
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017 69

From Rateless to Hopless
Zhenjiang Li, Member, IEEE, ACM, Wan Du, Member, IEEE, ACM, Yuanqing Zheng, Member, IEEE, ACM,

Mo Li, Member, IEEE, ACM, and Dapeng Wu, Fellow, IEEE

Abstract— This paper presents a hopless networking paradigm.
Incorporating recent techniques of rateless codes, senders break
packets into rateless information streams and each single stream
automatically adapts to diverse channel qualities at all potential
receivers, regardless of their hop distances. The receivers are
capable of accumulating rateless information pieces from differ-
ent senders and jointly decoding the packet, largely improving
throughput. We develop a practical protocol, called HOPE, which
instantiates the hopless networking paradigm. Compared with
the existing opportunistic routing protocol family, HOPE best
exploits the wireless channel diversity and takes full advan-
tage of the wireless broadcast effect. HOPE incurs minimum
protocol overhead and serves general networking applications.
We extensively evaluate the performance of HOPE with indoor
network traces collected from USRP N210s and Intel 5300 NICs.
The results show that HOPE achieves 1.7× and 1.3× goodput
gain over EXOR and MIXIT, respectively. We further implement
HOPE on a sensor network testbed, achieving the goodput gains
over CTP.

Index Terms— Rateless codes, wireless networks, routing.

I. INTRODUCTION

CONVENTIONAL multi-hop wireless networks route
packets hop-by-hop along a path of favorable links from

the source to the destination [8], [25], [27], e.g., s → n1 →
n2 → d in Fig. 1(a). The validity of multi-hop routing is
based on the belief that any other paths cannot provide higher
throughput than the selected one. Instead of choosing a fixed

Manuscript received April 24, 2015; revised November 24, 2015 and
April 10, 2016; accepted April 16, 2016; approved by IEEE/ACM TRANSAC-
TIONS ON NETWORKING Editor T. Hou. Date of publication May 18, 2016;
date of current version February 14, 2017. The work of Z. Li was supported
by the City University of Hong Kong under Grant 7200480/CS. The work
of Y. Zheng was supported by the Hong Kong Early Career Scheme under
Grant PolyU 252053/15E. The work of M. Li was supported by the Singapore
Ministration of Education under Grants AcRF Tier 2 MOE2012-T2-1-070 and
AcRF Tier 1 MOE2013-T1-002-005 and the Nanyang Technological Univer-
sity Nanyang Assistant Professorship under Grant M4080738.020. The work
of D. Wu was supported in part by the National Science Foundation under
Grants ECCS-1509212 and CNS-1116970 and the National Natural Science
Foundation of China under Grant 61529101. A preliminary version of this
work was presented at the ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc) 2015 [28]. (Corresponding author:
Wan Du.)

Z. Li is with the Department of Computer Science, City University of Hong
Kong, Hong Kong (e-mail: zhenjiang.li@cityu.edu.hk).

W. Du and M. Li are with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore 639798, Singapore (e-mail:
duwan@ntu.edu.sg; limo@ntu.edu.sg).

Y. Zheng is with the Department of Computing, The Hong Kong Polytechnic
University, Hong Kong (e-mail: csyqzheng@comp.polyu.edu.hk).

D. Wu is with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32611 USA (e-mail: wu@ece.ufl.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. This consists of an 86-kB
PDF appendix that briefly introduces the encoding and decoding principle of
the rateless codes used in the paper.

Digital Object Identifier 10.1109/TNET.2016.2561304

Fig. 1. (a) A three-hop path in a wireless network. (b) Favorable and
unfavorable links in the network.

path, opportunistic routing approaches delay the path selection
and broadcast packets to a sub-set of nodes at each hop,
exploiting the opportunities of the successful packet reception
over the traditionally unfavorable links [2], [4], [17], [26], [29],
e.g., s → n2, s → d, and n1 → d in Fig. 1(b). Nevertheless,
wireless channels are still under utilized because: 1) Senders
have no intended receivers before transmission. So they suffer
from the dilemma to set appropriate data rates to fully utilize
the channel, e.g., a higher data rate could miss the oppor-
tunistic gains over unfavorable links, while a lower rate will
limit the throughput of favorable links when the opportunistic
gains do not appear. 2) Opportunistic routing is usually packet-
oriented, which turns only the intact packet opportunities into
effective throughput.

This paper studies from an information-oriented perspective
and observes that while the data packet is delivered in a hop-
by-hop manner, e.g., s transmits packets to n1 in Fig. 1(b), the
information contained in the transmission is spread beyond
each hop. Other network nodes are the potential receivers
and they have the opportunities to receive different amount
of information from the sender, though the information
may not be immediately adequate to be translated to an
intact packet. In this paper, we apply recent rateless coding
schemes and encode packets into rateless information streams.
Rateless codes adapt each individual data transmission to
multiple receivers, automatically synchronizing the effective
data rate to the diverse channel qualities of all the wireless
links. At the receiver side, channels from all the potential
senders are viewed as a single joint information channel.
Each node accumulates rateless information from the joint
information channel regardless of their hop distances, and
jointly decodes the packet using the information pieces from
multiple senders. We name such a networking paradigm
hopless networking. Hopless networking breaks the hop-
by-hop packet transmission into the hopless information
accumulation. The applied rateless codes allow each node to
best adapt to the information quality.

We develop a hopless data forwarding protocol, HOPE, to
instantiate the hopless networking paradigm. HOPE entails

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

70 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

a non-trivial design which concerns forward scheduling,
role transition of nodes, protocol stack development, etc.
At any time, HOPE selects a “best” candidate from the
nodes possessing a packet to forward it in the network until
another “better” candidate decodes the packet. To do so,
HOPE prioritizes intermediate nodes by their channel qualities
to the destination, and performs a distributed scheduling to
delegate the forwarding “right” among the nodes. Each node
switches its role between the information accumulator, dele-
gated source, and destination in forwarding the data packet.
All above operational logics are assembled in a hopless layer,
which works with the link and network layers in the traditional
protocol stack. The hopless layer can be further extended down
to work with the recent physical layer rateless codes for higher
throughput. We carefully address the practical challenges to
incorporate the existing rateless codes with multiple senders
and receivers in the hopless data packet forwarding. The
rateless unit numbering design maximizes the information
gain from multiple senders. The joint rateless coding scheme
further efficiently aggregates information from these senders
and decodes the original packet without a central coordination.
We also propose a priority-based back-off scheme to effec-
tively avoid collisions during the data delivery. Compared
with the existing opportunistic routing family, HOPE has the
following advantages.

• HOPE accumulates the rateless information from multi-
ple senders, and jointly decodes the packet to improve
throughput over the packet-oriented approaches [1], [2],
[4], [17]. In HOPE, the successful packet decoding and
forwarding at all potential receivers are essentially asyn-
chronous, involving small coordination overhead.

• Data forwarding in HOPE best adapts to the channel qual-
ity diversity and makes full use of the wireless broadcast
effect. Recent studies (e.g., SPaC [11] and MIXIT [23])
cannot fit all potential receivers in one transmission and
are thus suboptimal in utilizing the hopless information.

• Unlike the existing flow-based approaches built on intra-
flow network coding (e.g., MIXIT [23], MORE [4],
FUN [18]), HOPE does not feature the aggressive usage
of the network bandwidth. HOPE smoothly works with
the conventional CSMA, and performs well with the flow
traffics and the intermittent traffics in the network.

We extensively evaluate HOPE with the indoor network
traces collected from 19 USRP N210s and 19 Intel 5300 NICs.
We compare HOPE with state-of-the-art opportunistic routing
approaches. The results show that compared with ExOR [2]
and MIXIT [23], HOPE improves average goodput by
1.7× and 1.3× respectively in both single- and multiple-flow
scenarios. We further implement HOPE on a sensor network to
show that HOPE can be comfortably integrated into resource
constrained platforms, improving the goodput performance
over CTP [12], a classical data collection protocol in wireless
sensor networks.

In the rest of this paper: we introduce the motivation and the
hopless networking in Section II. Section III details the design
of HOPE. In Section IV, we conduct evaluations. Section VI
reviews related works and Section VII concludes this paper.

Fig. 2. Channel SNRs across different links.

II. MOTIVATION OF HOPLESS NETWORKING

A. Packet-Oriented v.s. Information-Oriented

Packet-oriented: We deploy 4 USRP software radios based
on the topology of Fig. 1 and look into the detailed channel
qualities when packets traverse from s to d. The USRP
nodes are configured to operate on OFDM at 2.4GHz. The
detailed experiment settings will be given in §7. We let s,
n1, and n2 send 40 packets in sequence and measure the
SNRs at downstream nodes. Fig. 2 depicts the measured SNRs
of the packets “heard” over all 6 links in Fig. 1(b). The
favorable links, s → n1, n1 → n2, and n2 → d, selected
in conventional multi-hop networks, experience good average
SNR (≥15dB). The traditionally unfavorable links, s → n2,
s → d, and n1 → d, experience poorer SNR conditions.
In conventional multi-hop networks, the information from
unfavorable links is usually not utilized if it is not adequate to
translate to a decoded packet. Being packet-oriented, the multi-
hop networking keeps routing intact packets to a “better” relay
at each hop until the packets reach the destination. Benefitting
from the wireless broadcast effect, however, when one node
sends a packet, all nodes have access to the transmitted signals
though with distinct qualities.

Information-oriented: This paper studies from an
information oriented perspective and aims at improving
throughput with the previously underutilized information
across multiple hops (which we call hopless information).
We apply the recent rateless codes to encode the raw data
packets into a stream of rateless units. Rateless codes allow
the sender to incrementally reduce the effective data rate by
sending more rateless units, which adaptively matches the
channel condition to the receiver.

We experiment with the USRP testbed and quantify the
potential gain of making use of the hopless information.
We leverage Spinal codes [33] to perform rateless coding on
the raw data packet. Spinal codes apply a pseudo-random hash
function to the raw data bits to produce a sequence of coded
symbols in a way that “every achievable higher coding rate is
a prefix of achievable lower rates” [33]. A constant number
of coded symbols are packed together to form each rateless
unit, named Spinal “pass”. To deliver a data packet, a sender
transmits multiple (and also distinct) “passes” generated from
this packet. By receiving sufficient “passes”, the receiver could
decode the original packet. The total amount of “passes” used
in the decoding determines the achieved data rate for this
packet delivery. Thus, Spinal codes allow a sender to gradually
reduce the effective data rate by sending more Spinal “passes”.
More detailed descriptions of Spinal codes can be found in the
supplementary online appendix.

LI et al.: FROM RATELESS TO HOPLESS 71

Fig. 3. Effective throughput across different links.

Fig. 4. Hopless networking paradigm for an arbitrary node ni.

We let s keep transmitting Spinal “passes” for a L-bit
packet. The three nodes n1, n2, and d simultaneously receive
the “passes” from s. As the channel quality of s → n1 is better
than s → n2 and s → d, we expect that n1 first decodes
the packet with fewer “passes”. During the time, n2 and d
accumulate the same number of “passes”, but containing more
symbol errors. We keep s sending the “passes” until n2 and d
are eventually able to decode the packet. We record the time t
of each node in decoding the L-bit packet and derive the
effective throughput etp = L/t. We repeat the experiment
100 times and obtain the effective throughput achieved on all
s → n1, s → n2, and s → d. We also do the same experiment
for the rest 3 links. In Fig. 3, we observe that the effective
throughputs on traditionally unfavorable links s → n2 and
s → d are substantial, i.e., when n1 decodes a packet from s,
the hopless information accumulated at n2 and d statistically
corresponds to 56% and 18% of the packet. Link n1 → d also
has substantial effective throughput, e.g., 53% of n1 → n2’s.

B. Hopless Networking Paradigm

We propose a hopless networking paradigm to incorporate
the potential effective throughput gained from the hopless
information. In hopless networking, a receiver decodes the
packet using the rateless codes from multiple senders. From
the receiver’s point of view, however, it is unnecessary to
identify the information pieces from each individual sender.
Instead, the receiver may treat the entire network as a whole
and view the channels from each sender as a single information
channel, which is called joint information channel in this
paper. The receiver then takes information from its joint
information channel. The highlighted links s → d, n1 → d
and n2 → d in Fig. 2 compose the joint information channel
for d. With the help of rateless codes, d is able to make the
full use of hopless information from both the conventional
favorable links n2 → d, and the complementary links s → d
and n1 → d.

Fig. 4 depicts the general hopless networking paradigm,
where each node ni is connected to the network through

its joint information channel. As adequate information is
accumulated from the network, ni is able to decode the packet.
At this time, if ni is the “best” candidate to forward the packet,
it takes the place of the packet forwarding and injects the
rateless codes of this packet to the network until another “bet-
ter” candidate decodes it. With such a networking paradigm,
whenever the information of a fresh packet is available in the
network, any node can fully accumulate it through its own
joint information channel. On the other hand, when any node
transmits a packet, the rateless codes automatically adapt to the
channel qualities of all potential receivers (explained below).

A natural question one may ask is: Why the potential
throughput gain revealed in hopless networking has kept being
overlooked in previous multi-hop networks?

Many existing studies tried to harvest such potential gains
by aggressively capturing opportunistic packets from unfa-
vorable links. Existing packet-oriented opportunistic routing
schemes, e.g., ExOR [2] and MORE [4], however, cannot
make the full use of those low-quality links. Only successfully
decoded packets surviving from low quality links are utilized.
As we have shown in the above experiment that the aggregated
throughput gain over low quality links is substantial, which
indicates that these schemes fail to fully leverage the wireless
broadcast effect and their performance is thus limited.

Some latest works [11], [23] notice similar gain of exploit-
ing partial information from corrupted packets and value the
“clean” bits or symbols from corrupted packets. By packet
combinations or network coding schemes, they can make a
better use of the low-quality links. Constrained by the unified
data rate of each transmission from the sender, those works
still cannot make the full advantage of wireless broadcast
effect. For the example in Fig. 2, s usually sets a suitable
data rate that matches the per-hop link quality of s → n1.
The high data rate for the good link, however, would be too
high for weak links like s → n2 and s → d to accept enough
correct symbols or data bits. Thus, only when the weak links
dramatically improve can intact packets yield the opportunistic
throughput gain. A low data rate helps to increase the oppor-
tunistic gain over weak links, but on the other hand, limits
the throughput that can be achieved over good links when the
opportunistic gains are not available. Similar problems also
exist on n1 → n2. In conventional multi-hop networks, a
sender always faces the dilemma of adapting to an impossible
best sending rate, which has long been considered an open
problem in opportunistic routing [2], [4].

Hopless networking hence outperforms prior designs from
two aspects: 1) each sender can adapt to the joint information
channel and produce rateless data streams that automatically
adapt to all various links for exploring the optimal trans-
mission opportunities; and 2) each receiver can adapt to the
joint information channel and the success of packet decoding
attributes to the rateless information from multiple senders.
We note that even with the hopless abstraction, data are not
delivered through one hop directly from source to destination.
Its delivery still follows a certain forwarding sequence, as each
node has a limited transmitting power, and the right forwarders
will be automatically selected by our protocol in the following.

72 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

III. SYSTEM DESIGN OF HOPE

We instantiate the hopless networking paradigm and develop
HOPE, a non-trivial design to coordinate the network and
acquire full throughput gain in the hopless forwarding.

A. Design Principle

In HOPE, each packet is rateless coded into a stream of
units. Many existing rateless codes can be applied, including
LT [30] and Raptor codes [39] for the link layer bit blocks or
recent Strider [13] and Spinal codes [33] for the physical layer
symbols. For each packet delivery, all nodes in the network
play the roles of the source, the accumulator, or the destination
to forward data. We elaborate the different roles and their
interactions in HOPE. We aim at giving a high level behavior
description and temporarily omit the technical details for the
sake of a clear presentation. Details are given in Section III-B.

The Accumulator: In HOPE, all nodes work as accumula-
tors. An accumulator listens to the network and accumulates
rateless units for each undecoded packet until the packet can
be decoded or the decoding is aborted.

The Source: There are two types of sources in HOPE: the
original source and the delegated source.

The original source initiates the packet transfer and sends
out the stream of rateless data units. The source keeps sending
until the packet gets ACKed.

A delegated source comes from an accumulator that suc-
cessfully decodes a packet and is ready to forward it. Multiple
accumulators may transit to delegated sources concurrently for
the same packet. A priority list specifies the priority rank of all
the accumulators, and HOPE leverages a priority based back-
off scheme (Section III-C) such that the delegated source with
the highest priority is more likely to forward first and the
potential duplicated forwardings from new delegated sources
with lower priorities are prevented.

The Destination: The destination behaves the same as an
accumulator except that it does not further forward packets.

After decoding a packet, the destination or the new dele-
gated source sends out an ACK (via broadcast) to stop the
previous delegated source’s transmission. The ACK contains
the IDs of the ACKed packet (e.g., p) and the delegated
source (e.g., n), which can also make accumulators with
lower priorities than n abort the decoding of packet p (as
a higher priority node n has already decoded p). In case of
multiple delegated sources for the same packet, the ACK sent
from a high priority delegated source prevents the duplicated
forwarding from the lower priority delegated sources.

Fig. 5 illustrates the interaction of different roles with
an example scenario. The original source s starts send-
ing a packet p to destination d. At the beginning,
nodes n, m, u, and d all work as accumulators, among which
nodes n and u first successfully decode the packet and become
the delegated sources. Due to the priority based back-off
(Section III-C), node n sends out an ACK to stop s and u
from forwarding, and aborts the decoding of packet p at m.
On the other hand, d keeps accumulating rateless units from
n and tries to decode the packet with the stored rateless units
from both s and n.

Fig. 5. An example of packet transmissions.

Fig. 6. HOPE architecture.

B. Hopless Layer

Although the design emphasis of HOPE is fundamentally
different from the existing hop based paradigm, a complete
redesign of existing protocol stack is less attractive. We seek
to provide a clean abstraction of the hopless operations and
integrate it with the current protocol stack. Fig. 6 depicts the
architecture of HOPE. HOPE adds a Hopless Layer, primarily
working with the link layer as follows.

To transmit a packet, the data payload is first delivered from
upper layers to the Role Transition Module of the hopless
Layer. The role transition module locally decides whether
the transmission should be aborted if other higher priority
nodes have already transmitted this packet to the network.
The decision is made based on the Priority list and the Packet
list. If the transmission can continue, the Information Bucket
generates rateless units of the packet, and adds a hopless
header in front of the rateless units. The rateless units with
the hopless header are finally passed to the link layer and
undergo CSMA before the transmission.

For receiving, the PHY layer loads the bits from a receiving
buffer after detecting a preamble. It passes the bits to the link
layer, which are further retrieved by the information bucket to
perform the rateless decoding. In addition, the packet list is
updated based on the hopless header of the received packet.
If the rateless code requires to access PHY symbols, we extend
the information bucket to the PHY layer and introduce a
Symbol Bucket in the system to substitute the function of the
information bucket.

In the rest of this section, we present the detailed design of
the hopless layer.

Information Bucket: The hopless layer receives rateless
units from the link layer. An information bucket is main-
tained to organize rateless units of all undecoded packets.
For an incoming data packet p, a node n retrieves the original

LI et al.: FROM RATELESS TO HOPLESS 73

source, destination, and sequence number from its header,
which uniquely identifies this packet. If the packet has not
been locally decoded before (by looking up the packet list
which will be detailed later), the node registers a unique piece
of buffer to accumulate the rateless units of the packet. If p has
already been registered, the rateless units are directed to the
existing buffer of p. Node n performs rateless decoding for the
packet whenever new rateless units are received. If decoding is
successful, the decoded packet is passed to the state transition
module and the buffer is released. If decoding fails, the buffer
is maintained to accumulate more rateless units. The main
functionality of the information bucket is to incorporate the
rateless coding scheme in receiving packets from the joint
information channel. The partial information of undecoded
packets is stored orderly until the packets get decoded.

The information bucket can be extended down to work
with the PHY layer. A symbol bucket can be included, which
directly fetches PHY symbols and can perform recent physical
rateless coding schemes. In our current design, we use Spinal
codes as the default scheme. The symbol bucket accumulates
the Spinal “passes” of symbols and performs rateless decoding
for each packet. The symbol bucket substitutes the information
bucket and preserves all operation logics. By performing the
physical layer rateless codes, the capability of the information
accumulation improves.

Priority List: A priority list is maintained for each desti-
nation in the network, which evaluates the data forwarding
utilities of all nodes to the destination, based on which their
forwarding priorities are ranked. Traditional routing metrics,
e.g., the geographic distance [22], ETX [7], etc, characterize
the packet-oriented transmissions, which do not truthfully
evaluate the forwarding utilities atop the hopless networking.
To this end, in HOPE, we propose the end-to-end effective
throughput from the current node to the destination as the
cost metric. A packet may be forwarded by arbitrary delegated
sources from the current node n to the destination d. Suppose
the packet length is L. The effective throughput from n to d,
denoted as etpn,d, can be approximated as:

etpn,d = max
i∈N

{ L

tn,i + (L − tn,i × L
tn,d

)/etpi,d

}, (1)

where ti,j is the time required for node i to deliver a packet
to node j with the best data rate, and N is the set of all
nodes in the network. The variables tn,i and tn,d in Eq. (1)
can be directly measured by n with probing packets. Probing
packets are decoded directly from one sender each time,
without the accumulation from other nodes. The etpn,d can
thus be derived through the periodic channel estimation and
iterative state exchange among nodes, similar to most existing
routing protocols. Therefore, we reuse the original periodic
channel estimation module in the network layer, but intercept
probing packets and add the hopless header before releasing
them to the link layer. Similar to existing routing protocols,
e.g., [7], [31], [40], the metrics are exchanged in the network
for the updating and the frequency to probe channels is set to
be once every tens of minutes.

After collecting etpi,d from each node, the destination
reorders the nodes in the network and distributes the updated

Fig. 7. The format of HOPE units.

priority list to all the nodes using the standard flooding
technique. In our current implementation, the priority list
is empirically updated every 30 minutes. Between two con-
secutive updates, the priority lists of each nodce are not
changed. Based on the channel probing, the priority list for
each destination d is then formed and maintained based on
the descending rank of etpi,d. As all the nodes in the network
are ordered in the priority list, the conventional routing loop
(oscillation between different delegated sources) will not occur
in HOPE. In addition, HOPE also tolerates certain suboptimal
selection of the delegated sources from the priority list because
its rateless feature. Therefore, each node reports their updated
etpi,d infrequently to reduce the communication overhead,1

e.g., with a long period length, or after the transmissions of
several data batches from the source node.

Packet List: Each node in HOPE also maintains a packet
list that reflects the packet possessions in the network, based
on which the node can locally manage its actions and role
transitions. An entry is maintained in the packet list for each
packet according to its source ID, destination ID, and sequence
number. Each packet entry records the highest priority node
(based on the node’s best local knowledge) that possesses the
intact packet. Each node dynamically updates the packet list
upon the reception of a data packet or an ACK. If the decoded
packet or the ACKed packet is not in the list, the node creates
a new entry. A packet entry thus does not necessarily indicate
the packet decoded by the node. The node may only receive
ACKs about this packet. Packet entries are periodically flushed
to control the storage overhead. We adopt the same period
length as the priority list update to flush the packet list since
we do not observe the sojourn time of one data file packet
greater than 30 minutes in our study.

Role Transition: In HOPE, nodes transit between two roles,
accumulator and delegated source. Initially, the original source
directly acts as a delegated source and all other nodes start
from accumulators. Destination is a special accumulator.

Being an accumulator, a node (e.g., n) waits for incoming
units. The node tells different unit types based on a field in
the header (UNIT_TYPE detailed in Fig. 7). If the incoming
unit is an ACK, node n checks the entry about the ACKed
packet in its packet list. If the recorded packet possessor in
the list has lower priority, node n updates the entry with the
possessor indicated in the ACK. If no entry is found about

1In HOPE, nodes explicitly report etpi,d, instead of including it in data
packets, because some nodes may not participate in the data delivery from a
source to a destination.

74 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

the ACKed packet, a new entry is created. A node remains as
an accumulator after receiving an ACK. If the incoming unit
is a rateless unit, node n accepts it in its information bucket.
However, prior to decoding, the node refers to the packet and
priority lists and takes the following possible actions:

Role transition: If the rateless unit sender has lower
priority than node n, and a) the packet is not in the packet
list or b) the packet is in the list but the recorded possessor
has lower priority than node n, node n accumulates the
rateless unit and performs rateless decoding in the information
bucket. In case the decoding is successful, node n transits to
a delegated source and updates the packet entry in the packet
list with its own ID (If no such an entry, the node creates
one); otherwise it remains as an accumulator and waits for
new incoming units. Becoming a delegated source, node n first
broadcasts an ACK after winning the channel contention. Prior
to transmit rateless units, the node further refers to the packet
and priority lists. If the packet list indicates that the data packet
is owned by some higher priority node, the delegated source
cancels the packet forwarding and then transits back to the
accumulator (it happens when multiple accumulators become
delegated sources concurrently and node n receives an ACK
from a higher priority node); Otherwise, node n generates a
stream of rateless units and sends them out. After sending
a rateless unit, node n transits back to an accumulator for
receiving possible ACKs. If no acknowledgement is received
within a time interval, node n turns to the delegated source
again and sends out another stream of rateless units.

ACK transmission without role transition: If node n has
higher priority than the sender of the incoming rateless unit
and has already decoded this packet, it transmits an ACK
and stays as an accumulator. Another possibility of merely
transmitting an ACK without role transition is that node n has
not decoded the packet, but the packet entry already exists (due
to a previous ACK). In this case, if the recorded possessor in
the packet list has higher priority than the sender, node n
transmits an ACK as well. In both cases, node n still remains
as accumulator but behaves like an ACK repeater to inform
the sender to stop transmitting and update its packet list.

No role transition and communication: If the sender of
the incoming unit has higher priority than node n, node n
takes no communication actions. It updates its packet list, if the
sender has higher priority than the recorded one.

In summary, the knowledge about the packet possession is
mainly updated through ACKs. An ACK is sent out when
either a node decodes a new packet or detects a packet already
decoded by a higher priority node while still transmitted by
a lower priority node so as to prevent such an unnecessary
forwarding. Each ACK is broadcasted once and not all nodes
are ensured to receive it. As a result, multiple delegated
sources may transmit the same packet concurrently. Since the
knowledge about the packet possession is updated through
ACKs as well as rateless units, a delegated source can imme-
diately cancel the packet forwarding once it knows a higher
priority node that possess this packet. HOPE tolerates such
inconsistency. In Section IV, we experimentally examine the
overhead due to duplicated transmissions and the result shows
the cost is generally small, e.g., < 10% of the total throughput.

It indicates that the protocol-level role transition design of
HOPE (and together with a priority based back-off technique
detailed in the next subsection) could effectively terminate the
path diverging and avoid duplicated transmissions.

C. Practical Issues

To translate the HOPE design into a working protocol, we
need to carefully address several practical issues, which are
discussed in the following.

Design and Format of Rateless Units: HOPE supplements
a fixed length header for each rateless unit. Fig. 7 depicts
the header format. UNIT_TYPE tells the current unit is a
rateless data unit, ACK, or probing packet. The ID of the
current sender is stored in the SND_ID field. The packet ID
(PACKET_ID), the source ID (SRC_ID), and the destination
ID (DST_ID), uniquely identify the packet that the current
rateless unit belongs to. The PASS_CNT and PASS_NUM
fields are two parameters related to the Spinal codes which
will be explained later. A CHECKSUM field is applied to
protect the header and the total overhead of header is only
12 bytes in our current design.

In HOPE, the header contains meta information to distin-
guish different units. The rateless units of the same packet
transmitted by different delegated sources have different head-
ers, so the headers are not rateless coded. Following the design
in 802.11, HOPE lets nodes transmit plain headers with the
lowest bit rate (e.g., 6.5Mbps in 802.11n networks [43]) so
as to lower the SNR requirement in acquiring the headers.
This maximizes the range of candidate accumulators that can
successfully retrieve the headers and accumulate the rateless
units. According to our experimental results in Section IV,
the slow rate header transmission can be decoded with as low
as 5dB SNR. ACK is a special unit with preamble [16] and
header only.

Rateless Decoding From Joint Information Channel:
None of existing rateless codes consider jointly decoding data
from different senders with different data qualities. HOPE
extends Spinal codes to decode data “passes” from multiple
senders, which can be similarly made to other rateless codes.

Pass numbering: This scheme is designed to maximize
the information gain from the accumulated “passes”. Accord-
ing to the encoding process of Spinal codes, the indepen-
dence of the generated “passes” is mainly impacted by the
collision probability of the hash function used. In [33], hash
function h is chosen uniformly from a pairwise independent
hash function family based on a random seed. One can derive
that the collision probability, i.e., h(si, mi) = h(s′i, m

′
i), is

n·B·k·d
k·2v , which is extremely low, e.g., on average one over

214 decodes [33]. It means that for a single sender and receiver
pair, a homogeneous hush function h is sufficient in the design.
Thus, a homogeneous hush function h is used to encode each
block in Spinal codes [33].

However, in our system, “passes” may be received from
different sources. To maximize the information gain from
the accumulated “passes”, different delegated sources forward
different “passes” for the same data packet. To make “passes”
independent with each other, a delegated source in HOPE

LI et al.: FROM RATELESS TO HOPLESS 75

transmits symbols following the latest “pass” received from
the previous delegated source, e.g., if the latest “pass” received
by node n2 from n1 is pass1, n2 can start transmitting from
pass1 + 1. To add some tolerance in accommodating more
“passes” (n1 may continue transmitting extra “passes” until
ACKed, and those “passes” may be received and made use
of by some accumulators), n2 may skip a random number b
“passes” and start from pass1 + b. The start point is specified
by PASS_NUM in the header for the receivers’ decoding.
Therefore, the pass numbering scheme could avoid applying
different hash functions to different nodes in the network to
simplify the system initialization and coordination.

Weighted decoding: After a delegated source trans-
mits the jth “pass” including N symbols, Xj(M) =
[x1, x2, . . . , xN], for a data packet M , we denote received
symbols as Yj = [y1, y2, . . . , yN]. In AWGN channels, a max-
likelihood decoder requires to satisfy:

max
M

{p(Yj |Xj(M))} = max
M

{
∏N

i=1

1√
2πσ2

ij

e
− (yi−xi)

2

2σ2
ij },

where σ2
ij is the noise variance of the ith symbol in the

jth “pass”. Taking the natural logs and dropping terms that
are not a function of M , we obtain:

max
M

{ln p(Yj |Xj(M))} ∝ min
M

{
∑N

i=1

(yi − xi)2

σ2
ij

}. (2)

To maximize the decoding probability, Eq. (2) implies that the
“passes” with lower SNRs should contribute less to decoding
compared with those with higher SNRs. In the original Spinal
codes, received symbols are viewed equally in decoding, as
they are from the same sender over a relatively stable channel.
We extend the Spinal decoder to minM{∑N

i=1
(yi−xi)

2

σ2
j

},

where σ2
j is the SNR of the jth “pass” measured from

the rateless unit preamble. One may further supplement a
packet postamble to improve the SNR estimation as [21],
e.g., measuring σj with a higher accuracy from both the
preamble and the postamble. We note that the transmissions
from different sources do not need to be synchronized, since
interfered transmissions will lead to low-quality passes which
will be compensated by additional pass transmissions to make
the original message get decoded.

Rateless unit segmentation: Rateless codes in previous
works are mainly designed for the communication between
a single pair of nodes. After transmitting certain amount of
symbols, the sender stops and waits for an ACK from the
receiver. In HOPE, however, there is no prior targeted receiver,
which prohibits to apply the existing optimized segmentation
strategies [14], [20], and we could adopt a hybrid solution to
address this problem. Initially, e.g., after the update of priority
lists, each node transmits a fixed amount of symbols in the
rateless unit each time. However, with a fixed configuration, if
more symbols are contained, receivers have to keep receiving
the symbols even when it already has enough data to decode
the original packet. In contrast, fewer symbols in each rateless
unit result in frequent idle listenings and cannot fully utilize
the bandwidth. Both cases limit the throughput.

To overcome this issue, any node i can maintain a counter
for each receiver to track the number that the receiver takes
over the role of a delegated source from node i, e.g., node i
maintains PKTr to record the number of packets that node i
transmitted and receiver r has received and successfully
decoded. The counter PKTr is increased by one when node i
receives an ACK from receiver r to acknowledge node i’s
transmission. Then, for any node i, we can determine the
number of symbols for each rateless unit with respect to the
receiver with the largest2 PKTr, since the packets node i
transmitted are more likely to be decoded by this receiver
first. Such a decision considers both the link qualities between
node i and each potential receiver, and the node priority.

Any node i resets each PKTr after the priority list is
updated. The reason to periodically reset counters is because
the packet reception and decoding statistics may change after
the priority list is updated. For the initial fixed configuration,
each rateless unit contains 1 Spinal “pass”, i.e., PASS_CNT=1
in Fig. 7. Based on the experiments in Section IV, HOPE
already achieves significant performance gain over existing
approaches with above setting. A globally optimized rateless
unit size will definitely improve the performance, which is left
as the future work of this paper.

Multiple Access: In HOPE, each sender strictly follows
CSMA for channel access. When accumulating information
from one source, an accumulator always launches the preamble
detection when it detects a sudden increase of RSS (Received
Signal Strength [5], [37], [38]). This is because the sudden
increase of RSS usually indicates a new incoming unit with
higher SNR and it is more beneficial for the receiver to accu-
mulate the high-SNR information. The preambles or headers
of the incoming unit may not be correctly detected if its RSS
is not strong enough. In such a case, traditional networks
cannot hook on the incoming data as well. Traditional packet
collisions at the receiver translate to very low SNR rateless
units received in HOPE, which are usually assigned negligible
weights in the weighted decoding scheme in Eq. (2).

Multiple nodes may decode a same packet and send out
ACKs simultaneously. In this case, collision occurs and the
sender fails to be notified. To address such an issue, receivers
conduct a priority based back-off before sending the ACK.
Higher priority nodes are prone to have shorter back-off
delays. In HOPE, the priority list is equally divided into m
groups (the last group may contain fewer nodes). Nodes in
group i performs back-off in [0, 2i − 1] · 16μs, where 16μs
is the SIFS duration. Thus, the time interval for the delegated
source to transmit the next round of rateless units equals to the
maximum back-off latency plus an ACK transmission delay.
In Section IV, the maximum back-off latency is set to 128μs.

IV. PERFORMANCE EVALUATION

We compare HOPE with: a ETX-based Single Path Routing
protocol, SPR [7]; a classical opportunistic routing protocol,
ExOR [2]; and a state-of-the-art symbol-level network coding
based opportunistic routing protocol, MIXIT [23].

2A tie can be broken (if any) based on the node priority.

76 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

Fig. 8. Traces are collected from 19 positions in a 800m2 office room.

A. Experiment Configuration

We conduct a trace driven evaluation with data traces
collected from USRP N210 software defined radios mainly
because HOPE adopts Spinal codes which require excessive
decoding overhead for the general software radio platforms.

Experiment Setup: With the Spinal codes, a (delegated)
source first divides each raw data packet into k-bit blocks.
Each k-bit block is hashed to a v-bit spine value, which is
then used as a seed to generate c-bit random numbers. Every
“pass” is a concatenation of a set of c-bit random numbers.
In particular, the ith “pass” for a data packet consists of the ith
c-bit random number generated from each block of the packet.
A receiver uses maximum likelihood decoder to recover the
k-bit message from c-bit numbers. Our implementation of
Spinal codes is based on the codes provided by the authors of
[33] and we configure k = 3, c = 4, v = 32, and B = 256.

Trace Collection: Trace from USRP N210. Each USRP node
is configured to operate on OFDM with 600KHz frequency
band in the 2.4GHz range. Each node uses a USRP RFX2400
daughterboard as the RF frontend with the transmission power
of 50mW (i.e., 17dbm) attached to an omnidirectional antenna
with 3dBi gain. We connect each node to a laptop to collect
PHY symbols. The PHY of 802.11n in the single input single
output mode is implemented on the GNU Radio platform. We
collect the pairwise packet transmission traces of all 342 links
among 19 positions in Fig. 8. The links include direct line-of-
sight paths as well as those blocked by objects. We perform
the trace collection with 19 rounds. In each round, one USRP
sender is placed at one of the 19 locations, broadcasts the
packets from a fixed 5MB data file, and circulates all data rates
to transmit the same file. The rest 18 USRP receivers record
all the received packets (no matter packets are successfully
decoded or not). The USRP receivers further compare the
received symbols with the transmitted ones for all received
packets and compose a trace of symbol-level disturbances,
which form a group of fine-grained (symbol-level) channel
quality measures for each link. By doing so, we have collected
the pairwise and detailed transmission traces of all 342 links.

In the trace collection, we may miss certain channel quality
samples if transmitted packets are not detected by the receiver,
e.g., the packet head is corrupted. The channel quality experi-
enced by these missing packets is, however, not fundamentally
different from the one described by the received packets.
Two scenarios mainly differ at where the bit errors happen to
occur: header or payload. Thus, after a series of transmission
traces are collected, they discretely approximate the channel
quality already for the evaluation. In addition, although chan-
nel qualities are described approximately, different protocols

are evaluated using the same set of traces with a fair compari-
son, which is eligible to examine the strengths and weaknesses
of different designs. On the other hand, it is possible that not
all the links will be used in the evaluation, but we are not aware
which links may not be involved prior to the experiment. We
thus construct a full set of the trace, which could evaluate all
possible running traffic flows on this network.

Trace From Intel 5300 NICs: USRP N210 can directly
record the symbol-level traces, but mainly works in the narrow
band channels due to the hardware constraints. We further
adopt the channel state information (CSI) tool developed on
Intel 5300 NICs [15] to collect transmission traces and test
HOPE in the wideband channels with frequency selective
fading. We deploy Intel 5300 nodes, operating in 20 MHz
channel, at the same positions in Fig. 8 and perform the trace
collection in the same way as we do with USRP N210s.
Intel 5300 is only able to report packet-level traces. The
dispersion of each symbol cannot be directly measured.
To obtain the symbol-level traces, when one node transmits,
we let other nodes measure the subcarrier-level SNRs to the
transmitter. For each transceiver pair, we use the measured
SNRs to generate the symbol-level dispersions [15].

B. Results

Goodput: We evaluate the goodput that refers to the actual
data size transmitted over unit time. We consider goodput
over throughput as different protocols incur different amounts
of protocol overhead, and goodput can better reflect the data
transmission efficiency and delay, i.e., a higher goodput indi-
cates better efficiency and a shorter delay [42]. On the other
hand, to understand the protocol overhead, we further evaluate
the detailed breakdown of throughput for each protocol in this
section.

Goodput comparison: We evaluate the goodput perfor-
mance of different protocols. We randomly select one node
pair and measure its end-to-end goodput. For all benchmark
protocols SPR, ExOR and MIXIT, we test all possible 802.11n
single-stream data rates in the USRP 600KHz frequency
band and select their best performance. Both SPR and ExOR
achieve the maximum goodput with 390Kbps data rate. MIXIT
achieves a better average goodput at 1.17Mbps, but has some
unique advantage at 390Kbps data rate, so we plot both
MIXIT-1170 and MIXIT-390. We set the data rate 1.17Mbps
for HOPE, which yields a gradually decreasing effective
data rate when more Spinal “passes” are transmitted. We
repeat the experiments 120 times by randomly selecting 120
node pairs in total. Fig. 9 depicts the CDF of the achieved
goodput by different protocols. Generally HOPE achieves an
average goodput gain of 2.4× over SPR, 1.7× over ExOR,
1.3× over MIXIT of both 1.17Mbps and 390Kbps, respec-
tively. HOPE significantly outperforms SPR and ExOR pri-
marily because HOPE allows each delegated source to adapt to
all possible accumulators’ channel conditions simultaneously
and thus accumulators largely accelerate the packet decoding
based on the cumulative information from multiple sources.

Along short paths or high quality links (mostly the right part
of the figure), we see that both MIXIT-1170 and HOPE achieve

LI et al.: FROM RATELESS TO HOPLESS 77

Fig. 9. Goodputs of various approaches.

Fig. 10. Average goodput of different node pairs of different hops.

high goodput because the channel condition supports their
transmissions with full rates, but other protocols suffer from
the goodput loss. Over long paths or weak links (mostly the
left part of the figure), however, MIXIT-1170 suffers dramatic
goodput drop. It is probably because MIXIT at 1.17Mbps
data rate misses many low quality symbol transmissions and
suffers high symbol error rate over weak links. The uncertain
symbol errors may accumulate and propagate over long paths.
If we set the data rate to 390Kbps on the other hand, MIXIT
captures the symbol accumulation opportunities over weaker
links, but cannot completely exploit good links with full rates.
Note that opportunistic routing protocols, e.g., MIXIT and
ExOR, have no fixed receiver for each transmission. They thus
cannot automatically adapt their own rates to different links
of different qualities.

Goodput over hops: We look into the end-to-end goodput
for different node pairs. We group node pairs according to
their hop distances in the conventional multi-hop routing
protocol SPR. According to experiment results depicted in
Fig. 10, we see that the end-to-end goodput tends to drop as
the number of hops increases. One-hop links generally yield
the highest goodput. HOPE achieves the highest goodput of
approximately 480Kbps over 1-hop links, since HOPE auto-
matically adapts to good channels while benchmark schemes
with a fixed data rate miss such chances. The average goodput
improvement of HOPE over SPR and ExOR keeps increasing
from 2.0× and 1.5× respectively for 2-hop paths to 3.4×
and 2.4× respectively for 7-hop paths. The reason is that
as hop counts increase, HOPE captures more opportunities
in accumulating hopless information and best adapts the data
rate to the information quality. As MIXIT does not ensure
pairwise reliability within the network, the errors gradually
accumulate and may exceed the error correction capacity,
resulting in sharp performance degradation over long paths
(e.g., 6-hop and 7-hop paths). As the path becomes longer

Fig. 11. Goodput gain breakdown of HOPE.

MIXIT at 390Kbps performs better than at 1.17Mbps as a
lower data rate produces more “clean” symbols on more
opportunistic links.

Gain analysis: We test HOPE with three different settings
to understand its goodput gain in detail. We first substitute the
rateless codes of HOPE with a fixed data rate of 390Kbps,
which degrades to capturing packet-level opportunities similar
as ExOR (HOPE w/o rateless). We then enable rateless codes
but disable the information accumulation of HOPE (HOPE w/o
accum). Finally, we fully enable HOPE with both benefits.
Fig. 11 depicts the performance of the three settings, and
such a decomposition aims for an in-depth understanding of
the performance gain achieved by HOPE. With the rateless
codes, HOPE harvests more than half of its full goodput gain.
For good channel conditions (e.g., the goodput is higher than
240Kbps), the rateless codes play a critical role in acquiring
the goodput. In Fig. 11, the goodput of HOPE w/o accum.
is comparable to HOPE in this region. For the long paths or
poor links, rateless codes also help in adapting different links
and counteracting channel fluctuations. Enabling information
accumulation allows HOPE to benefit more in the low goodput
region. From Fig. 11 we see the main improvement of HOPE
over HOPE w/o accum. when the goodput is lower than
240Kbps. This is because the cumulative information is more
valuable for long paths and weaker links.

In Fig. 11, we also examine omniscient SPR for comparison.
Omniscient SPR always sets the optimal data rate for the
packet transmission at each hop. HOPE achieves comparable
goodput with omniscient SPR in the high goodput region due
to the auto rate adaptation. For the long paths and weak links,
HOPE outperforms omniscient SPR, as HOPE accumulates
more overheard rateless units under such scenarios. We further
find that HOPE can rapidly adapt to a better link when the
channel condition varies while SPR lacks this flexibility.

Overhead: Fig. 12 examines the overhead of HOPE over
paths of different hop counts. We separate the communica-
tion overhead and data header overhead from the goodput.
The communication overhead consists of ACK transmissions,
duplicate packet transmissions from different nodes, carrier
sensing time, etc. The small and fixed-sized header in HOPE
poses negligible overhead. The communication overhead is
also small, < 10% of throughput, as our priority based
back-off technique and the protocol-level role transition design
of HOPE could effectively terminate the path diverging and
avoid duplicated transmissions. As for wireless devices, radio
operations are the major energy consumer, which implies that

78 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

Fig. 12. Overhead breakdown of HOPE.

Fig. 13. Goodput in multi-flow mesh network.

the additional energy wastes from unnecessary transmissions
is about 10% of the total lifetime that can be achieved.
In practice, if devices could be powered by lines, such energy
overhead can be omitted. According to the experiment results,
we can also see that the fraction of overhead gradually
increases as hop counts increase, which is mainly because the
involved extra control overhead adds up every hop while the
payload size stays constant at 1500bytes.

Multiple Flows: We test the performance of SPR, ExOR,
MIXIT and HOPE with multiple flows for mesh-like and ad-
hoc-like networks. For MIXIT, we find that the 1.17Mbps rate
outperforms the 390Kbps rate in this trial of experiments and
thus only present its performance with the 1.17 Mbps rate.
In Fig. 13, we examine the performance of each protocol in a
mesh-like network with a gateway node (the highlighted node
in Fig. 8) and other nodes incur the flow based traffic to the
gateway. By setting different numbers of original sources, we
can vary the number of flows in the network. Each original
source incurs a traffic flow to the gateway for transmitting a
5MB file. Fig. 13 plots the total network goodput with varied
numbers of flows. The network goodput increases towards the
saturated capacity as the number of concurrent flows increases.
From the result, we observe that when the number of flows
is greater than four, the network tends to be saturated. HOPE,
however, consistently outperforms benchmark protocols due
to its best use of the wireless channel. The goodput of
MIXIT decreases earlier than other three protocols because
MIXIT is a network coding approach which greedily utilizes
the bandwidth of each node in the network and its channel
utilization is not as efficient as HOPE. According to statistics,
HOPE achieves an average goodput gain of 2.3× over SPR,
1.7× over ExOR, 1.3× over MIXIT at 1.17Mbps.

We further evalaute HOPE and MIXIT (with highest good-
put among benchmark schemes) in an ad-hoc network with
intermittent traffic. All 19 nodes in Fig. 8 act as ad-hoc-

Fig. 14. Goodput in multi-flow ad-hoc network.

Fig. 15. Goodput in wideband channels.

like nodes and we configure 6 coexisting flows with differ-
ent sender-destination pairs in the network but of randomly
selected data volume ranging from 1.5-30K bytes. When one
flow finishes, we immediately appoint a new flow between
a random pair of nodes. We experiment 50 flows in total.
Fig. 14 depicts the CDF of the goodput achieved by MIXIT
and HOPE, respectively. In the high goodput region, MIXIT
slightly performs better mainly because its congestion-aware
scheme helps to approach the network capacity. The high
control overhead and per-hop errors, however, limit the per-
formance of MIXIT over longer paths. In the low goodput
region HOPE achieves more efficient bandwidth utilization.
Overall, HOPE achieves 1.4× average goodput gain. Inspired
by the performance gain achieved by MIXIT in the high
goodput region, a more sophisticated congestion-aware tech-
nique tailored for HOPE may further enhance its performance.
We plan to explore this direction in the future.

HOPE on Wideband Channels: In this section, we
experiment with the wideband traces collected from
Intel 5300 NICs. We select one node pair and measure its
end-to-end goodput. We repeat the experiments 120 times
by randomly selecting 120 node pairs. To avoid long runs
of consecutive errors in the coded bit sequences due to
frequency selective fading, interleaving is implemented for
each protocol. Fig. 15 shows the CDF of the achieved goodput
of different protocols. Compared with the performance in
narrowband channels (Fig. 9), the goodput gain achieved by
HOPE is still substantial. In particular, HOPE achieves an
average goodput gain of 2.0× over SPR, 1.6× over ExOR,
1.5× over MIXIT-39M, and 1.3× over MIXIT-13M. MIXIT-
39M and MIXIT-13M represent MIXIT works at 39Mbps and
13Mbps and correspond to MIXIT-1170 and MIXIT-390 in
Fig. 9, respectively. The gain achieved by HOPE over SPR
and ExOR is preserved since it can still adapt to accumulators’

LI et al.: FROM RATELESS TO HOPLESS 79

Fig. 16. A snapshot topology of the data collection tree on testbed.

channel conditions simultaneously even with frequency selec-
tive fading. Accumulators can thus leverage the cumulative
information to accelerate packet decoding.

V. HOPE ON LOW POWER WIRELESS NETWORKS

We implement and deploy HOPE on a low power nar-
row band wireless network composed of 20 MICA2 motes
whose computation and memory capacities are highly limited.
We compare HOPE with CTP [12], a classical data collection
protocol for wireless sensor networks.

A. Implementation

We implement HOPE on MICA2 motes which feature a
Chipcon CC1000 as RF transceiver which directly exports raw
demodulated bits to the microcontroller and allows full access
and control to packet preamble and payload. Each MICA2
mote is equipped with an 8-bit Atmel ATmega128L microcon-
troller. Being resource-constrained (128K bytes program flash
and 4K bytes SRAM), MICA2 motes cannot cope with the
computational overhead of the Spinal codes. We thus resort
to Luby Transform (LT) codes [30], which work with link
layer bit blocks. While the Spinal codes theoretically yield
higher goodput, LT codes retain the rateless property and
allow us to harvest adequate gain from block level information
accumulation, which already achieves much higher goodput
than the classical CTP protocol.

We build a 20-node wireless network testbed. Fig. 16 depicts
a snapshot topology of the data collection tree built with
CTP on our testbed. We specify ETX value for each link,
ranging from 1.10 to 1.35. On this topology, the paths from
different nodes to the sink have ranged from 1 hop to 5 hops,
and path loss rates have varied from 0 to 26.1% with an
average value of 16.2%. In CTP, each node finds its route
to the sink (node 0) based on the path ETX. The node with
the lowest ETX is selected as the next-hop forwarder. CTP
updates and maintains the routing structure of data collection
tree with periodic link estimations. In our implementation,
the default transmission power of sensor motes is set to
be 0 dBm.

In HOPE, a data packet of K blocks is converted to an
infinite block stream using LT codes. A receiver with sufficient
coded blocks can decode the original data by solving a set
of linear equations with light belief propagation decoding.
The block number is set to K=10 and a sender encapsulates
12 coded blocks to form a rateless unit. When receiving an
unit, the accumulator extracts intact blocks. With sufficient

Fig. 17. Performance comparison with the CTP protocol.

Fig. 18. HOPE achieves higher goodput on all nodes.

blocks, the accumulator can decode the original packet and
then transits to a delegated source to serve other nodes. HOPE
in MICA2 motes resorts to the ETX metric to build the priority
list. Each node maintains a packet list recording the highest
priority packet possessor. Although MICA2 motes are highly
resource constrained, HOPE can still comfortably fit in such
a low-end wireless platform.

B. Results

We let each node transfer data in turn to the sink with HOPE
and CTP, respectively, and measure the goodput of each node.
We change the sink and repeat the experiment for multiple
rounds. Fig. 17 depicts the CDF of all nodes’ goodput.
Compared with CTP, HOPE can make use of both oppor-
tunistic links and accumulate fine grained data blocks over
weak links to improve the goodput performance over CTP. For
a deeper understanding of the performance gain achieved by
HOPE, we further investigate HOPE by disabling the rateless
module to merely harvest the opportunistic transmission gains,
which contributes to about 1.15× performance gain compared
with the CTP protocol.

Fig. 18 summarizes the goodput of all nodes to the sink
with HOPE and CTP. We see that HOPE achieves higher
goodput on all nodes in the network. HOPE almost dou-
bles the goodput over CTP for long paths of more than
4 hops. As the paths become longer, nodes have more
chances to benefit from receiving rateless coded blocks
across multiple hops. Even for 1-hop links, HOPE provides
goodput improvement as LT codes better adapt to time-
varying channel conditions. When the channel condition is
good, a sender sends slightly more than 10 coded blocks
to deliver the information of 10 original blocks. When the
channel is poor, the sender only needs to send more coded
blocks to lower the effective data rate to below the channel
capacity.

Fig. 19 depicts the goodput from different data flows when
the number of concurrent flows is varied from one to four. The

80 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

Fig. 19. Goodputs of network flows varying from one to four.

obtained network goodput is increasing as the number of con-
current flows increases. HOPE can consistently outperform the
benchmark protocol due to its better utilization of the limited
wireless channel resource. The result shows the efficacy of our
design, which can also comfortably harvest the performance
gain even under a low-end wireless setting.

VI. RELATED WORKS

Rate Adaptation and Rateless Codes:Rateless codes can
achieve optimal rate adaptation [13], [33]. With rateless codes,
a sender incrementally adapts to a suitable data rate by
sending more coded data until the receiver decodes the data.
Strider [13] presents a systematic design of automatic rate
adaptation based on a layered rateless code with the linear
combination of turbo codes. LT [30] and Raptor codes [39]
can achieve Shannon capacity for binary erasure channels, but
it remains unclear how close they are to the capacity over wire-
less channels. The authors in [10] further investigate how LT
codes can be used to prolong the end-to-end communication
range in low-power wireless networks. Departing from prior
linear rateless codes, Spinal codes [33] use hash functions to
produce infinite sequence of PHY symbols, achieving near
optimal capacity over both erasure and wireless channels.
Different from existing works, our design leverages rateless
codes to adapt to joint information channels with hopless
networking.

Opportunistic Routing: ExOR [2] pioneers the opportunistic
routing, which broadcasts packets without predetermined next
hops and delays forwarding decisions to exploit channel diver-
sity. MORE [4] obviates strict scheduling and enhances spatial
reuse by leveraging network coding. Both ExOR and MORE
can only make use of intact packets surviving over oppor-
tunistic links. SPaC [11] combines multiple corrupted packets
in sensor networks to recover data. MIXIT [23] can forward
clean symbols in corrupted packets and applies symbol-level
network coding. The unified data rate of each transmission,
however, limits the information utility of SPaC and MIXIT.
In contrast, HOPE features rateless information dissemination
and adapts to diverse channel conditions of all wireless links.
MIXIT does study from a rateless perspective but relies on the
end-to-end network coding to adapt to the network, which
inevitably misses the full gain from internal channel diversities
within the network. MIXIT requires an accurate network
reliability prediction to avoid error propagation. For HOPE, the
preliminary design was reported in [28], this journal version
supplements with more design details and experimental results.
We also implement and evaluate HOPE on a real low-power
sensor network test-bed in this paper.

Cooperative Communication: Our work is related to cooper-
ative communication and decode-and-forward in which users
coordinate to enhance communication quality [24], [35],
[36], [41]. Laneman et al. [24] develop information-theoretic
approaches to exploit wireless spatial diversity. Hunter and
Nosratinia [19] propose to integrate cooperative communica-
tion with channel coding. Cover and El Gamal [6] present the
theoretical analysis on the capacity of relay channel. Castura
and Mao [3] and Ravanshid et al. [34] analyze the performance
for relay channels with rateless codes. Mehta et al. [32]
further consider the buffered relays. Draper et al. [9] design
routing protocols for cooperative networks that perform mutual
information accumulation. The major difference between [9]
and HOPE is that the former study focuses on the optimization
of the transmission order in theory, while our solution concen-
trates on addressing realistic challenges and designing a prac-
tical system incorporating the latest rateless codes, e.g., Spinal
codes. In summary, although the design of HOPE also belongs
to the decode-and-forward category, existing researches mainly
study from a theoretical perspective, consider a relatively small
scale network usually, e.g., three nodes, and their performance
is evaluated by numerical results. Inspired by these existing
theoretical achievements, this paper moves one more step:
address a series of realistic challenges in a real system, and
evaluate its performance under practical settings. Therefore, in
this paper, we propose a clean hopless networking abstraction
from a system perspective, address realistic design issues, and
develop a practical solution using rateless codes to harvest
cooperative diversity of autonomous wireless nodes, which we
believe have never been done before.

VII. CONCLUSION

This paper presents a novel hopless networking paradigm.
The key idea is to break per-hop packet transmission to rateless
information dissemination that adapts to diverse channel con-
ditions of wireless links, taking the full advantage of wireless
broadcast effect. We develop a practical protocol, HOPE,
which instantiates the hopless networking. Experimental eval-
uation demonstrates that HOPE significantly improves network
throughput over existing approaches. In the future, we plan to
further enhance the HOPE design from the following aspects,
including optimal rateless segmentation, better concurrency
in multiple access, flow-based optimization, congestion-aware
technique and protocol design simplification.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for valuable and insightful comments.

REFERENCES

[1] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and
evaluation of an unplanned 802.11b mesh network,” in Proc. ACM
MobiCom, 2005, pp. 31–42.

[2] S. Biswas and R. Morris, “ExOR: Opportunistic multi-hop rout-
ing for wireless networks,” in Proc. ACM SIGCOMM, 2005,
pp. 133–144.

[3] J. Castura and Y. Mao, “Rateless coding for wireless relay channels,”
IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1638–1642, May 2007.

LI et al.: FROM RATELESS TO HOPLESS 81

[4] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading struc-
ture for randomness in wireless opportunistic routing,” in Proc. ACM
SIGCOMM, 2007, pp. 169–180.

[5] L. Chang et al., “FitLoc: Fine-grained and low-cost device-free localiza-
tion for multiple targets over various areas,” in Proc. IEEE INFOCOM,
Feb. 2016, pp. 1–9.

[6] T. Cover and A. El Gamal, “Capacity theorems for the relay channel,”
IEEE Trans. Inf. Theory, vol. IT-25, no. 5, pp. 572–584, Sep. 1979.

[7] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” in Proc. ACM
MobiCom, 2003, pp. 134–146.

[8] W. Dong, Y. Liu, Y. He, and T. Zhu, “Measurement and analysis on the
packet delivery performance in a large scale sensor network,” in Proc.
IEEE INFOCOM, Apr. 2013, pp. 2679–2687.

[9] S. C. Draper, L. Liu, A. F. Molisch, and J. S. Yedidia, “Cooperative trans-
mission for wireless networks using mutual-information accumulation,”
IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5151–5162, Aug. 2011.

[10] W. Du, Z. Li, J. C. Liando, and M. Li, “From rateless to distanceless:
Enabling sparse sensor network deployment in large areas,” in Proc.
ACM SenSys, 2014, pp. 312–313.

[11] H. Dubois-Ferrière, D. Estrin, and M. Vetterli, “Packet combining in
sensor networks,” in Proc. ACM SenSys, 2005, pp. 102–115.

[12] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
tree protocol,” in Proc. ACM SenSys, 2009, pp. 1–14.

[13] A. Gudipati and S. Katti, “Strider: Automatic rate adaptation and
collision handling,” in Proc. ACM SIGCOMM, 2011, pp. 158–169.

[14] A. Gudipati, S. Pereira, and S. Katti, “AutoMAC: Rateless wire-
less concurrent medium access,” in Proc. ACM MobiCom, 2012,
pp. 5–16.

[15] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Predictable 802.11
packet delivery from wireless channel measurements,” in Proc. ACM
SIGCOMM, 2010, pp. 159–170.

[16] J. Han et al., “GenePrint: Generic and accurate physical-layer identi-
fication for UHF RFID tags,” IEEE/ACM Trans. Netw., vol. 24, no. 2,
pp. 846–858, Apr. 2015.

[17] M. K. Han, A. Bhartia, L. Qiu, and E. Rozner, “O3: Optimized overlay-
based opportunistic routing,” in Proc. ACM MobiHoc, 2011, Art. no. 2.

[18] Q. Huang, K. Sun, X. Li, and D. O. Wu, “Just FUN: A joint foun-
tain coding and network coding approach to loss-tolerant information
spreading,” in Proc. ACM MobiHoc, 2014, pp. 83–92.

[19] T. E. Hunter and A. Nosratinia, “Diversity through coded cooperation,”
IEEE Trans. Wireless Commun., vol. 5, no. 2, pp. 283–289, Feb. 2006.

[20] P. A. Iannucci, J. Perry, H. Balakrishnan, and D. Shah, “No symbol
left behind: A link-layer protocol for rateless codes,” in Proc. ACM
MobiCom, 2012, pp. 17–28.

[21] K. Jamieson and H. Balakrishnan, “PPR: Partial packet recovery for
wireless networks,” in Proc. ACM SIGCOMM, 2007, pp. 409–420.

[22] B. Karp and H. T. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in Proc. ACM MobiCom, 2000, pp. 243–254.

[23] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard, “Symbol-level
network coding for wireless mesh networks,” in Proc. ACM SIGCOMM,
2008, pp. 401–412.

[24] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: Efficient protocols and outage behavior,” IEEE
Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2002.

[25] F. Li, X. He, S. Chen, L. Jiang, and Y. Wang, “Traffic distribution of
circular sailing routing in dense multihop wireless networks,” Tsinghua
Sci. Technol., vol. 18, no. 3, pp. 220–229, Jun. 2013.

[26] F. Li, L. Zhao, C. Zhang, Z. Gao, and Y. Wang, “Routing with multi-
level cross-community social groups in mobile opportunistic networks,”
Pers. Ubiquitous Comput., vol. 18, no. 2, pp. 385–396, Feb. 2014.

[27] Y. Li, L. Qiu, Y. Zhang, R. Mahajan, and E. Rozner, “Predictable perfor-
mance optimization for wireless networks,” in Proc. ACM SIGCOMM,
2008, pp. 413–426.

[28] Z. Li, W. Du, Y. Zheng, M. Li, and D. Wu, “From rateless to hopless,”
in Proc. ACM MobiHoc, 2015, pp. 107–116.

[29] Y. Liu, Z. Yang, T. Ning, and H. Wu, “Efficient quality-of-service (QoS)
support in mobile opportunistic networks,” IEEE Trans. Veh. Technol.,
vol. 63, no. 9, pp. 4574–4584, Nov. 2014.

[30] M. Luby, “LT codes,” in Proc. IEEE FOCS, Nov. 2002, pp. 271–280.
[31] Q. Ma, K. Liu, X. Xiao, Z. Cao, and Y. Liu, “Link scanner: Faulty

link detection for wireless sensor networks,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 2688–2696.

[32] N. B. Mehta, V. Sharma, and G. Bansal, “Performance analysis of a
cooperative system with rateless codes and buffered relays,” IEEE Trans.
Wireless Commun., vol. 10, no. 4, pp. 1069–1081, Apr. 2011.

[33] J. Perry, P. A. Iannucci, K. E. Fleming, H. Balakrishnan, and D. Shah,
“Spinal codes,” in Proc. ACM SIGCOMM, 2012, pp. 49–60.

[34] A. Ravanshid, L. Lampe, and J. Huber, “Signal combining for relay
transmission with rateless codes,” in Proc. IEEE ISIT, Jun./Jul. 2009,
pp. 508–512.

[35] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity.
Part II. Implementation aspects and performance analysis,” IEEE Trans.
Commun., vol. 51, no. 11, pp. 1939–1948, Nov. 2003.

[36] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity.
Part I. System description,” IEEE Trans. Commun., vol. 51, no. 11,
pp. 1927–1938, Nov. 2003.

[37] L. Shangguan, Z. Yang, A. X. Liu, and Y. Liu, “Relative localization
of RFID tags using spatial-temporal phase profiling,” in Proc. USENIX
NSDI, 2015, pp. 1–13.

[38] L. Shangguan, et al., “ShopMiner: Mining customer shopping behavior
in physical clothing stores with COTS RFID devices,” in Proc. ACM
SenSys, 2015, pp. 113–125.

[39] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, Jun. 2006.

[40] L. Wang, et al., “It is not just a matter of time: Oscillation-free
emergency navigation with sensor networks,” in Proc. IEEE RTSS,
Dec. 2012, pp. 339–348.

[41] X. Wang, L. Fu, and C. Hu, “Multicast performance with hierarchical
cooperation,” IEEE/ACM Trans. Netw., vol. 20, no. 3, pp. 917–930,
Jun. 2012.

[42] X. Wang, W. Huang, S. Wang, J. Zhang, and C. Hu, “Delay and capacity
tradeoff analysis for motioncast,” IEEE/ACM Trans. Netw., vol. 19, no. 5,
pp. 1354–1367, Oct. 2011.

[43] C. Wu, et al., “PhaseU: Real-time LOS identification with WiFi,” in
Proc. IEEE INFOCOM, Apr./May 2015, pp. 2038–2046.

Zhenjiang Li (M’12) received the B.E. degree from
Xi’an Jiaotong University, China, in 2007, and the
M.Phil. and Ph.D. degrees from the Hong Kong
University of Science and Technology, Hong Kong,
in 2009 and 2012, respectively. He is currently an
Assistant Professor with the Department of Com-
puter Science, City University of Hong Kong, Hong
Kong. His research interests include mobile comput-
ing, wearable sensing, distributed networking sys-
tems, and wireless communications and networks.
He is a member of the IEEE and ACM.

Wan Du (M’13) received the B.E. and M.S. degrees
from Beihang University, China, in 2005 and 2008,
respectively, and the Ph.D. degree from the Ecole
Centrale de Lyon, France, in 2011, all in electri-
cal engineering. He is a Research Fellow with the
Computer Science Division, School of Computer
Science and Engineering, Nanyang Technological
University, Singapore. His research interests include
Internet of Things, cyberphysical system, distributed
networking systems, and mobile systems. He is a
member of the IEEE and ACM.

Yuanqing Zheng (M’11) received the B.S. degree
in electrical engineering and the M.E. degree in
communication and information systems from Bei-
jing Normal University, Beijing, China, in 2007 and
2010, respectively, and the Ph.D. degree in computer
engineering from Nanyang Technological Univer-
sity, Singapore. He is currently an Assistant Profes-
sor with the Department of Computing, The Hong
Kong Polytechnic University. His research interests
include RFID, distributed systems, and pervasive
computing. He is a member of the IEEE and ACM.

82 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

Mo Li (M’06) received the B.S. degree from the
Department of Computer Science and Technology,
Tsinghua University, China, in 2004, and the Ph.D.
degree from the Department of Computer Science
and Engineering, Hong Kong University of Science
and Technology, in 2009. He is currently an Asso-
ciate Professor with the School of Computer Science
and Engineering, Nanyang Technological University,
Singapore. His research interests include pervasive
computing and mobile and wireless computing. He
is a member of the IEEE and ACM.

Dapeng Wu (S’98–M’04–SM’06–F’13) received
the Ph.D. degree in electrical and computer engineer-
ing from Carnegie Mellon University, Pittsburgh,
PA, in 2003. He is currently a Professor with the
Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL, USA. His
research interests are in the areas of networking,
communications, signal processing, computer vision,
machine learning, smart grid, and information and
network security. He is a Fellow of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

