. Visualization of (a) background rates, (b) trigger coeflicients, (c) trigger func-
tion, and (d) sum of training events’ p;;’s (“backg.”) and that of p;;’s (“trigger”).

(a) (b) (c) (d)/(e)
8.0 ]
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Fig. 3. Sensitivity tests. (a) MAEs under dt from 1 to 10 (K = 25); (b) MAEs under K
from 5 to 100 (8¢ = 1); (c) MAEs, (d) Hit rates and (e) CosSims, of all location-available
methods under M from 5 to 20 (6t = 1, K = 25).

impact of K by setting dt to 1, and changing K from 5 to 100 at an interval
of 5 with PAbEve. The MAEs depicted in Fig.3(b) range from 6.156 to 8.056.
When K < 65, PAbEve outperform all other methods with the MAESs oscillating
between 6.156 and 6.538. Finally, for the number of rail line segments, M, as
shown in Fig. 3(c), there are only mild changes of MAEs for most methods when
M changes, except MMEL fault+loc for which the errors increase significantly.
For location prediction results shown in Fig. 3(d) and (e), as M increases, there
is no specific trend for the hit rate of rail line or the similarity measure of stretch.

6 Conclusion

We present a novel solution to predicting when and where will a future MRT
abnormal event occur, based on historical abnormal events. We first categorize
event pairs based on basic contextual information, and then design a multivariate
Hawkes process to model the sparse sequence of abnormal events. The proposed
PAbEve approach retains its efficacy when being trained on extremely limited
training events. Experimental results using real-world data from open sources
demonstrate the superiority of PAbEve over other alternative solutions.
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