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ABSTRACT

The accuracy of vision-based face recognition suffers in challenging

scenarios, such as foggy or smoky weather, poor lighting, and block-

age by objects like facial masks. This paper proposes an acoustic-

based facial recognition system based on acoustic facial spectrum –

a novel acoustic representation of human faces in 3D space. Specifi-

cally, we divide the 3D space into cubes and profile the distribution

of the acoustic signal reflected by the human face inside each cube.

Generating such a per-cube acoustic profile is challenging in re-

lating each reflected signal path back to the physical location of

its reflecting cube. To address the challenge, we propose a novel

multipath resolving algorithm that is capable of distinguishing sig-

nal reflection happened within different cube. Based on the facial

spectrum, we propose a discriminator-recognizer network that can

robustly recognize human faces under varying face-microphone

distances or even in presence of facial mask blockage. Extensive ex-

perimental results demonstrate that the proposed system achieves

over 95% average recognition accuracy for cases with and without

mask blockage.

CCS CONCEPTS

• Human-centered computing → Human computer inter-

action (HCI); • Security and privacy → Security services; •

Computing methodologies →Machine learning.
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1 INTRODUCTION

With the advent of digital era, intelligent identification techniques

plays an important role in supporting identity sensitive authoriza-

tions such as safety entrance, secure payment, and authenticated

device access. Conventional human identification schemes are de-

signed based on explicit human biometrics such as fingerprint [16],

iris [14], and voiceprint [26, 45], or implicit physical characters

like bone density [39] and vocal tract structure [20]. The individual

unique habitual behaviors such as lips movement [19, 31] or breath

dynamics [7] are recently explored for improved accuracy, among

which facial biological information [28, 44] is particularly favored

due to its high identification accuracy and long-term stability.

Vision-based techniques use photosensitive elements (e.g., CMOS

or CCD) to record facial reflected visible light, which carries the fine-

grained spatial (e.g., face contour, mouth shape) and frequency (e.g.,

skin color) information due to its small wavelength (nanometer

scale) and high bandwidth (terahertz bandwidth), respectively. On

the other side of the coin, the nature of visible light also makes it

extremely sensitive to challenging environmental conditions, such

as foggy or smoky weather, poor lighting or blockage by objects

like facial masks. Vision-based face recognition also raises privacy

concerns [12] regarding the leakage of sensitive personal informa-

tion including gender, age, skin color, which may be leveraged by

malicious third parties [43].

Wireless sensing technique, when applied for face recognition,

naturally alleviates the two problems of the vision-based approach,

since wireless signals (e.g., infrared signal, millimeter wave or acous-

tic signals) exhibit remarkable resistance to environmental or light-

ing conditions and their intrinsic physical properties prevent them

from carrying any sensitive identity information. Apple Face ID

projects thousands of infrared dots on human face which are then

captured by a infrared camera for facial depth map construction [1].

This method however requires expensive cameras and chips, mak-

ing it unsuitable for most scenarios that require low-cost deploy-

ment (e.g., smart access control). mmFace [38] implements a facial

authentication system by leveraging a SAR-based millimeter-wave

radar for facial imaging. EchoPrint [44] combines acoustic signal
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Figure 1: AcFace derives facial spectrum to fingerprint the spatial characteristics of human face and utilizes a recognizer-

discriminator network to achieve accurate and robust spectrum recognition.

processing with vision-based image processing to achieve facial

authentication. RFID signal [21, 37] is also used to distinguish dif-

ferent faces and combat spoofing attacks. These systems, however,

either require expensive dedicated hardware support (e.g., mm-

Face [38]) or inherent vulnerability of vision-based techniques (e.g.,

EchoPrint [44]).

In this paper, we propose AcFace, the first facial recognition

system that purely exploits acoustic signals to achieve accurate

recognition, even with facial features that are partially obstructed

by objects such as facial masks. When compared with RF signals,

acoustic signals have much lower frequencies (kHz-level) and prop-

agate by means of particle displacement, exhibiting better obstacle

penetration capability at near-field [36]. Due to the low propaga-

tion speed, acoustic signal can achieve millimeter-level ranging

resolution with low-cost ADC (kHz-level sampling rate would be

enough) and thus has the potential of characterizing detailed facial

features, e.g., the height of the nose bridge or the depth of the eye

socket, by using inexpensive acoustic hardware.

To recognize the human face, we propose the acoustic facial

spectrum: a novel acoustic representation of the human face that

preserves rich facial features. Specifically, we divide the free 3D

space into cubes and profile the distribution of the signal reflected

by the human face inside each cube (an empty cube containing no

human face has no reflections). Depending on the shape of the hu-

man face inside each spatial cube, the acoustic signal of one incident

angle will be reflected towards various reflection angles. Therefore,

the spatial distribution of the signal reflection that happens within

one cube characterizes the 3D surface of the human face inside that

cube. Accordingly, the combination of all the cubes in the 3D space

fingerprints the entire human face.

Obtaining the signal distribution of distinct cubes requires cat-

egorizing all the reflected paths into separate cubes. This is chal-

lenging because the signal reflected from different cubes does not

present any distinguishable signal features. To address this chal-

lenge, we utilize a microphone array to observe signals from a cer-

tain reflection cube from multiple spatial locations. Consequently,

the reflected signals of a certain cube acquired distinctive features

based on their measurements across different microphone posi-

tions, including signal strength and path delay. Leveraging these

features, we developed a cube multipath resolving technique to

identify the reflections inside each cube and further combine the

spatial characteristics of all the cubes to derive the facial spectrum.

To further alleviate the impact of mask blockage and varying

face-microphone distances, we design a deep neural network to

extract transferable features from various facial spectrums collected

across different domains (i.e., different distances with and without

masks) by playing a minimax game to minimize the impact of the

two factors while maximizing the weight of the transferable facial

features. The proposed model is able to achieve accurate and robust

face recognition without prior domain knowledge.

We build a complete end-to-end system that prototypes the above

design. The system is implemented using purely commercial low-

cost acoustic hardware and machine learning model hosted on a

general PC with mainstream NVIDIA GPUs. We experimentally

evaluate the performance of the proposed system with comparison

to state-of-the-art vision based techniques. The results demonstrate

that our system generally provides comparable accuracy with vision

based solutions, and performs even better in challenging scenar-

ios (e.g., users with mask, low lighting condition).

The contribution of this paper is summarized as follows:

• An acoustic facial spectrum is proposed and utilized to profile

the human faces, which is accurate and more robust than

vision based solutions in harsh application conditions.

• A novel signal processing technique is devised to resolve

the multipath reflected by different facial areas and produce

fine-grained facial spectrum.

• A deep neural network model with domain adaptivity is

designed, which is able to accurately recognize facial spec-

trums collected with different use conditions, even those

with facial mask blockage.

The rest of this paper is structured as follows. Section 2 provides

an overview of the system design. Section 3 details the feature that

we adopt for facial recognition and defines the facial spectrum.
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Section 4 and 5 presents our core designs for the derivation and

recognition of the facial spectrum. Section 6 describes the prototype

implementation. Section 7 details experimental evaluation results.

Section 8 discusses limitations and possible solutions. Section 9

summarizes the related work and Section 10 concludes this paper.

2 SYSTEM OVERVIEW

The AcFace system consists of two main blocks. The first block

identifies multipath reflections from different facial areas and re-

combines them to derive the full spectrum. The second block utilizes

the recognizer-discriminator network to achieve accurate and ro-

bust spectrum recognition. Figure 1 illustrates the collaboration

between the functioning blocks.

In the following sections, we first provide the specific definition

of facial spectrum in Section 3, and then detail the technical designs

that support the operation of each functioning block in Section 4

to 5.

3 FACIAL SPECTRUM

Energy distribution of scattered signals. The human head is

capable of reflecting the acoustic signal. To quantitatively capture

the signal reflections, we grid the 3D space where a human head

locates into𝑀 × 𝑁 ×𝑄 cubes. Depending on the 3D surface of the

human face inside each cube (an empty cube has no reflections), the

acoustic signal from one incident direction could be scattered into

various departure directions, as illustrated in Figure 2. The energy

distribution of the scattered acoustic inside each cube characterizes

the facial area inside that cube. We, therefore, leverage the energy

distribution of all cubes inside the whole 3D space to fingerprint

the human face.

Facial spectrum.We sample the signal scattered from one cube at

multiple spatial points with a microphone array, coherently com-

bine the signal collected from all the microphones, and calculate the

strength of the combined signal, as shown in Figure 3. We repeat

the above process to derive the facial spectrum: a𝑀 ×𝑁 ×𝑄 matrix,

where each element represents the strength of the combined signal

of one cube. The facial spectrum preserves rich facial features and

thus is efficient at differentiating the human faces.

Challenge.We face a major challenge when generating the highly

accurate facial spectrum. The scattered signals from all the𝑀×𝑁×𝑄
cubes superimpose at the microphone array. We must resolve the

signal from each cube in order to derive the facial spectrum. This is

however difficult because the signal reflected from different cubes

does not present any distinguishable signal features.

4 RESOLVING CUBIC MULTIPATH

In this section, we detail the design of resolving the multipath signal

that is scattered from different cubes. The processing is composed of

two steps – multipath decomposition and multipath re-combining,

as illustrated in Figure 4. The first step decomposes the delayed

echoes at each microphone from time domain with FMCW-based

multipath separation. The second step identifies a set of echoes

that are reflected from a certain facial area and combines them in

a coherent way. We detail each step separately in the following

subsections.

Facial Spectrum

Face Under Test

Skin

Muscle

Space mapping between facial 
spectrum and human face

Facial scattering effect 
inside Cube 2

Cube 1 is an empty cube and has no 
reflections. 

Figure 2: Illustration of the 3D space mapping from human

face to facial spectrum (the left part) and the facial scattering

effect inside a cube (the right part).

Human 
Face

Acoustic 
Transceiver

Facial 
Spectrum

Acoustic Facial Scanning Deriving Facial Spectrum

Facial 
scattering

Figure 3: The scattering effect of different facial areas super-

impose at the single microphone array. We need to disentan-

gle themultipath superposition to derive the facial spectrum.

4.1 Multipath Decomposition

We transmit consecutive FMCW symbols for facial scanning. The

signal will be reflected by different facial areas which further gen-

erates numerous multipath components with varying travelling

distances towards different directions. The multipath signals fi-

nally superimpose at each microphone. We perform FMCW-based

multipath separation on the raw receiving of each microphone to

separate the superimposed multipath components from time do-

main. By following standard FMCW ranging processing [32], we

can obtain the beat signal, which embodies the propagation delays

of different multipath components. The beat signal 𝑦𝑏𝑒𝑎𝑡 (𝑡) can be

formulated as below (refer [32] for the detailed derivation),

𝑦𝑏𝑒𝑎𝑡 (𝑡) =
𝑁∑
𝑖=1

𝐴𝑖𝑒
𝑗 (2𝜋𝑠𝜏𝑖𝑡−𝜋𝑠𝜏

2
𝑖 +2𝜋 𝑓𝑖𝑛𝑖𝑡𝜏𝑖 ) (1)

where 𝐴𝑖 and 𝜏𝑖 denote the amplitude and propagation delay of the

𝑖-th component, respectively. We use 𝑠 and 𝑓𝑖𝑛𝑖𝑡 to denote the slope
and starting frequency of an FMCW chirp.

As we can see from Equation 1, the derived beat signal is the

weighted summation of multiple single tones oscillating at the
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Figure 4: The derivation of facial spectrum reverses the effect

of facial scattering and multipath superposition by devising
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frequencies of 𝑠𝜏𝑖 . With performing FFT on the beat signal, we are

able to obtain the beat spectrumwhere the signal with a certain time

delay (e.g., 𝜏𝑖 ) is identified as the corresponding beat frequency (i.e.,
𝑠𝜏𝑖 ). The beat spectrum is further scaled to derive the multipath

profile where each component represents one reflected path of

amplitude 𝐴𝑖 and delay 𝜏𝑖 . Specifically, the multipath profile can be

formulated as below,

ℎ(𝑡) =
𝑁∑
𝑖=1

𝑝𝑖𝛿 (𝑡 − 𝜏𝑖 ) (2)

where 𝑝𝑖 = 𝐴𝑖𝑒
𝑗 (−𝜋𝑠𝜏2𝑖 +2𝜋 𝑓𝑖𝑛𝑖𝑡𝜏𝑖 ) represents the phasor induced by

the 𝑖-th path and 𝛿 (𝑡 − 𝜏𝑖 ) denotes the delayed impulse function.

Basically, the profile is characterized by a series of facial scattered

paths with different amplitude, delay and phase rotation.

4.2 Multipath Re-combining

We construct the facial spectrum viamultipath re-combining. Specif-

ically, the re-combining process contains the following two steps.

First, themultipath identificationwhere we identify all the scattered

multipath signals inside the multipath profiles whose reflection

points are inside the same cube of the facial spectrum, as shown

in Figure 2. Second, the coherent combining where we align the

phases of all the identified multipath components and add them up

to derive the facial spectrum.

Multipath identification. We identify the multipath signals from

the same cube according to the time-of-flight of the signal. Figure 4

illustrates the idea of multipath identification with an example on

a 2D plane. Given the location of the speaker and the microphones,

we are able to calculate the propagation time𝑇𝑐𝑖 ,𝑚 𝑗 the signal takes

to travel from the speaker, gets reflected by the human face inside

𝑖-th cube, and at last reaches 𝑗-th microphone inside the array. Then,

we match the calculated 𝑇𝑐𝑖 ,𝑚 𝑗 with the estimated time-of-flight of

the signals inside the multipath profile to identify the signal that

gets reflected within 𝑖-th cube. By repeating the above process for
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Figure 5: The idea (a) and result (b) of locating Space-of-

Interest (SoI).

every microphone, we obtain a sampled distribution of the scattered

signal from 𝑖-th cube:

𝑆𝑐𝑖 = [𝑠𝑐𝑖 ,𝑚1 , 𝑠𝑐𝑖 ,𝑚2 , · · · , 𝑠𝑐𝑖 ,𝑚𝐺 ] (3)

where 𝑠𝑐𝑖 ,𝑚 𝑗 represents the signal that gets reflected within 𝑖-th
cube and finally reaches 𝑗-th microphone. We have in total 𝐺 mi-

crophones inside the array. We note that the signal 𝑠𝑐𝑖 ,𝑚 𝑗 is empty

if we cannot identify any reflections from the profile.

Theoretically, the signal strength 𝑃𝑠𝑐𝑖 ,𝑚𝑗
of every signal 𝑠𝑐𝑖 ,𝑚 𝑗

characterizes the energy distribution of the scattered signal and thus

can be used for facial recognition. Accordingly, our facial spectrum

becomes a tensor with the size of 𝑀 × 𝑁 × 𝑄 × 𝐺 . We note that

processing such a four-dimensional tensor results in significant

computational overhead, so we propose to coherently combine

the identified 𝐺 signals received and leverage the energy of the

combined signal as our feature.

Coherent combining. To combine the selected path coherently,

we reverse the phase rotation caused by the propagation delay of

each path (as illustrated in Eq. 1). The processing can be formulated

as below,

𝑃 (𝑥𝐹𝑖 , 𝑦𝐹𝑖 , 𝑧𝐹𝑖 ) =
𝐺∑
𝑗=1

𝑠𝑐𝑖 ,𝑚 𝑗 𝑒
𝑗 (𝜋𝑠𝑇 2

𝑐𝑖 ,𝑚𝑗
−2𝜋 𝑓𝑖𝑛𝑖𝑡𝑇𝑐𝑖 ,𝑚𝑗 ) (4)

where 𝑃 (𝑥𝐹𝑖 , 𝑦𝐹𝑖 , 𝑧𝐹𝑖 ) represents the reflected energy inside the 𝑖-th
cube. The processing is illustrated in Figure 4.

4.3 Locating Space-of-Interest

We define the space where we generate the facial spectrum as Space-

of-Interest (SoI). Accurately locating the SoI is crucial for deriving

an effective facial spectrum. If the SoI is shifted away from the

actual position of the test face, the derived spectrum would contain

a lot of empty cubes which contribute less feature. To locate the

SoI, it is essential to measure the distance between the test face to

the microphone array. We design a coarse-to-fine algorithm for this

purpose.

We first estimate the distance by averaging the distances mea-

sured at all microphones, i.e., 𝑑𝑟 = 1
𝑀

∑𝑀
𝑖=1 𝑑𝑖 . As shown in Fig-

ure 5a, for each microphone, the distance is calculated based on

the Pythagorean equation of the space geometry. Specifically, 𝑑𝑖 =√
𝑙2𝑖 − 𝑟2𝑖 where 𝑟𝑖 denotes the Euclidean distance from 𝑖-th micro-

phone to the center of the array (i.e., the coordinate origin), and 𝑙𝑖 is
approximated by taking half of the path length which exhibits the
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highest power, i.e., 𝑙𝑖 ≈ 𝑐𝜏𝑝𝑒𝑎𝑘/2 as the speaker is closely located

with the array.

The approximated result is further refined by leveraging the fact

that the SoI contains more non-empty cubes if it is located more

accurately. With such idea, we search over 𝑁 cubes within the SoI

located at each candidate distance 𝑑 where 𝑑 ∈
[
𝑑𝑟 −

𝜂
2 , 𝑑𝑟 +

𝜂
2

]
(𝜂

defines the window length), and count the number of non-empty

cubes for each distance with an empirical threshold 𝜖 representing
the lowest power to be counted as non-empty. Finally, we adopt

the distance that yields the maximal non-empty cubes.

Figure 5b benchmarks the accuracy of such algorithm against

the ground-truth distances obtained from 15cm to 40cm at the step

of 1cm. After refining, the distance error is less than 5mm in median

which demonstrates the super resolution of the proposed algorithm.

Even without refining, the coarse estimation still provides sub-

centimeter accuracy and thus we may omit the second step for

faster processing.

5 ROBUST FACE RECOGNITION

With the above processing, we derive facial spectrumwhich presents

diverse spatial characteristics of human face. In figure 7, we show-

case two example facial spectrums from different users (we provide

anonymized facial images as ground-truth reference). For each spec-

trum, we plot the 2D energy distribution at different depth (i.e.,

different 𝑁 ) of 2cm and 4cm. From the spectrum of user A, we can

identify several key facial landmarks such as the forehead, cheeks

and nose. We also observe that the power disperses over larger

area as the depth increases, which may be resulted from the in-

creased facial area. The spectrum of user B also exhibits identifiable

facial landmarks and manifests the dispersed energy distribution.

When comparing the spectrum of the two users, we can clearly

identify the different facial features including the facial contour, the

locations of facial landmarks, power scattering at the landmarks,

etc. The various features together characterize the appearance of a

certain face.

In this section, we design a deep neural network to identify

different users with their corresponding facial spectrums. In addi-

tion to the basic function of feature extraction and recognition, we

adopt the discriminator network design [13, 17] to further alleviate

the impact of facial mask blockage and varying face-microphone

distance.

Impact of mask blockage and distance variation. To investi-

gate the impact of facial mask, we process the raw acoustic samples

collected with the same two users when they are wearing a sur-

gical facial mask and derive their corresponding facial spectrums

with mask blockage. The result is illustrated in Figure 8. When

compared with normal scenario of bare face, for both users, we

observe enhanced energy intensity over the region that the facial

mask covers, which may be resulted from the combining between

the signal paths scattered by facial mask and by the facial land-

marks underneath. Fortunately, we observe that for both users, the

essential facial features (e.g., facial contour and the upper facial

landmarks) persist with similar energy distribution.

Additionally, distance variation also affects the facial spectrum

in its energy distribution. Specifically, longer distances result in a

reduced overall size of the facial spectrum, manifesting a "zoom

out" effect. This reduction is particularly evident in the diminished

signal strength at the facial spectrum’s edges, which may due to a
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Figure 7: Illustration of example facial spectrums derived

with two different users. The 3D spectrum is presented as

2D energy distribution at different depths (i.e., different 𝑁
in Figure 2). The anonymized facial images of the two users

are provided as ground-truth.

decreased capacity of the microphone array to capture signals from

the facial periphery at longer distances.

Based on the observations above, we believe that a signature

matching network can be utilized to compare two facial spectrums

and determine their similarity, thereby identifying facial identity

information. Furthermore, since the primary features atop the spec-

trums remain recognizable despite wearing masks and changes in

distance, it is feasible to eliminate the impact of these two factors

during facial recognition. We will achieve this through a recognizer-

discriminator based network. In the following content of this sec-

tion, we will provide a detailed explanation of the network model.

Network design.We design a recognizer-discriminator network

(RD-Net) to extract the persistent features and avoid the impact of

the two factors. The network compares the facial spectrum of a test

user with those of all registered users. The spectrum is first fed into

a CNN, which we utilize to exploit the spatial diversity and extract

the 3D feature shaped by a human face. A recognizer network is

then used to judge the similarity between the derived feature maps,

and at the same time a discriminator network is adopted to alleviate

the impact from the two impact factors.

Figure 6 illustrates the structure of the proposed model. The

network contains a CNN based feature extractor, a deep NN based

recognizer and two discriminators. The CNN model contains three

Depth = 2cm Depth = 3cm Depth = 4cm

Forehead

Right
cheek

Masked area

Left
cheek

(a) The facial spectrum of user A (with facial mask).

Depth = 2cm Depth = 3cm Depth = 4cm

Forehead

Right
cheek

Masked area

Left
cheek

(b) The facial spectrum of user B (with facial mask).

Figure 8: Facial spectrum derived for user A and user B when

they wear facial mask. Although the mask creates strong

reflections that bury the lower partial facial landmarks, the

facial contour and the upper partial landmarks still persist

and can be leveraged to enhance the robustness to mask

blockage.

convolution layers, each using 3D kernels as filters, and the filtered

channels are normalized with a batch norm layer. We avoid using

down sampling process (e.g., dropout or pooling) to maintain com-

plete feature space. The extracted features are flattened and fed

into the face recognizer, which uses five fully connected layers to

investigate the similarity between the feature maps derived from

two facial spectrums.

The result, as we earlier mentioned, may be impacted by facial

mask reflections and varying distance. Two discriminator networks

are used to alleviate such impact. The discriminators use duplicated

network structure from the recognizer but handle different tasks.

Specifically, the mask discriminator aims at identifying whether

the two facial spectrums are with the same mask condition (i.e.,

with or without mask), and the distance discriminator determines

whether the two spectrums are captured at the same distance.

Loss design. The feature extractor, recognizer and discriminators

are jointly optimized with a carefully designed loss function. To

achieve robust face recognition with high accuracy, we need to

enhance the recognizer’s ability to identify the similarity of two

facial spectrums, and at the same time to reduce the discriminator’s

sensitivity to different mask conditions and distances. To achieve

so, the training process aims at minimizing the loss of face recog-

nizer (𝐿𝑅 ), but maximizing the losses of the two discriminators (𝐿𝑀
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Figure 9: From left to right: the lightweight facial spectrum of user A at the environment of (a) meeting room and (b) office, as

well as that of user B at the (c) meeting room and (d) office. The facial reflections of the same user create similar area of high

intensity (enclosed by the red lines) between the different environments.

and 𝐿𝐷 ). We define the loss function of the integrated network as

follows,

𝐿 = 𝐿𝑅 −
𝛼𝐿𝑀 + 𝛽𝐿𝐷

2
, 0 ≤ 𝛼, 𝛽 ≤ 1 (5)

where 𝛼 and 𝛽 are two coefficients that balance the significance

of 𝐿𝑀 and 𝐿𝐷 respectively. With the above definition, the overall

loss function (𝐿) is oppositely related to the loss of two discrimi-

nators. By optimizing the network for minimized 𝐿, we therefore
strengthen the accuracy of the face recognizer in various use con-

ditions.

Network scalability. The proposed network is designed for im-

proved user scalability, primarily by leveraging the signature match-

ing approach. With this approach, the network compares a target

user’s facial spectrum with all registered spectrums of different

users and derives a probability which quantifies the similarity in

their identity. Once trained, the obtained signature matching ca-

pability can facilitate a seamless inclusion of new users without

necessitating re-training, which avoids the limitation of conven-

tional multi-class classification models – they require extensive

retraining for every new user inclusion. The scalability is validated

with our experimental results in Section 7.2.3.

6 IMPLEMENTATION

6.1 A lightweight method

Through the aforementioned designs, we can implement an end-to-

end facial recognition system. However, the current system operates

with a high computational cost, primarily due to the requirement

for iterative calculations of the intensity of each pixel at the facial

spectrum generation stage. In order to alleviate the computational

cost of this system, we present a lightweight solution in the follow-

ing.

The solution reduces computational costs by simplifying the

signal processing of generating facial spectrum. Specifically, this

approach directly concatenates the multipath profiles obtained

from multiple channels to generate a simplified version of the facial

spectrum (named lightweight facial spectrum in the following).

Figure 9 illustrates the lightweight facial spectrums obtained from

measurements of two users in different environments. Each column

in the spectrum represents the temporal distribution of reflected

signals measured on a specific channel, while each row represents

the distribution of reflected signals across different channels at a

specific temporal tap. The areas enclosed by the red lines highlight

regions with relatively strong facial reflected signals.

By comparing the spectrum of the same user (Figure 9 (a) and

(b), Figure 9 (c) and (d)), we observe similar pattern of the area of

high intensity, which demonstrates that the spectrogram is able to

capture consistent facial features of an individual, regardless of the

environmental changes. By comparing the spectrum of different

user (Figure 9 (a) and (c), Figure 9 (b) and (d)), we see that the area of

high intensity shows distinguishable pattern and structure, which

verifies the sensitivity of the facial spectrum to varying spatial

features of human face.

The lightweight solution essentially circumvents the require-

ment for iterative computation on each pixel value during facial

spectrum generation, resulting in a significant saving in computa-

tional costs. Section 7.2 provides a detailed comparison between

the lightweight solution and the fully-implemented system on their

recognition accuracy and computational expenses.

Feature selection. The lightweight facial spectrummay be affected

by environmental reflections because this method does not have

a particular design for identifying facial reflections. In order to

eliminate the impact from environmental dynamics, we conduct a

software based feature selection by trimming the multipath profile

obtained from each microphone channel with a specific range limit

(𝑅𝑙 ). Specifically, given 𝑅𝑙 , the length of each facial spectrum to be

saved equals to �𝑅𝑙/𝑟�, where 𝑟 is the ranging resolution. For our
implementation, we use 𝑅𝑙 = 50 cm, which defines 71 bins from

each multipath profile.

6.2 Hardware and Software

Hardware prototype. The system is prototyped with an acoustic

transceiver which is primarily comprised by an omni-directional

speaker [29] and a four-by-four rectangular microphone array [23]

as depicted in Figure 10. The array adopts 16 SPH1668LM4HMEMS

microphones which are synchronized with an internal clock for

acoustic signal reception, and is stacked with a MCHStreamer USB

interface which achieves real-time streaming of the raw samples

from the microphone array to a PC for post-processing. The dis-

tance between adjacent microphone element is 44mm and the array

spans the area of 132mm×132mm. All microphones and the speaker

sample the analog signal with 48 kHz sampling rate which provides

24 kHz frequency bandwidth.
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Test user
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4x4 Microphone Array
with

USB Audio Streaming

132m
m

Figure 10: The hardware prototype of AcFace and experiment

scenario.

Model training. The proposed recognizer-discriminator network

model is implemented with PyTorch API and trained with Google

Colab Pro+ GPU based compute engine where the allocated compu-

tational resource includes 16 GB GPU RAM (NVIDIA A100 Tensor

Core GPU), 64 GB system RAM and 256 GB disk. The learning

rate and batch size are set to 0.001 and 128 in respective for model

training. The same learning rate and batch size are also adopted

for training other models in our comparative evaluation (detailed

in Section 7.2.1). The loss control coefficients 𝛼 and 𝛽 (defined in

Equation 5) are empirically set to 0.03 and 0.02 to optimize the

performance (the impact of 𝛼 and 𝛽 on recognition accuracy is

detailed in Section 7.2.4).

Multipath profile calibration. The multipath profile obtained

with the multipath decomposition process characterises the power

and delay of each facial scattered path and plays an important role

in deriving facial spectrum. However, the profile is shifted by an un-

known time delay offset – In contrast to the front-end of mmwave

FMCW radar [10] that incorporates a loop-back channel for provid-

ing a reference timing signal, the low-cost acoustic transceiver does

not have built-in loop-back channel and thus cannot timing the ar-

rival of signal path with absolute delay measurement. To solve this

issue, we leverage the direct path leakage from the speaker to each

microphone to conduct a calibration. Specifically, with the derived

multipath profile, we align the first peak (the direct path always

arrives as the first peak due to the shortest travel distance) to the

actual time-of-arrival of the direct path which is pre-measured with

a digital laser measure. The calibration is purely software based

and is a one-shot effort as long as the speaker has a fixed location.

Facial spectrum sizing. The dimension of the facial spectrum

space is determined by parameters M, N, and Q, as defined in Sec-

tion 3. These parameters are empirically determined to ensure that

the spatial dimensions comprehensively cover the typical size range

of human faces. Additionally, the cube size within this space cru-

cially influences the granularity of the facial spectrum, with smaller

cubes theoretically enhancing granularity and providing more de-

tailed information. However, it is important to note that despite

the potential for increased granularity, the resolution of the facial

spectrum is ultimately determined by the hardware bandwidth. For

our current implementation, the dimension of facial spectrum is

set to 30cm-by-25cm-by-5cm, and the cube size is set to 2mm.

7 EVALUATION

In this section, we evaluate the performance of AcFace with the

prototype system. We begin by validating the derived facial spec-

trum by benchmarking its capability on capturing facial features.

Following this, we conduct a series of end-to-end experiments to

demonstrate the system’s performance across various aspects and

examine how different factors impact the performance.

Data collection. We conducted data collection with 15 volunteers.

Each participant underwent a scanning procedure to capture their

facial features using consecutive FMCW symbols. This process

was performed twice for each individual: once with a mask and

once without. During the scans, participants were instructed to

gradually move their faces away from the acoustic transceiver, in-

creasing the distance from 15cm to 35cm. Each scanning session

lasted 90 seconds, enabling us to capture facial spectrums at various

distances (The 90s facial scanning is required only for new user

registration, and is not necessary for online testing). To guarantee

comprehensive capture of all facial features, we maintained a per-

pendicular alignment between the center of the participant’s face

and the center of the microphone array throughout the scanning.

The collected data, encompassing different users, distances, and

mask conditions, were then paired to compile the final dataset. We

randomized the dataset, allocating 80% for training and reserving

20% for testing. The data collection methodology received approval

from the Institutional Review Board (IRB) of our university.

7.1 Facial Spectrum Validation

An effective spectrum should be a well representation of the essen-

tial facial features. In this section, we first define essential facial

features, and then evaluate the spectrum’s accuracy in representing

these features, as well as its uniqueness among different users.

Essential facial features.We design a data structure F = {s, p},
named facialSpec, to characterize essential facial feature obtained

from 2D front face. Specifically, s = (w, h) measures the width

(w) and height (h) of a certain face, and p is a vector consisting

of four 2D coordinates, i.e., p =
[
pf , plc, prc, pn

]
which represent

the positions of four essential landmarks including the forehead,

left cheek, right cheek and nose in respective. Figure 11 illustrates

these parameters that are adopted for facial spectrum validation.

Metrics.Based on facialSpec, we introduce twometrics: self-distance

(denoted as 𝜹) and cross-distance (𝚫). Self-distance measures the

2D distances between the positions identified from the spectrum

and the pseudo-truth positions1 which are obtained from an RGB

facial image of the same user, and cross-distance measures the 2D

distances between the positions estimated from different user’s

1The positions obtained from facial images provide a benchmarking reference which
however may not reflect the ground-truth positions of the facial landmarks, so we
name the reference positions as pseudo-truth.
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Facial contour = ( , )
Position of 
essential 

landmarks

Center of forehead = ( , )
Center of left cheek= ( , )

Center of right cheek= ( , )
Center of noise tip= ( , )

FacialSpec = { , }
Figure 11: Illustration of parameters included in defining

essential facial features.

spectrums. Basically, self-distance evaluates the spectrum’s capa-

bility in representing the facial features of a certain user, and cross-

distance indicates the spectrum’s capability in distinguishing the

facial features among different users.

Specifically, the self-distance of the 𝑖-th user can be formulated

as below,

𝜹 i = ‖(dsi, dpi)‖2 (6)

where ‖∗‖2 denotes the L2-norm of a certain vector, dsi = ‖s
sp
i

−

sim
i
‖2 represents the Euclidean distance of the facial size feature

si that is obtained from the spectrum (s
sp
i
) and the image (sim

i
),

and dpi = ‖p
sp
i

− pim
i
‖2 represents the average of the Euclidean

distances of the landmark position features pi that are extracted

from the spectrum and image.

Similarly, the cross-distance between two different users (with

index i and j, i ≠ j) is formulated as below,

𝚫ij = ‖(dsij, dpij)‖2 (7)

where dsij and dpij represents the same Euclidean distances as

defined in Eq. 6 but are calculated between different users’ facial

spectrums.

Feature extraction. To extract the essential facial features and

construct facialSpec of each user, we apply an edge detection al-

gorithm [5] and a local maxima detection algorithm [11] to the

grayscaled spectrum, based on which we further obtain the size

of the face (ssp) and the positions of essential landmarks (psp). To

obtain the pseudo-truth for each user, we first re-size the RGB facial

image to make it align with the dimension and the scale of the

facial spectrum, and then process facial images with an open source

landmark detection model [8] to obtain Fim. The size and positions

are calculated from the row and column index of corresponding

pixels.

Results. We demonstrate the efficacy of the spectrum by compar-

ing the distribution of self-distance and cross-distance. Figure 12a

depicts the CDF of the two distances where the median of self-

distance is only 50 pixels whereas the median of cross-distance is

over 100 pixels. The results indicate that the features extracted from

the spectrum are closely distributed with that obtained from the

facial image of the same user, and can be easily distinguished from

the spectrum of a different user. Figure 12b further explains the

result by demonstrating the distribution of the two distances. As we

can see, the self-distance measurements locate at around 50-pixel

distance occupying a narrow space, whereas the cross distances
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Figure 12: (a) The CDF of the self-distance and cross-distance

and (b) the distribution of the distance measured over two

different types of features (The feature of face size ds and

essential landmark positions dp).

scattering over a large space which reveals the high deviation of

the distribution.

7.2 End-to-end Evaluation

We examine the end-to-end performance of AcFace in this section.

We first demonstrate the face recognition accuracy of AcFace (with

and without mask blockage), in comparison with the other three

facial recognition approaches (one of them is also capable of recog-

nizing masked faces). After the comparative evaluation, we further

validate the robustness and scalability of the system. Specifically, we

evaluate 1) the system’s robustness to environment changes (with

moving dynamics and background noise considered) and 2) the

system’s scalability to increased number of users. In addition, we

investigate the efficacy of the discriminator-recognizer network

design through an ablation study. The computational efficiency is

evaluated at last.

Metrics.We evaluate the end-to-end performancewith fourmetrics

- Precision, Recall, F1-score and Averaged Accuracy (AA) according

to their definitions for multi-category classification [30]. A higher

precision indicates that the prediction is more accurate in its rec-

ognized face input, and a higher recall indicates that the system

works more stable in not missing correct face input. F1-score gives

an overall indication of the precision and recall. Averaged accuracy

quantifies the overall accuracy of the prediction in all categories.

7.2.1 Comparative evaluation. We evaluate AcFace performance

in comparison with three state-of-the-art vision based approaches,

namely VGG-Face [6], FaceNet [28], and SRT [4]. Among the three

comparative approaches, SRT uses a self-restrained triplet loss

for the original ResNet-50 [15], and is capable of conducting face

recognition with mask blockage. For fair comparison, we re-train

the models with the same data size, learning rate and batch size.

The dataset used for re-training is obtained from open face dataset

VGGFace2 [6]. We use a software tool named MaskTheFace [3] to

generate masked facial images.

The evaluation results are detailed in Table 1. While FaceNet

provides the best performance (i.e., 98.86% accuracy and 98.79%

precision), the performance sharply drops by near 15% when facial

masks are applied, and by nearly 20% when used in dim environ-

ment. VGG-Face experiences similar performance drops during
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Test setting VGG-Face FaceNet SRT AcFace

Without mask 98.05/97.73 98.86 / 98.79 98.81/97.06 95.88/96.12
With mask 83.16/83.25 85.63/86.66 95.61 / 95.82 95.77 / 96.07

With mask (dim) 77.67/77.32 78.11/79.67 81.57/83.79 95.71 / 96.19

Table 1: The averaged accuracy and precision of different

face recognition approaches under three different test set-

tings. AcFace outperforms the other three approaches in its

robustness to mask blockage and poor lighting condition.

Environment Precision (%) Recall (%) F1-score (%) AA (%)

Meeting room 95.66/96.53 95.51/95.49 95.76/96.33 95.88/−
Lab 96.79/95.99 95.67/95.87 95.82/95.87 95.81/−
Office 95.29/95.90 94.82/95.83 94.66/95.86 95.45/−

Table 2: The performance of AcFace measure with different

environments (stated with the average and median of the

four metrics). The lab environment is with a lot ambient

movements from people, and the open office is the most

challenging due to its noisy and dynamic environment.

the test. SRT and our AcFace are able to provide comparable per-

formance (i.e., 98.81/97.06% for SRT and 95.88/96.12% for AcFace)

when tested without masks. Both can tolerate the facial mask block-

age and provide comparable performance when the masks are ap-

plied (95.61/95.82% for SRT and 95.77/96.07% for AcFace). When

further applied to dim environment where we reduce the ambient

light AcFace stands out with reliable performance (i.e., 95.71/96.19%

accuracy and precision) while SRT suffers over 10% loss and only

achieves 81.57/83.79% accuracy and precision. The results suggest

the high performance of AcFace when compared with vision based

approaches, and in particular its comparative advantage when ap-

plied in harsh application conditions.

7.2.2 Different environments. We evaluate AcFace in practical in-

door environment including a meeting room, a lab, and an open

office. The meeting room is kept quite and clear without many

people moving around. The lab environment is relatively quiet but

with a lot ambient movements from people. The open office is the

most challenging due to its noisy and dynamic environment. The

measured noise levels in the three experimental environments are

33dB in a meeting room, 42dB in a lab, and 51dB in an open office.

The test datasets for both the meeting room and the office are newly

collected and are not included during model training.

Table 2 provides detailed results. The averaged accuracy is over

95% across experiments with the different environments. The Pre-

cision, Recall and F1-score also suggest high performance of Ac-

Face even with the noisy and crowded office environment, which

demonstrates the robustness of AcFace when applied to unfavoured

scenarios. Although part of the facial scanning signal spans over the

audible band, our system still achieves robust performance under

noisy environment which primarily because of the noise-robust

feature of FMCW chirp signal. The multipath identification process

helps avoid the negative impact of human movement dynamics

from background environment.

7.2.3 Scalability. We validate the scalability of AcFace by increas-

ing the number of users of the test dataset from 10 to 15 and compar-

ing the recognition accuracy. As summarized in Table 3, the accu-

racy remains stable (higher than 95%) with the increasing number

Number of users 10 11 12 13 14 15

Ave. Accuracy (%) 95.88 95.33 95.97 95.01 96.13 95.67
Sign. matching delay (ms) 31.36 32.21 34.80 37.79 39.96 43.39

Table 3: The scalability of the proposed network model is

validated by using a test dataset with increasing number of

users. The averaged accuracy of AcFace remains stable for

all the tests.
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Figure 13: The impact of two internal parameters: (a) varying

𝛼 and 𝛽 – the RD-Net degrades to a normal CNN when 𝛼
and 𝛽 are set to zero. (b) different number of enabled audio

channels.

of users. The reliable accuracy, even with unseen users, is resulted

from two aspects: First, the proposed signal processing technique is

carefully designed to construct facial spectrum that captures rich fa-

cial features, such as facial contours and important landmarks (e.g.,

forehead, cheeks and nose), as visualized in Figure 7 and Figure 8.

Second, the design of RD-Net adopts the signature matching ap-

proach, which is inherently scalable to handle an increased number

of users once the model has been adequately trained for signature

recognition (unlike conventional multi-class classification model

which requires re-training every time a new user is included).

The table also details the signature matching delay of the pro-

posed RD-Net. As we see from the results, the delay increases from

31.36ms to 43.39ms when the number of users increases from 10

to 15, suggesting a linear increasing trending when user size be-

comes larger. This is due to the sequential execution of the signature

matching process when it deals with different test samples. Never-

theless, the total delay of signature matching is only 43ms when

there are 15 users. We may project to less than 5 second even when

the user base increases to over 100. When applying parallel comput-

ing with clustered machine inference, the system can easily scale

up to handle hundreds of thousands of users at second level.

7.2.4 Internal impact factors. We consider two impact factors that

are internal to our system – 1) the selection of 𝛼 and 𝛽 and 2) the

number of audio channels. We detail our evaluation as below.

The selection of 𝛼 and 𝛽 . The two parameters are used to weight

the impact of mask blockage and distance variation, and need to be

adjusted to balance their significance. We train and test the model

over multiple rounds with using different 𝛼 and 𝛽 . Figure 13a shows
the results. When 𝛼 and 𝛽 are set to zero, the model degrades into

a normal CNN network (basically an ablation study where the

discriminators are removed from the network). In such a case, the

averaged accuracy is about 85.19% because the model can hardly

recognize masked samples. With different settings, we obtain the

optimal performance when 𝛼 = 0.03 and 𝛽 = 0.02, which provides
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Implementation Spec. Gen. Time Size Train Time Infer Time Acc.

Full system 4.68s 85.14MB 5.06ms 1.45ms 95.64%

Lightweight 3.07ms 46.98MB 4.29ms 1.31ms 91.51%

Table 4: The computational effciency and accuracy of the

fully implemented system and the lightweight solution.

over 95% accuracy.We adopt such a setting for our prototype system

implementation.

The number of audio channels.AcFace uses a four-by-four array

of microphones (i.e., audio channels) to collect facial scattered signal

at different measurement locations. We evaluate how the number

of audio channels impacts the recognition accuracy. Specifically,

we adopt the acoustic samples of 8 channels (microphone 5 - 12, as

indexed in Figure 13b), 10 channels (microphone 5 - 12 plus 2 and

3), 12 channels (microphone 5 - 12 plus 2, 3, 14 and 15), 14 channels

(microphone 1 - 12 plus 14 and 15) and 16 channels. As Figure 13b

suggests, using more channels improves the overall performance

by providing higher accuracy (the median of averaged accuracy

is higher) and better reliability (the 25th and 75th percentiles of

averaged accuracy are closer).

7.2.5 Computational cost. The system computational cost is sum-

marized in Table 4. The two implementations are compared in their

spectrum generation time and model training efficiency (detailed

with the total number of parameters, model size, training time and

inference time). The training time represents the training duration

of one mini-batch (128) of the total samples and the inference time

is the time required by executing the signature matching between

the facial spectrum samples of two users. As we see from the table,

the lightweight implementation reduces computational cost signifi-

cantly (spectrum generation time from near 5s reduced to around

3ms) while at a cost of around 4% accuracy drop. The varied perfor-

mance can be attributed to its approach of feeding the multipath

estimates directly into the neural network. In this way it bypasses

the computational steps involved in generating the facial spectrum,

but on the other hand relies heavily on the neural network’s ability

to infer such features from the data.

8 DISCUSSION

Impact of face pose. The impact of different face pose (i.e., dif-

ferent 𝜃 as illustrated in Figure 14a) is resolvable. During data

collection, we can let the user move her head and obtain spectrum

samples at various directions – Figure 14b and 14c shows two ex-

amples at the direction of 45 and 90 degree. When trained with

these samples, the RD-Net should be able to integrate the features

extracted from different viewing angles and finally provides similar

accuracy for different facing direction.

We conduct a preliminary validation of this hypothesis with

an experiment. The experiment uses the facial spectrum samples

collected when two users change their facing directions from 0

degree (front view) to 90 degree to train the RD-Net, and then test

the recognition accuracy using the spectrum of different direction.

The results is presented in Table 5, which demonstrates over 93%

averaged accuracy for both users when their facing direction varies.

The accuracy can be further improved by incorporating data fu-

sion techniques to better integrate the features obtained from the

different angles, which we leave as future work.

Face
(Top view)

Mic.3Mic.2Mic.1

Direction

(a) (b) (c)

Figure 14: Facial spectrums derived when the facing direction

𝜃 equals (b) 45 degree and (c) 90 degree.

Facing direction (degree) 0 15 30 45 60 75 90

Ave. Accuracy - User 1 (%) 95.44 95.13 93.25 94.01 93.13 93.29 93.61
Ave. Accuracy - User 2 (%) 96.25 93.41 91.94 93.67 93.71 93.67 94.22

Table 5: The averaged accuracy when two users are in differ-

ent facing directions.

Impact of appearance changes. Appearance changes such as

hairdos and hats have a minor impact on the recognition results

of our system, but facial reflectors (such as glasses) can prevent

the system from identifying the current user. The reason is that

different hairstyles and hats have a smaller effect on the reflection

of acoustic signals in the main facial area (the part not higher than

the forehead), whereas objects like glasses can cause significant

changes in the reflection. To further adapt to the impact of facial

reflectors, we may need to improve the design of the network

structure (for example, by introducing a glass discriminator on top

of the existing model) and re-train specifically for these scenarios.

Working with mobile devices. As illustrated in Figure 13b, the

performance of AcFace may get impaired due to the reduced spatial

diversity. To work well with mobile devices which are normally

equipped with less number of microphones, we can let users hold

the device and move it in front of his face in order to collect acoustic

samples scattered by different facial areas. We leave this design as

future work.

9 RELATEDWORK

9.1 Face Recognition

Face recognition has beenwidely adopted for user identification due

to the uniqueness and long-term stability of facial characteristics.

The majority of face recognition techniques are designed atop vi-

sion based image processing [15, 25, 28]. For example, FaceNet [28]

achieves high accuracy by using deep CNN to learn a mapping

function that converts the similarity of face images to the distance

defined on Euclidean space. VGG-Face [25] investigates the perfor-

mance of numerous variants of existing CNN models and adopts

a much simpler but effective network that achieves high accuracy.

These techniques, however, do not work when the facial landmarks

are blocked by obstacles (e.g., facial masks). Several techniques are

proposed in recent years to achieve face recognition under masks.
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Commercial solutions such as Apple Face ID [2] focuses on identi-

fying features around the eyes when users wear mask which might

compromise their accuracy. Furthermore, the facial recognition

technology employed by the commercial devices (e.g., smartphones,

tablets) necessitates sophisticated and expensive hardware, includ-

ing a dot projector, flood illuminator, and infrared camera. Such

requirements render it less practical for cost-sensitive applications,

including secure entry systems or attendance monitoring. SRT [4]

proposes a self-restrained triplet loss design, based on which the

authors leverages the Embedding Unmasking Model (EUM) and

achieves reasonable accuracy even with mask blockage. MaskThe-

Face [3] designs an open-source tool to generatemasked face images

from existing face datasets. The authors re-train the Facenet model

with the masked dataset and achieve better performance. These

techniques adopt the common idea of making the model converge

to the reduced feature space extracted from the explicit landmarks

(e.g., eye, forehead) when the user is with mask, but usually takes

heavy overlead of data collection/generation and model training.

Recently, wireless signal based face recognition technique emerge

which explore the features from facial reflected acoustic/RF signal.

EchoPrint [44] leverages the acoustic hardware (i.e., speaker, micro-

phone) and camera to build a two-factor authentication system that

leverages both acoustic reflections and vision landmarks. However,

the system inherits the vulnerability to facial blockage since it relies

on vision algorithms for landmark detection. RFace [37] exploits

the facial features from RFID signal to distinguish different users

and combat spoofing attacks. mmFace [38] proposes a millimeter

wave based facial authentication system that works for masked

faces. The system adopts the idea of Synthetic Aperture Radar to

increase the field-of-view and sensing resolution of commercial mil-

limeter wave devices. However, it requires a 2D slide trail to move

the transceiver for facial scanning, which imposes extra overhead

on system implementation for practical usage.

9.2 Human Identification

Intelligent user identification has become a cornerstone technol-

ogy underpinning a variety of applications, driven by the growing

demand for secure and convenient authentication methods. Over

recent years, a plethora of research efforts have been dedicated to ex-

ploring the use of diverse biometric markers for user authentication,

significantly enhancing both security and user experience across

different platforms. Among these innovations, EchoFace [9] utilizes

acoustic signal for detecting and defending against photograph/video-

based attacks on facial recognition systems. It is essentially a vision-

based facial recognition system but utilizing acoustic signals to dis-

cern between genuine human faces with uneven stereo-structure

and 2D images or videos. VocalLock [20] utilizes the unique charac-

teristics of an individual’s vocal tract to offer a user authentication

solution that is notably resistant to replay attacks, further optimized

for ease of use by its passphrase-independence. Similarly, Touch-

Pass [39] harnesses the distinctive physical attributes manifested

through the act of touching, employing active vibration signals to

discern the unique patterns of screen interaction attributable to

different users. Regarding wearable technology, Bilock [45] intro-

duces an innovative approach to authentication by capturing the

unique biometric signature produced by human dental occlusion,

thereby offering a novel and secure method for user verification.

Building on this rich literature of biometric-based authentication

solutions, AcFace distinguishes itself by leveraging the acoustic

characteristics of 3D facial features. This method is specifically

designed for improved robustness even in the face of adverse envi-

ronmental conditions, marking a significant advancement in the

field of intelligent user identification.

9.3 Acoustic Sensing

Acoustic signal has been exploited for diverse sensing applica-

tions [18, 27, 33–35, 41, 42] for its high ranging resolution due to

its nature of low propagation speed. An acoustic based contactless

respiration detection scheme is proposed in [33], which achieves

high ranging resolution with using C-FMCW – a time domain cor-

relation based method for ToF estimation. RobuCIR [35] conducts

CIR estimation with least square channel estimation, which is based

on time domain signal correlation, and thus inherits its instability

when working with noisy channels. In [41], the authors extract tiny

heartbeat motion accurately by compensating the random buffer

delay at the acoustic front-end. The virtual transmission signal

based two-phase mixing approach guarantees the correct relation

between the first two paths, but assumes that the power of the first

path must be stronger than that of the second path, which does

not hold when the speaker is directional or LOS path is blocked.

CAT [22] proposes to use distributed FMCW to combat the hard-

ware induced delay between the unsynchronized transmitter and

receiver, but it requires calibration to obtain the reference position.

Strata [40] and FingerIO [24] enable fine-grained device free track-

ing by monitoring the continuous phase rotation over time, which

is not applicable to in our system where there exists huge amount

of multipath reflections. To the best of our knowledge none of ex-

isting acoustic sensing solutions can be applied to face recognition

in harsh conditions as considered in this paper.

10 CONCLUSION

This paper studies an acoustic based face recognition approach that

complements existing vision based solutions, in particular when

applied in harsh environment conditions. The design of AcFace

entails novel acoustic signal processing techniques as well as a

special neural network design to alleviate the impact of facial mask

blockage. One future work is to adopt AcFace in a mobile setting

where the challenge is achieving comparable performance with

reduced number of microphones.
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