
Path Reconstruction in Dynamic Wireless Sensor
Networks Using Compressive Sensing

Zhidan Liu∗† Zhenjiang Li† Mo Li† Wei Xing∗ Dongming Lu∗
∗College of Computer Science and Technology, Zhejiang University, China

†School of Computer Engineering, Nanyang Technological University, Singapore
danielliu@zju.edu.cn, {lzjiang, limo}@ntu.edu.sg, {wxing, ldm}@zju.edu.cn

ABSTRACT
This paper presents CSPR, a compressive sensing based approach
for path reconstruction in wireless sensor networks. By viewing
the whole network as a path representation space, an arbitrary rout-
ing path can be represented by a path vector in the space. As path
length is usually much smaller than the network size, such path
vectors are sparse, i.e., the majority of elements are zeros. By en-
coding sparse path representation into packets, the path vector (and
thus the represented path) can be recovered from a small amount
of packets using compressive sensing technique. CSPR formalizes
the sparse path representation and enables accurate and efficien-
t per-packet path reconstruction. CSPR is invulnerable to network
dynamics and lossy links due to its distinct design. A set of op-
timization techniques are further proposed to improve the design.
We evaluate CSPR in both testbed-based experiments and large-
scale trace-driven simulations. Evaluation results show that CSPR
achieves high path recovery accuracy (i.e., 100% and 96% in exper-
iments and simulations, respectively), and outperforms the state-of-
the-art approaches in various network settings.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Communi-
cation; C.2.3 [Network Operations]: Network monitoring

Keywords
Packet path reconstruction; wireless sensor networks; compressive
sensing; bloom filter

1. INTRODUCTION
The per-packet routing path serves as the meta-information for

understanding detailed Wireless Sensor Networks (WSNs) behav-
iors in many network maintenance and diagnosis situations, e.g.,
routing dynamics [33], detections on wormholes [9] or packet loss
holes [32], end-to-end packet transmission delay [29] or even per-
hop per-packet transmission delay [13], network diagnosis [18] [26],
etc. Reconstructing per-packet routing path information, however,
has been known non-trivial. WSNs are self-organized and usually

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

MobiHoc’14, August 11–14, 2014, Philadelphia, PA, USA.

Copyright 2014 ACM 978-1-4503-2620-9/14/08 ...$15.00.

http://dx.doi.org/10.1145/2632951.2632967 .

deployed in dynamic environments. The underlying network topol-
ogy constantly changes and no fixed routing path can be expected
for each node [30]. A straightforward solution to reveal the packet
path is to record the complete path during packet forwarding, e.g.,
storing the ID sequence of all relay nodes, in each packet. The in-
troduced overhead linearly grows with the routing path length, far
from scalable.

There have been many efforts made to address the per-packet
path reconstruction problem in WSNs. The method that identifies
packet paths via hash values triggers disastrous computation over-
head [19]. Some methods reconstruct path information by leverag-
ing inter-packet correlation in sufficiently stable and reliable net-
works [14] [16]. However, according to our investigation on the
practical packet trace from CitySee [22], a real-deployed and large-
scale WSN, we observe non-negligible topology variation (e.g., up
to 28% packets experienced parent changes) and high packet loss
(e.g., up to 55% packets lost for some nodes) all the time. Both
topology instability and packet loss significantly deteriorate exist-
ing path reconstruction methods in practical WSNs. To cope with
above issues, we attack the path reconstruction problem from a new
perspective, which requires no inter-packet correlations and thus
makes the solution insensitive to network dynamics and lossy links.

The key insight of our design is as follows. The length of a rout-
ing path is usually much smaller than the network size. As a con-
crete example, the maximum path length reported in CitySee [22]
is only 20 hops in comparison with its network size of 1200 nodes.
Therefore, we can construct a path representation space, the num-
ber of whose dimensions equals to the total number of nodes in
the network. In such a representation space, an arbitrary routing
path can be represented by a path vector, where each element cor-
responds to a node in the network. The path vector sets the hop
numbers for nodes on the path and zeros for those not involved in
the path. As the path length is much smaller than the network size,
such path vectors are thus sparse, i.e., the majority of elements are
zeros. The path reconstruction becomes a problem of unveiling all
existing path vectors hidden in the representation space. If all non-
zero elements of a path vector can be encoded (with few bytes) into
the packets forwarded along the path, we can recover the path vec-
tor (and thus the represented routing path) based on a small amount
of packets using compressive sensing technique [5] [12].

In this paper, we propose a Compressive Sensing based Path
Reconstruction method, CSPR, which formalizes the sparse path
representation and leverages compressive sensing to recover per-
packet routing path. CSPR lets intermediate nodes briefly annotate
the transmitted packets and classifies packets traveling along differ-
ent paths into different groups. For a particular path, the forwarded
packets encode independent observations and CSPR performs com-
pressive sensing to recover the path when a certain amount of pack-

297

0 10 20 30 40 50 60 70 75
0

10

20

30

40

50

0 10 20 30 40 50 60 70 750

20

40

60
70

Topo. change
R
at
e
(%
)

Packet loss

R
at
e
(%
)

Time (unit: 2 hours)

(a)

(b)

Figure 1: Average (a) topology change rate
and (b) packet loss rate of all nodes at each
time window.

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F

Rate (%)

Topology change
Packet loss

Figure 2: CDF of topology change rates
and packet loss rates of all nodes in the C-
itySee packet trace.

0 10 20 30 40 50 60 70 750
20
40
60
80
100
120
140

2.4%

24.0%

14.3%
9.2% 6.9%

17.2%
20.4%

4.8%
0.7%

Average # of routing paths

#
of
pa
th
s

Time (unit: 2 hour)

(a)

1 2 3 4 5
6~1
0
11~
50
51~
200 200

<0

10

20

30

40
45

Ratio of path groups

(b)

P
er
ce
nt
(%
)

of packets in path group

Figure 3: (a) Average number of paths for
each node. (b) The distribution of packet
volumes for all path groups.

ets (and the annotations) are collected at the sink. The path recon-
struction by CSPR requires no inter-packet correlations and utilizes
only a small number of received packets. CSPR is thus invulner-
able to topology dynamics and lossy links. On the protocol level,
CSPR introduces only small and fixed overhead in annotating each
packet, which could be optimized accordingly for practical WSNs
(e.g., 8 bytes per packet for a network with 245 nodes). In addition
to the basic design, we further propose a set of optimization tech-
niques to gradually shrink the representation space and heuristical-
ly scan possible paths for all unrecovered path vectors through the
network topology learnt from already reconstructed routing paths.
The numbers of packets needed for remaining path reconstructions
are lowered and processing is thus accelerated. To examine the per-
formance of CSPR, we first evaluate our method using a 29 TelosB
mote testbed. The experiment results validate the feasibility and
applicability of CSPR in practice. We further conduct extensive
and large-scale trace-driven simulations to examine the efficiency
and salability of CSPR. Compared to the state-of-the-art method-
s, CSPR achieves higher path recovery accuracy (i.e., 100% and
96% for experiments and simulations, respectively) with compara-
ble overhead (8 extra bytes per packet).

The rest of this paper is organized as follows. The path recon-
struction problem and the motivation of our design are presented in
Section 2. The design of CSPR is detailed in Section 3. In Section
4, we evaluate CSPR through testbed experiments and trace-driven
simulations. We review the related works in Section 5. Section 6
concludes this paper.

2. PROBLEM STATEMENT AND MOTIVA-
TION

2.1 The path reconstruction problem
In a WSN, all sensor nodes generate and relay packets to the sink

along some routing paths [28]. At the sink, a path reconstruction
method is desired to recover the routing path each packet traveled.
One packet path is an ID sequence from the source of the packet
to the sink, including IDs of all intermediate nodes relaying this
packet and their hop numbers as well.

There have been many efforts made to address the path recon-
struction problem (as reviewed in Section 5). Two state-of-the-art
methods, MNT [16] and Pathfinder [14], have been recently pro-
posed. MNT [16] reconstructs per-packet path by exploiting inter-
packet correlation, i.e., a relayed packet and its adjacent packets
locally generated at any node i are usually forwarded to the same
next hop. Such local packets serve as anchors of the relayed packet

at node i. As the first-hop receiver is recorded in packets, the path of
a packet can be obtained by concatenating the first-hop receivers of
all its anchors. Improving on MNT, Pathfinder [14] tolerates certain
inconsistence in inter-packet correlation via explicitly recording in-
consistence in packets. The reconstruction failure occurs once the
inconsistence exceeds the tolerance capacity. To accurately locate
anchors, Pathfinder further imposes the packet generation rate of
each node to be identical and fixed. Both MNT and Pathfinder
require stable network topology such that inter-packet correlation
can be captured. The practical WSNs, however, behave dynam-
ically and the wireless links are far from stable [17] (as we will
demonstrate in next subsection). Both network dynamic and pack-
et loss have strong impacts on the anchor identifications, and thus
deteriorate the performances of MNT and Pathfinder.

2.2 How packet routing behaves in practical
WSNs

We investigate the packet trace from a real-deployed and large-
scale WSN CitySee [22], and discuss how practical packet routing
behaviors impact the path reconstruction performances of the state-
of-the-art methods as well. The CitySee, deployed in Wuxi city,
China, contains more than 1200 sensor nodes for monitoring ur-
ban environmental factors, including carbon dioxide, temperature,
humidity, light, etc. Sensor nodes generate data every 10 minutes,
encapsulate data into a single packet, and transmit packets to the
sink with CTP [15] in a multi-hop manner. Each packet possesses
a default CTP packet header including following common fields:
source address, ID of the node generating this packet; sequence
number, order of the packet generated from the source; first-hop
receiver, parent node ID of the packet’s source; and hop count,
length of path traveled by the packet. Each packet further records
the first 10-hop node IDs for future analysis. The packet trace from
a subnetwork of 245 nodes with a collection period of one week is
available for our study. Such partial network covers about 16 km2

area with the average and maximum path length as 7 hops and 12
hops, respectively.

With CitySee packet trace, we examine the topology change and
packet loss, which are most relevant to the stability of WSNs [6].
For each node, one topology change is indicated by the first-hop
receiver difference between two consecutively transmitted packets.
The topology change rate of a network is defined as the average of

ratios
o f pkts with topo. changes

total # o f pkts received ×100% for each node within certain

time duration. Similarly, for each node, one packet loss is indicated
by a sequence number missing. The packet loss rate of a network is

298

further defined as the average of ratios (1− # o f pkts received
o f pkts expected to receive)×

100% for each node within certain time duration.
Topology change rate indicates the topology stability of a net-

work, which reflects the validity of the inter-packet correlation as-
sumption made in existing path reconstruction methods [14] [16].
Fig. 1 (a) depicts the topology change rate in CitySee with 2 hour
time window of measurement. From the figure, we observe that the
average and maximum topology change rates at all time windows
are about 12% and 48%, respectively. In Fig. 2, we summarize
the CDF of topology change rates of all nodes during one week.
For most nodes, the rate is as high as 10% and the maximum rate
reaches up to 28%. Due to the instable topology, each node would
transmit packets to the sink via different paths. In Fig. 3 (a), we
plot the number of routing paths formed in the packet trace as time
goes by. The average number of paths starting from a node per-
sistently increases and finally on average each node has 76 paths.
All of these evidences demonstrate that network topology suffer-
s from severe instability and the inter-packet correlation may not
be well validated in practice. In Section 4, we have implemented
both MNT and Pathfinder. By analyzing their detailed executions,
we find that the topology dynamics could solely cause about 10%
and 1% of anchor misidentifications, which directly lead to path
reconstruction failures. Pathfinder outperforms MNT at the cost of
explicitly recording certain topology changes in each packet.

Packet loss rate reflects the reliability of packet receptions [11].
Packet losses will hide the inter-packet correlation, e.g., anchor
availability, and deteriorate performances of methods relying on
such correlation. Fig. 1 (b) depicts the packet loss rate in the pack-
et trace, with 2 hour time window. From the figure, we see that the
packet loss rate changes rapidly with the average ranging from 17%
to 69%. In Fig. 2, we summarize the CDF of packet loss rates of
all nodes during one week. The distribution mainly concentrates in
the range between 15% and 35%, with the maximum rate as high as
55%. By analyzing the detailed executions of MNT and Pathfind-
er, we find that with such a high packet loss rate, about 49% and
35% packets fail to identify anchors, which directly result in path
reconstruction failure for those packets.

With the joint impacts of topology dynamics and packet losses,
we find that in the large-scale and dynamic WSN CitySee, 59% and
36% packet paths might not be successfully reconstructed by the
state-of-the-art methods MNT and Pathfinder, respectively. This
motivates us to explore a solution insensitive to both network dy-
namics and lossy links.

2.3 Path reconstruction from sparse path rep-
resentation

Sparse representation of routing paths. Since sensory data
in WSNs are usually collected with a direct acyclic graph (DAG)
routing structure (e.g., data collection tree), the path length is thus
in the order of O(lg(N)), where N is the total number of nodes in
the network. According to the statistical results of all paths formed
in CitySee packet trace, the path length ranges between 2 hops and
12 hops, which are much smaller than the network size 245. We
can construct a path representation space N. The dimensionality
of N equals to the total number of nodes in the network and each
dimension corresponds to one node. In such a representation space,
any routing path can be presented by a path vector. According to
whether a node is involved in the routing path, the path vector sets
either hop number or zero for its corresponding element. As the
path length is much smaller than the network size, the path vector
is thus sparse, i.e., the majority of elements in the vector are zeros.

Fig. 4 illustrates the sparse path representation with a network
containing 10 nodes. We construct the path representation space

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10
s1 3 0 2 0 0 1 0 0 0 0

s2 0 4 0 0 3 0 0 1 0 2

s3 0 4 0 0 3 0 0 1 2 0

(a) Network topology. (b) Sparse representation of routing paths.

5

6

9

7

4
10

3

21

Sink

P3 (12)

P2 (3)

P1 (5)

8

Figure 4: (a) A simple sensor network topology. Source node 7
transmits 20 packets to the sink via 3 different routing paths,
i.e., 5 packets on path P1, 3 packet on path P2 and 12 packets on
path P3. (b) The sparse representations of the 3 routing paths
in the whole network space.

N = [n1,n2,n3,n4,n5,n6,n7,n8,n9,n10]
T including all nodes. An

arbitrary in-network path can be represented by a path vector in N.
For example, path P1 is represented as s1 = [3,0,2,0,0,1,0,0,0,0]T .
Node 7 is the source node and could be known from the packet
header. Hence the element n7 is not considered in s1 and thus as-
signed as 0. As nodes 6 , 3 and 1 serve as the first, second and third
hop relay, respectively, in path P1, thus n6 = 1, n3 = 2 and n1 = 3.
All other elements irrelevant to P1 are zeros in s1. The sparsity of
this path vector is 3 (out of 10). Other path vectors, e.g., s2 and s3,
can be similarly constructed.

Compressive sensing based path reconstruction. Based on s-
parse path representation, the path reconstruction thus becomes a
problem of unveiling all existing path vectors hidden in the path
representation space N. Packets from the same source may trav-
el different paths to the sink, while the paths implicitly classifies
packets into different path groups, i.e., all packets in one group
travel exactly the same path. After the paths of all path groups get
reconstructed, the path of each packet is obtained as well.

For the path vector of a routing path, if its non-zero elements can
be encoded into each packet forwarded along the path, it is viable
to recover the vector (and thus the represented path) based on a
small amount of packets using compressive sensing [5] [12]. In
particular, for any path vector s in space N with sparsity k, where
k � N = |N|, the compressive sensing theory states that M, instead
of N, independent equations are sufficient to solve the N unknowns
in s, where M � N. The M independent equations can be acquired
by projecting s to a measurement matrix Φ: Y = Φs, where Y is
an M-dimension vector and Φ is an M ×N matrix. If Φ satisfies
the Restricted Isometry Property [4], s can be exactly recovered by
solving following l1-minimization problem:

ŝ = argmins∈RN ‖s‖l1 s.t. Y = Φs,

when M ≥ ck log(N
k), where c is a small positive constant [4]. A

variety of algorithms have been proposed for solving above opti-
mization problem.

The above compressive sensing based approach makes path re-
construction for each path group independent, and can recover the
path for a group of packets once sufficient packet are accumulat-
ed. As a result, this approach requires no inter-packet correlation,
which makes itself inherently invulnerable to network dynamics
and lossy links. On the other hand, once a path is recovered, the
routing path for all future packets residing in the same path group

299

Path group g

Compressive sensing
based path

reconstruction

Flag

Path info.

Packet classifier
< sArr, pLen, bFlt >

+ PayloadSEQ sArr pLen bFlt aMsr

Sink Received
packets

Figure 5: The system architecture of CSPR.

becomes immediately available, which avoids repeatedly triggering
path reconstruction procedure for each received packet and largely
reduces the computation overhead.

Design challenges. Translating the idea of compressive sensing
based per-packet path reconstruction to a practical system, howev-
er, encounters a set of challenging issues as follows.

1) Accurate packet classification. Packet classification into each
path group must be accurate. Fig. 3 (a) plots the average number
of paths (each path one path group) formed in the packet trace as
more and more packets are received by the sink. According to the
statistics, we observe significant differences existing in the num-
ber of paths for each node, e.g., the maximum number of paths
of some node could even reach 199. It is vital to distinguish each
individual path and classify the packets into the right group. Pack-
et misclassification will lead to path reconstruction error for one
group. Therefore, packet classification must have high accuracy.

2) Lightweight per-packet annotation. To enable the compres-
sive sensing based path reconstruction, packets need carry encoded
information for all non-zero elements of the path vectors represent-
ing their traveling paths. In particular, when one packet is relayed
by an intermediate node, the node needs to annotate its hop number
along the path into the packet header. As a result, packet header is
updated hop by hop. The annotation overhead must be small. In
particular, the annotation field in the packet header should be small
in size and maintain constant (not increase with the path length).
In addition, updating should be performed in a distributed manner
without introducing any centralized control.

3) Short per-packet path recovery delay. From Fig. 3 (b), we ob-
serve that the packet volumes for all path groups within one week
are highly heterogenous. About 50% path groups include fewer
than 5 packets while some path groups (about 5.5%) contain more
than 50 packets. To perform compressive sensing based path re-
construction for one path group, the number of packets (one an-
notation as one measurement for each packet) accumulated in this
group should be at least M to ensure a good recovery quality. Some
path groups, however, cannot accumulate sufficient packets even
after a long time. As practical requirement, per-packet path recov-
ery delay should not be excessively long.

3. DESIGN OF CSPR
CSPR consists of two parts, the in-network part for path infor-

mation encoding and the server part for per-packet path reconstruc-
tion. The system architecture of CSPR is depicted in Fig. 5. We
will present the system overview first and then detail each compo-
nent in following subsections.

3.1 CSPR overview
Several fields in the packet header are used by CSPR to carry

packet information, as depicted by Fig. 5. SEQ is the packet se-
quence number. sArr is source address of the packet. pLen records
the path length. bFlt is a bloom filter to space-efficiently record the
IDs and corresponding hop count information of all relay nodes.

aMsr stores the encoded measurement along the path. All the five
fields are initialized at the source node. In particular, SEQ and sArr
keep unchanged after initialization, whereas pLen, bFlt and aMsr
are updated at each intermediate hop. Note that only two fields,
bFlt and aMsr, are additionally introduced by CSPR. SEQ, sArr
and pLen can be usually found in the default packet header, e.g.,
CTP packet header. The extra overhead to each packet is thus s-
light, e.g., 6 bytes of bFlt and 2 bytes of aMsr for a network with
245 nodes. We detail the in-network updating of packet header in
Section 3.2.

CSPR adopts a 3-tuple key, < sArr,pLen,bFlt>, to identify the
path of a packet. For all received packets, CSPR first distinguish-
es their paths according to sArr, and then differentiates those from
the same source based on pLen. Finally, bFlt is used to distinguish
paths owning the same sArr and pLen. If two packets have the same
3-tuple key, they are considered to travel the same path and will be
classified into the same path group. At the sink, CSPR maintains a
database, where each entry is indexed via the 3-tuple key and cor-
responds to a unique path group. When a packet is received, CSPR
extracts the 3-tuple key from packet header and looks for a matched
entry in the database. If the matched entry has already recovered
the path, the path for the packet becomes immediately available. If
an entry is matched yet the path is not ready, CSPR launches path
reconstruction when sufficient packets are accumulated. If no entry
matched, CSPR creates an entry for the new path group indexed by
the 3-tuple key of the packet. We detail the compressive sensing
based path reconstruction component in Section 3.3.

As improvements on the basic design, a set of optimization tech-
niques is proposed to gradually shrink the path representation space
and reduce the sparsity of unrecovered path vectors. The number
of packets needed by compressive sensing is accordingly lowered
such that the remaining path reconstructions are accelerated. In ad-
dition, CSPR can launch a remedy scheme if some path groups fail
to recover their paths after an excessive long delay. We detail those
components in Section 3.4.

3.2 In-network path information encoding
In this subsection, we introduce the in-network updating of the

last three fields pLen, bFlt and aMsr in turn.
Updating of pLen. The pLen field of each packet is initialized

to 0 by the source and increased by one at each intermediate hop
along the path. At each intermediate hop, pLen is updated prior
to both bFlt and aMsr as the updating of latter two fields relies
on the new pLen value. When a packet arrives at the sink, we
can know the packet path length through the bFlt field, while we
can not infer the hop count information for each intermediate node
along the path relying on this filed at the server side.

Updating of bFlt. Bloom filter is an L-bit array associated with
H independent hash functions, where L and H are two parameters
to be determined. The bFlt field of each packet accommodates
an L-bit array, and sensor nodes use the same set of H independent
hash functions fi(·), i= 1,2, · · · ,H, to update bFlt. Different arrays
represent different path information. Initially, all L bits in the bFlt
field of a packet header are set to 0. At each intermediate hop,
the node compresses its existence into the bFlt field as follows. H
hash values vi = fi(d×h) ∈ {0,1, · · · ,L−1}, i = 1, · · · ,H, are first
obtained by feeding the product of node ID d and hop count h in
the pLen field to the H hash functions. Then the vi bits of the bFlt
field are set to 1 by that relay node, i = 1,2, · · · ,H.

Updating of aMsr. The aMsr field in each packet is also ini-
tialized as 0 by the source and updated along the path. At each
intermediate hop, the node encodes its hop number along the path
in aMsr. In particular, the node multiplies the updated pLen value

300

with a random coefficient and adds the product with current aMsr
value. We design such field for the purpose of recovering sparse
path vector via compressive sensing technique.

When CSPR later recovers the path for a set of received pack-
ets in one path group, it solves equation Y = Φs to obtain s using
compressive sensing technique. The path vector s is a column vec-
tor with N elements. Each element represents one node in the path
representation space N. If a node is included in the path repre-
sented by s, the corresponding element indicates its hop number;
Otherwise, element is zero. In the equation, each element in Y is
the final aMsr value of one packet and the corresponding row in Φ
can be represented by φ = [α1,α2, · · · ,αN], where α j means that if
node j relays the packet, α j will be the coefficient multiplied with
pLen value, j = 1,2, · · · ,N. The product of Φ and s essentially
replays the updating process of aMsr along the path.

Before the reconstruction of s, we are not aware which α j finally
participates in the aMsr updating. We have to provide complete
α j in φ for the compressive sensing recovery. To avoid explicitly
acquiring such information from each node in the network, we in-
troduce a dictionary based strategy working in a fully distributed
manner. Each node i is configured with a coefficient dictionary Di,
stored in the RAM. To update the aMsr field for a packet, node i
multiplies the updated pLen value with the n-th coefficient in Di,
where n = (SEQ mod |Di|) and |Di| is the size of Di. Each Di
is made up by Gaussian random numbers and the CSPR server is
aware of the dictionaries of all nodes in the network. Coefficients
in all dictionaries are generated independently. As a result, differ-
ent nodes have different dictionary elements. In our current design,
each coefficient occupies 2 bytes and each dictionary contains 100
independent coefficients. The 200-byte storage overhead accounts
for only 2% storage occupancy to commercial sensor motes, e.g.,
TelosB with 10 KB RAM [1]. We could synchronize the generation
of random numbers between nodes and server via global seed [20],
while at the cost of reducing coefficient randomness.

Fig. 6 illustrates the path information encoding for a packet p
on path P3 in Fig. 4. For ease of illustration, we simply set L = 8
and H = 2 for the bloom filter. Source node 7 generates packet
p with SEQ equalling to 3 and initializes sArr, pLen, bFlt, and
aMsr to 7, 0, 0x00, and 0, respectively. At each intermediate hop,
pLen, aMsr and bFlt are updated. For instance, at node 5, pLen
is increased from 2 to 3. Two hash values are v1 = 1 and v2 = 4
(v1,v2 ∈ {0,1, · · · ,7}). The bFlt is thus updated by setting the first
and fourth bits to 1. The aMsr is updated by adding the product of
the updated pLen (i.e., 3) and the third coefficient in D5 to current
aMsr value.

3.3 Compressive sensing based path reconstruc-
tion

In this subsection, we first present the packet classification mech-
anism in CSPR, and then detail the compressive sensing based path
reconstruction with path verification scheme to ensure the recon-
struction correctness.

Packet classification. For each received packet, CSPR extracts
the 3-tuple key, < sArr,pLen,bFlt >, from the packet header and
then classifies it into a path group. A path group is designed to con-
tain packets traveling the same path. At the sink, CSPR manages
all path groups with a database. One database entry is indexed via
the 3-tuple key and corresponds to a unique path group. Each entry
is further allocated with a piece of buffer to accommodate the pack-
ets belonging to this group. An entry also has an indicator Flag to
tell whether the path gets recovered. When a packet is received by
sink, CSPR extracts the key from the packet header and looks for a
matched entry. If a matched entry exists, the packet is inserted into

7 8

SEQ = 3
sArr = 7
pLen = 0
aMsr = 0
bFlt = 0x00

pLen = 1
aMsr +=
v1 = 0, v2 = 6
bFlt = 0x41

81 D [3]�

5 2

Source Sink

3-tuple key from
p : < 7, 4, 0xDF >

9

pLen = 2
aMsr +=
v1 = 3, v2 = 2
bFlt = 0x4D

92 D [3]�
pLen = 3
aMsr +=
v1 = 1, v2 = 4
bFlt = 0x5F

53 D [3]�
pLen = 4
aMsr +=
v1 = 3, v2 = 7
bFlt = 0xDF

24 D [3]�

pp p p p

Figure 6: The path information encoding process for a packet p
on path P3 in Fig. 4. The SEQ, sArr, pLen, aMsr and bFlt fields
are all initialized at source node 7, and the last three fields are
updated hop-by-hop as depicted in the attached box at each
intermediate hop. CSPR can extract a 3-tuple key from packet
p at the sink.

the allocated buffer. Furthermore, in case the indicator Flag is true,
CSPR checks whether the recovered path of this group is valid for
the packet through the path verification component (as described
later). When the Flag is false, however, CSPR will recover the
path if the amount of packets accumulated in the group is sufficient
(the number will be given later). On the other hand, if no entry
matched, CSPR creates an entry for this new path group, initializes
Flag as false, and inserts the packet into the buffer.

The packet classification using the 3-tuple key might lead to mis-
classification since the comparison result between two bloom filers
could be false negative, i.e., different paths possess the same L-bit
array. However, with a proper parameters L and H setting of the
bloom filter, misclassification rate could be low. The setting of L
trades off between packet overhead and classification accuracy. A
lager L leads to a lower false negative probability yet more over-
head to each packet. For any given L, as well as the maximum path
length k in the network (i.e., maximum number of elements stored
in a bloom filter), the optimal setting of H is � L

k ln2� such that min-
imizes the false negative probability [3]. We empirically investigate
the setting of L in CSPR using the CitySee packet trace. We define
a path group to be conflicted if not all packets in this group travel

the same path, and use conflict ratio = # o f con f licted groups
o f all groups ×100%

to measure the misclassification rate. As the maximum path length
(excluding the source and destination) observed in the trace is 10,
the optimal H should be � L

10 ln2�. Fig. 7 depicts the conflict ratios
when L varies from 16 to 56 with corresponding optimal H. From
the figure, we see that the conflict ratio is generally not high, i.e.,
< 9%. In particular, when L is larger than 40, the conflict ratio is
smaller than 0.1%. With a balance between the classification accu-
racy and packet overhead, L in CSPR is set to 48 and H is thus 3
for the trace. An optimized setting of L and H for each individual
node according to its maximum path length will further reduce the
overall overhead, which will be explored in future.

In fact, as long as sufficient packets, truly belonging to the same
path group, are received, our path reconstruction method (detailed
in the following) can still recover the path even certain misclas-
sified packets are mixed in the reconstruction. Moreover, after a
routing path is recovered, a path verification component is used to
further verify the reconstruction correctness, which can also elim-
inate all misclassified packets from the group as well. As a result,
CSPR is not vulnerable to packet misclassification, while accurate
classification is still preferred as high accuracy ensures that more
paths could be recovered with shorter latency.

Path reconstruction. Based on the encoded measurements in
received packets, CSPR recovers the path for a path group using
compressive sensing technique. Concretely, for one path group,
CSPR solves Y = Φs to obtain the path vector s for path recov-
ery. Each element in Y , denoted as yi, is the aMsr value of a re-

301

7.88%

4.76%

0.61%
0.30% 0.08% 0.03%

16 24 32 40 48 56
0

1

2

3

4

5

6

7

8

9

(H=3)(H=3)(H=2)(H=2)(H=1)

P
er
ce
nt
(%
)

Size of bloom filter L

Conflict ratio

(H=1)

Figure 7: Conflict ratios under various combination setting of
bloom filter size L and number of hash functions H for the C-
itySee packet trace.

ceived packet i. The corresponding row in Φ is represented by
φi = [αi,1,αi,2, · · · ,αi,N], where αi, j is the (SEQi mod |D j|)-th co-
efficient in the coefficient dictionary D j of node j and SEQi is the
sequence number of packet i. If the elements in s are known, the
product of φi and s replays the updating process of the aMsr field
along the path of packet i. Therefore, yi = φis. For the path recon-
struction problem, both yi and φi are known while the N elements
in s are unknowns to be determined. In principle, N independent
equations are needed to obtain s, and each equation yi = φis corre-
sponds to one received packet.

Since path vector s is sparse, it can be recovered using M rather
than N equations by leveraging compressive sensing. Therefore, as
long as M packets are accumulated by one path group, the vector
s can be recovered. We use the aMsr values from M packets to
form an M-dimension column vector Y , i.e., Y = [y1,y2, ...,yM]T .
For each packet i out of M packets, we further use its sequence
number SEQi to select coefficients from coefficient dictionaries
of all nodes in the path representation space N to construct φi =
[αi,1,αi,2, · · · ,αi,N]. All φi together form an M×N matrix:

Φ =

⎡
⎢⎢⎢⎣

φ1

φ2

...
φM

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

α1,1 α1,2 · · · α1,N
α2,1 α2,2 · · · α2,N

...
...

. . .
...

αM,1 αM,2 · · · αM,N

⎤
⎥⎥⎥⎦ . (1)

Since all coefficients in Φ follow the Gaussian distribution, the
measurement matrix Φ satisfies the RIP condition [20]. In addi-
tion, if the number of packets in the path group is sufficient, at least
ck log(N

k), we can apply the compressive sensing technique to re-
cover the path vector s. A variety of compressive sensing solvers
can be used to obtain s. However, most of them provide no con-
fidence for the reconstruction quality. As a result, s might not be
correctly reconstructed. In CSPR, since the sparsity of s, i.e., path
length indicated by the pLen field, is known prior to the path re-
construction, we adopt a more advanced solver CoSaMP [24] that
requires the vector sparsity as input. If CoSaMP outputs a recov-
ered result, the result is correct with a high probability. Otherwise,
CoSaMP outputs “Fail” instead. Furthermore, CoSaMP can toler-
ate certain noises mixed in Y , and the path vector can be recov-
ered even some misclassified packets are included. In particular,
CoSaMP could recover s if the number of correctly classified pack-

ets is greater than Ml = ck log(N
k) when c = 1.5 according to recent

study [5].
In CSPR, after a packet is received, if the path group this pack-

et belonging to has not recovered its path yet, the server check-
s whether the number of packets in the group exceeds Ml . The
path reconstruction will be performed if the threshold is reached.
If CoSaMP returns “Fail”, more packets are expected. If CoSaMP
returns a valid result, CSPR executes path verification component
to further ensure its correctness.

Path verification. Given a recovered path and a packet, the
path verification component verify whether the recovered path is
valid for the packet via path vector s of the recovered path and
aMsr value of the packet. More precisely, for a packet with se-
quence number SEQ, we calculate the product of φ and s, where
φ = [α1,α2, · · · ,αN] and α j in φ is the (SEQ mod |D j|)-th coeffi-
cient in D j, j = 1,2, · · · ,N. As coefficients are randomly gaussian,
it is highly impossible for two packets traveling two different paths
yet leading to the same aMsr value. Therefore, if φ · s equals to the
aMsr value of the packet, the recovered path is valid for this packet.

When a path p is newly reconstructed, this component is execut-
ed to verify the correctness of path p for a path group. It is also
used to eliminate all misclassified packets due to bloom filter colli-
sion. If path p is only valid for the minority of packets in the group
(e.g., ≤ 20%), the path recovery is considered to be failed, e.g.,
an incorrect output from CoSaMP. The path reconstruction will be
performed after more packets are received. Otherwise, path p is
viewed as the correct path, and the corresponding Flag of this group
is changed to be true. However, we exclude all packets failed in the
aMsr check from current group and form a new group, with Flag as
false, for those packets. Since the new group has the same 3-tuple
key with current group, we introduce gIdx as the secondary key, an
auto-increment key, to further distinguish entries in database with
the same 3-tuple key. For example, if any 3-tuple key corresponds
to one group g1 only, the gIdx key of this group is 0. Later, if new
groups g2 and g3 are formed successively, their gIdx keys would be
1 and 2 respectively, both of which are automatically increased by
one based on the gIdx key of previous group.

The recovered paths will benefit all future packets traveling on
them. When a group with recovered path receives a packet, C-
SPR just simply invokes the path verification component to check
whether the packet truly traveled the recovered path. If yes, this
packet obtains its path immediately. In CSPR, for a given 3-tuple
key, path groups are matched with the packet following the ascend-
ing order of gIdx keys. At worst, the packet might be assigned
to a newly formed path group. Thanks to identifying each indi-
vidual path, a large number of packets could have their path with
no recovery delay and meanwhile CSPR avoids huge computation
overhead, which will be demonstrated in our evaluations.

3.4 Optimization
In this subsection, we propose two optimization techniques to

improve the performance of our basic design.
Reduction of path representation space. This optimization

aims to reduce the number of elements in a representation space
by continuously monitoring the network topology. The minimum
number of packets required to recover a length of k path is ck log(N

k),
which is proportional to the space size N. The basic design utilizes
all N nodes in the network to form the space. This component tries
to reduce the space size for each path group and thus reduces it-
s needed packets for path reconstruction. For any node i, CSPR
maintains a first-hop receiver set Si, which is learnt from received
packets (via the first-hop receiver field in packet header) and recov-
ered paths (the next hop of node i along a path). All elements in

302

0 10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

R
ec
ov
er
y
ac
cu
ra
cy
(%
)

Time (unit: 30 seconds)

CSPR (core) CSPR
Pathfinder (core) Pathfinder
MNT (core) MNT

Figure 8: The packet path reconstruction progresses with the
core and complete methods of each approach.

Si have ever received packets from node i. The reduced representa-
tion spaces for all path groups with the sArr attribute as node i are
the same, denoted as Ni. Elements of Ni are added in an iterative
manner: 1) elements in Si belong to Ni; 2) elements in S j, where

j ∈ Ni, belong to Ni.
We take node 9 in Fig. 4 as an example to illustrate the formation

of N9. The first-hop receiver set S9 of node 9 contains 5 and 8.
By iteratively including all first-hop receivers of nodes in N9, N9

finally contains 2, 5, 8 and 10. Compared with original space N, the
size of N9 is reduced from 10 to 4. From our investigation on the
CitySee packet trace, we find the average and maximum reduced
representation space sizes are only 39 and 104 respectively, which
are much smaller than the total number of nodes 245 in the network.

Even with sufficient packets, path reconstruction based on the
reduced representation space might be unsuccessful unless all in-
termediate nodes of the path are included in the reduced space. As
it is hard for CSPR to explicitly determine whether all intermediate
nodes are included, we thus use the reduced representation space
as a backup scheme. For each path group, CSPR always use the
original N-dimension representation space for the reconstruction.
If the reconstruction fails, CSPR recovers one more time using the
reduced space. If the second reconstruction succeeds, CSPR will
launch the path verification component to verify the correctness of
the recovered path; Otherwise, CSPR waits for more packets and
performs the next round reconstruction, still starting from the N-
dimension representation space.

With more reconstructed routing paths, we could infer the com-
mon intermediate nodes between the unrecovered paths and the
paths that have been reconstructed, which provides another oppor-
tunity to improve our design, i.e., reducing the path vector sparsity
such that the remaining paths can be recovered by fewer packets.
Such an optimization chance will be explored in our future work.

Heuristic path scanning. For those path groups with insuffi-
cient accumulated packets even after a long time, this component
is designed to scan possible paths for them based on the learnt net-
work topology. It is triggered when the path reconstruction dead-
line of a path group is approaching. As this scheme is relatively
computation intensive, it recovers path not only for the group which
triggers its execution, but also for other unrecovered groups whose
paths have the same source, sArr, as this group at the same time.

Starting from the source node i of the path group that triggers
heuristic path scanning, CSPR builds a directed graph covering all
nodes in the reduced representation space Ni. For any two nodes

1 5 10 15 20 25 280
20
40
60
80
100

(b) Pathfinder

P
er
ce
nt
(%
)

Core method Remedy method

1 5 10 15 20 25 280
20
40
60
80
100

(c) MNT

P
er
ce
nt
(%
)

1 5 10 15 20 25 280
20
40
60
80
100

(a) CSPR

P
er
ce
nt
(%
)

Node index

Figure 9: The portion of packet paths recovered by core or rem-
edy methods.

a and b in Ni, if node b is in the first-hop receiver set of node a,
i.e., b ∈ Sa, CSPR adds an arrow from a to b. This component
enumerates all possible paths from source node i to the sink in the
directed graph. For each enumerated path, CSPR treats it as a newly
reconstructed path and applies the path verification procedure to
check whether it is a valid path for some unrecovered group whose
path is originated from node i. As a result, heuristic path scanning
can recover paths for multiple path groups.

4. PERFORMANCE EVALUATION
In this section, we evaluate the performance of CSPR with com-

parisons to two state-of-the-art approaches based on a 29 TelosB
mote testbed and the CitySee packet trace.

4.1 Evaluation setup
Compared approaches. We compare CSPR to the two state-

of-the-art approaches, Pathfinder [14] and MNT [16]. For fairness,
we implement the path speculation in Pathfinder [14] as a reme-
dy method for both Pathfinder and MNT to improve their perfor-
mances when anchors are lost. We add 1-byte XOR field into pack-
et header for MNT as checksum, similar with Pathfinder, to verify
the reconstructed paths. For all the three approaches, we define the
same path recovery delay bound δ to meet practical requirements.
In general, the three approaches will reconstruct packet paths fol-
lowing their core principles (referred as core method), and employ
the remedy methods (heuristic path scanning for CSPR and path
speculation for Pathfinder and MNT, referred as remedy method)
to reconstruct those failed packets when path recovery delay bound
is approaching. In the following experiments and simulations, we
set the bound δ = 50, which means a remedy method will be em-
ployed to search possible routing paths when another 50 packets
of the same source are received. Small δ will reduce the overall
recovery delay but trigger much more computation overhead. All
approaches are running on a desktop PC with dual-core 3.16GHz
CPU and 4GB RAM. The execution of remedy methods have a time
limit of 1 second to avoid excessive computation overhead.

Performance metrics. The recovery accuracy for each node

is calculated as
o f correct recovered pkts

total # o f pkts received × 100%. Similarly, the re-

covery false positive is computed as
o f f alse positive recovered pkts

total # o f pkts received ×
100% for each node. Intuitively, the approach with higher recovery
accuracy yet lower false positives is expected for per-packet path
reconstruction in WSNs.

303

0 10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 800.0

0.2

0.4

0.6

0.8

1.0

(a)

C
D
F

Recovery accuracy (%)

CSPR
Pathfinder
MNT

(b)

C
D
F

False positive (%)

CSPR
Pathfinder
MNT

Figure 10: (a) CDF of path recovery accuracy. (b) CDF of false
positive for each approach.

4.2 Testbed experiments
We implement CSPR on TelosB mote and use a 29-node testbed

to validate its feasibility and applicability. 29 TelosB motes are uni-
formly distributed in a square area. One node acts as the sink and is
placed at the top-left corner. Due to the limitation of experimental
space, we configure the transmission power of each TelosB mote
to the minimum level and thus the communication range of each
sensor node would be about 15 centimeters. CSPR is implemented
at the application layer on TinyOS 2.1.2 with CTP [15] as the data
collection protocol. Each node generates packets randomly with an
average inter packet interval one second. Within the network, each
intermediate node along a path updates the packet header follow-
ing the requirements of each approach. The sink receives packets
from network and separately executes the three approaches to re-
construct packet paths. The actual path is recorded in packets as
ground truths. The experiment lasts for about 50 minutes and col-
lects 60000 packets.

The sink records the path reconstruction progress of each ap-
proach every 30 seconds. Concretely, for each approach, the por-
tions of packets accurately recovered with only the core method
and the complete approach are both computed. The evolution of
path reconstruction progress of each approach is plotted in Fig. 8.
From the figure, we find that Pathfinder and MNT can only re-
construct 47% and 36% packet paths based on their core method-
s, respectively. Most reconstruction failures are caused by packet
losses (about 38% packet loss rate during experiment). With no
fixed packet generation interval, Pathfinder loses its accuracy in lo-
cating anchors which further harms the performance. Assisted by
the remedy method (i.e., path speculation), they can achieve similar
accuracy as the core method of CSPR, i.e., > 95%. With heuristics
path scanning, CSPR achieves accuracy of 100%. Fig. 9 further
presents the detailed per-node path reconstruction performance. 24
nodes can recover their packet paths just by the core method of
CSPR. With respect to the other two approaches, however, most n-
odes achieve a good recovery accuracy through the remedy method.

4.3 Trace-driven simulations
To evaluate the scalability and efficiency of CSPR in practical

large-scale and more dynamic networks, we conduct extensive trace-
driven simulations by leveraging the practical packet trace from the
real-deployed and large-scale WSN CitySee [22], as introduced in
Section 2.2. The packet trace includes packets from a network of
245 nodes with 174829 packets in total.

2 3 4 5 6 7 8 9 10
0

20

40

60

80

E
xe
cu
tio
n
tim
e
(M
illi
se
co
nd
s)

Routing path length (hops)

Average execution time

Figure 11: The program execution time of path reconstruction
by CSPR versus the routing path length.

We apply the three approaches, i.e., CSPR, Pathfinder and MN-
T, to reconstruct per-packet path in the trace, and summarize the
CDFs of path recovery accuracy and false positive, for each ap-
proach, in Fig. 10. From Fig. 10 (a), we find that CSPR outper-
forms Pathfinder and MNT with significant advantages. Pathfinder
and MNT perform poorly in the practical packet trace, which expe-
riences severe topology dynamics and packet losses as revealed in
Section 2.2, with recovery accuracies of most nodes falling in the
range between 50% and 80%. Only 23% and 45% nodes for MNT
and Pathfinder, respectively, can achieve an accuracy ≥ 80%, while
CSPR makes 95% nodes reach such level. Furthermore, about 85%
nodes achieve a high accuracy ≥ 90%. Overall, the average recov-
ery accuracies for MNT, Pathfinder and CSPR are 62%, 74%, 96%,
respectively. In Fig. 10 (b), we see non-negligible false positives
in Pathfinder and MNT, both of which verify the recovered paths
mainly based on the XOR field in packets. Pathfinder checks the
result with more information recorded in packet, and thus has few-
er false positives than MNT. Such path verification manners result
in on average 11% and 15% false positive for MNT and Pathfind-
er, respectively. Thanks to the path verification component enabled
by the aMsr field, CSPR has no false positive. The correctness of
recovered routing paths is very important as they might be applied
to other applications to provisioning guaranteed QoS [34], such as
network diagnosis [18] [26] and per-hop per-packet delay [13].

CSPR is a lightweight path reconstruction approach, and the
overhead of the compressive sensing recovery, e.g., CoSaMP, is
negligible on a server. The time complexity of CoSaMP is O(λMlN)
[24], where Ml is the number of measurements needed, N is the
network size, and λ is the maximum iterations of CoSaMP, which
is set as 100 in our implementation. In Fig. 11, we measure the
program execution time as the performance metric to further under-
stand the computation overhead of our design. For different routing
path lengths, we plot the reconstruction delays, which are mainly
caused by the compressive sensing recovery. Fig. 11 shows that the
overhead due to compressive sensing recovery is negligible which
is less than 100 milliseconds for all routing path lengths observed
in the experiments.

Because of the packet classification mechanism in CSPR, a great
portion of packets can recover their paths at a negligible cost of
only executing path verification with the recovered paths in path
groups. In Fig. 12, we plot the portion of packets that benefit from
such mechanism. After an accumulation phase of recovered paths,
CSPR can find correct paths for about 65% packets. As a result,

304

0 10 20 30 40 50 60 70 75
0

10

20

30

40

50

60

70

80

90

100

Average packet portion

P
er
ce
nt
(%
)

Time (unit: 2 hours)

Figure 12: The portion of packets benefited from already re-
covered routing paths.

CSPR avoids repeating reconstruct those frequent traveled paths,
and thus saves abundant of computation.

In Section 2.2, we have already observed about 20% natural
packet losses. To examine the impacts of severer packet losses to
the path reconstruction performance of each approach, we fabricate
extra packet losses by randomly removing packets from the origi-
nal trace. We present the recovery accuracy and false positive of
each approach with various extra packet loss rates in Fig. 13. Note
that each value in Fig. 13 is an average of 10 runs. The extra pack-
et loss rate labeling “0” corresponds to the original trace. With
more packets lost, the performance of MNT drops quickly. MN-
T becomes to be not applicable, with accuracy < 50%, when the
extra packet loss rate beyond 15%. The performance of Pathfinder
is also affected, with accuracy dropping from 74% to 66%. These
results illustrate that packet losses indeed have a strong impact on
the performances of approaches relying on inter-packet correlation.
When anchors lost, Pathfinder and MNT use the remedy method to
search possible paths for packets and thus introduce false positives,
due to their relaxed path verification manners. From Fig. 13 (a),
we observe non-negligible false positives for Pathfinder and MNT
with averages ranging from 4% to 15%. On the contrast, CSPR is
insensitive to packet losses and can achieve stable accuracy > 92%
with no false positive.

Packet overhead. In addition to some default information in the
packet header, e.g., source address, sequence number, hop coun-
t and first-hop receiver, each path reconstruction approach further
adds some necessary contents to each packet for the path recov-
ery. Assuming that a node ID is of size 2 bytes. Then the packet
overhead of MNT is 5 bytes including the 1-byte XOR and 4-byte
timestamp. The packet overhead of Pathfinder is about 7 bytes in-
cluding the 1-byte XOR, 2 IDs of changed parents and a bit vector
as the same length of packet path. The packet overhead of CSPR
could be variable in different sizes of networks. CSPR includes a
measurement of 2 bytes (i.e., aMsr) and an L-bit bloom filter (i.e.,
bFlt). Note that L is related with the maximum path length in the
network and could be small, e.g., L = 48 (6 bytes) for the CitySee
packet trace with the maximum path length 12 hops, which actually
corresponds to a large-scale network.

5. RELATED WORK
We review the related works on routing path reconstruction, net-

work tomography and network diagnosis, mainly conducted in WSNs,
in this section.

0

10

20

30

Fa
ls
e
po
si
tiv
e
(%
)

CSPR Pathfinder MNT

(a)

0 5 10 15 20 25 300

20

40

60

80

100
(b)

R
ec
ov
er
y
ac
cu
ra
cy
(%
)

Extra packet loss rate (%)

Figure 13: The recovery accuracies and false positives of the
three approaches with various extra packet loss rates.

Routing path reconstruction. CAPTRA [27] identifies a packet
path through the coordinations among nodes in a network-wide s-
cale. Alam et al. [2] adopt a probabilistic packet marking technique
to trace the provenance of a packet. Both of the works can not re-
alize per-packet path reconstruction as CSPR. PathZip [19] com-
presses path information of a packet into a hash value, and obtains
the packet path by matching all possible paths with the hash val-
ue. As the computation complexity grows exponentially with the
network size, PathZip may not scale to work with large networks.
Pathfinder [14] and MNT [16], the two state-of-the-art approaches,
reconstruct packet path relying on inter-packet correlation. Their
performances, however, are severely influenced by topology dy-
namics and packet losses, just as demonstrated in Section 2.2. D-
ifferent from them, CSPR is insensitive to network dynamics and
lossy links due to its distinct design.

Network tomography. Network tomography in wired networks
has been well studied and tremendous approaches have been pro-
posed to investigate the internal behaviors [8]. By actively gen-
erating probe packets from network nodes, network tomography
mainly aims to recover the network topology or infer some link-
level characteristics [21], e.g., delay or packet loss. Restricted by
the available resources, extensive probes are prohibited for network
topography in WSNs. Recently many works have been proposed
to achieve network tomography in WSNs by leveraging statistical
methods [25], group testing [7], compressive sensing [31] and op-
timization methods [13]. Compared to those works, CSPR recon-
structs routing path for each individual packet without triggering
extra probe packets.

Network diagnosis. Network diagnosis aims at inferring the root
cause for abnormal networking symptoms and maintaining the health
of deployed WSNs. Relying on the collected system metrics from
network, Sympathy [26] pinpoints the root cause of network fail-
ures through a decision tree. PAD [18] captures abnormal events
and infers the root cause for the observed abnormity in a proba-
bilistic manner. The active packet marking scheme in PAD can only
recover one routing path for each source node, while the underly-
ing network topology is required to be relatively stable. PD2 [6]
is a data-centric approach that locates performance problems based
on data flows. D2 [10] detects and diagnoses anomaly by mining
network symptoms. AD [23] exploits the correlation among dif-
ferent system metrics to discover silent failures. Existing works in
this category are orthogonal to CSPR, and are potentially benefit-
ted from the outputs of CSPR for more accurate and fine-grained
diagnostic results.

305

6. CONCLUSION
In this paper, we present the CSPR, a compressive sensing based

path reconstruction approach. Different from the state-of-the-art
approaches, CSPR is inherently insensitive to network dynamics
and lossy links. Extensive evaluations through both testbed-based
experiments and trace-driven simulations show that CSPR outper-
forms the state-of-the-art approaches in various network settings.

7. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for valuable

and insightful comments. This work is supported in part by Nation-
al High Technology Research and Development Program of China
(863) under Grant No.2012AA101701; National Key Research &
Development Program under Grant No.2013BAK01B04; Project
of Innovative Team of Digital Cultural Media Technology of Zhe-
jiang Province under Grant No.2010R50040; NSFC No.61303233.
This work is also partially supported by Singapore MOE AcRF Tier
2 Grant MOE2012-T2-1-070, and NTU Nanyang Assistant Profes-
sorship (NAP) Grant M4080738.020. We also acknowledge the
support of practical packet trace from the CitySee project [22].

8. REFERENCES
[1] TelosB mote datasheet. http:

//www.willow.co.uk/TelosB_Datasheet.pdf.

[2] S. Alam and S. Fahmy. A practical approach for provenance
transmission in wireless sensor networks. Ad Hoc Networks,
2013.

[3] A. Broder and M. Mitzenmacher. Network applications of
bloom filters: a survey. Internet Mathematics, 1(4):485–509,
2004.

[4] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty
principles: exact signal reconstruction from highly
incomplete frequency information. IEEE Transactions on
Information Theory, 52(2):489–509, 2006.

[5] E. J. Candès and M. B. Wakin. An introduction to
compressive sampling. IEEE Signal Processing Magazine,
25(2):21–30, 2008.

[6] Z. Chen and K. G. Shin. Post-deployment performance
debugging in wireless sensor networks. In IEEE RTSS, 2009.

[7] M. Cheraghchi, A. Karbasi, S. Mohajer, and V. Saligrama.
Graph-constrained group testing. IEEE Transactions on
Information Theory, 58(1):248–262, 2012.

[8] A. Coates, A. O. Hero III, R. Nowak, and B. Yu. Internet
tomography. IEEE Signal Processing Magazine,
19(3):47–65, 2002.

[9] D. Dong, M. Li, Y. Liu, X.-Y. Li, and X. Liao. Topological
detection on wormholes in wireless ad hoc and sensor
networks. IEEE/ACM Transactions on Networking,
19(6):1787–1796, 2011.

[10] W. Dong, C. Chen, J. Bu, X. Liu, and Y. Liu. D2: anomaly
detection and diagnosis in networked embedded systems by
program profiling and symptom mining. In IEEE RTSS,
2013.

[11] W. Dong, Y. Liu, Y. He, and T. Zhu. Measurement and
analysis on the packet delivery performance in a large scale
sensor network. In IEEE INFOCOM, 2013.

[12] D. L. Donoho. Compressed sensing. IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006.

[13] Y. Gao, W. Dong, C. Chen, J. Bu, T. Chen, M. Xia, X. Liu,
and X. Xu. Domo: passive per-packet delay tomography in
wireless ad-hoc networks. In IEEE ICDCS, 2014.

[14] Y. Gao, W. Dong, C. Chen, J. Bu, G. Guan, X. Zhang, and
X. Liu. Pathfinder: robust path reconstruction in large scale
sensor networks with lossy links. In IEEE ICNP, 2013.

[15] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis.
Collection tree protocol. In ACM SenSys, 2009.

[16] M. Keller, J. Beutel, and L. Thiele. How was your journey?:
uncovering routing dynamics in deployed sensor networks
with multi-hop network tomography. In ACM SenSys, 2012.

[17] X.-Y. Li, Y. Wang, H. Chen, X. Chu, Y. Wu, and Y. Qi.
Reliable and energy-efficient routing for static wireless ad
hoc networks with unreliable links. IEEE Transactions on
Parallel and Distributed Systems, 20(10):1408–1421, 2009.

[18] Y. Liu, K. Liu, and M. Li. Passive diagnosis for wireless
sensor networks. IEEE/ACM Transactions on Networking,
18(4):1132–1144, 2010.

[19] X. Lu, D. Dong, X. Liao, and S. Li. PathZip: packet path
tracing in wireless sensor networks. In IEEE MASS, 2012.

[20] C. Luo, F. Wu, J. Sun, and C. W. Chen. Compressive data
gathering for large-scale wireless sensor networks. In ACM
MobiCom, 2009.

[21] L. Ma, T. He, K. K. Leung, D. Towsley, and A. Swami.
Efficient identification of additive link metrics via network
tomography. In IEEE ICDCS, 2013.

[22] X. Mao, X. Miao, Y. He, X. Li, and Y. Liu. CitySee: urban
CO2 monitoring with sensors. In IEEE INFOCOM, 2012.

[23] X. Miao, K. Liu, Y. He, Y. Liu, and D. Papadias. Agnostic
diagnosis: discovering silent failures in wireless sensor
networks. In IEEE INFOCOM, 2011.

[24] D. Needell and J. A. Tropp. CoSaMP: iterative signal
recovery from incomplete and inaccurate samples. Applied
and Computational Harmonic Analysis, 26(3):301–321,
2009.

[25] H. X. Nguyen and P. Thiran. Using end-to-end data to infer
lossy links in sensor networks. In IEEE INFOCOM, 2006.

[26] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler,
and D. Estrin. Sympathy for the sensor network debugger. In
ACM SenSys, 2005.

[27] D. Sy and L. Bao. CAPTRA: coordinated packet traceback.
In ACM/IEEE IPSN, 2006.

[28] S. Tang and J. Wu. Qute: quality-of-monitoring aware
sensing and routing strategy in wireless sensor networks. In
ACM MobiHoc, 2013.

[29] J. Wang, W. Dong, Z. Cao, and Y. Liu. On the delay
performance analysis in a large-scale wireless sensor
network. In IEEE RTSS, 2012.

[30] J. Wang, Y. Liu, Z. Li, W. Dong, and Y. He. QoF: towards
comprehensive path quality measurement in wireless sensor
networks. In IEEE INFOCOM, 2011.

[31] W. Xu, E. Mallada, and A. Tang. Compressive sensing over
graphs. In IEEE NFOCOM, 2011.

[32] Y. Yang, Y. Xu, X. Li, and C. Chen. A loss inference
algorithm for wireless sensor networks to improve data
reliability of digital ecosystems. IEEE Transactions on
Industrial Electronics, 58(6):2126–2137, 2011.

[33] T. Zhu, W. Dong, Y. He, Q. Ma, L. Mo, and Y. Liu.
Understanding routing dynamics in a large-scale wireless
sensor network. In IEEE MASS, 2013.

[34] Y. Zhu and L. M. Ni. Probabilistic approach to provisioning
guaranteed QoS for distributed event detection. In IEEE
INFOCOM, 2008.

306

