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ABSTRACT
Power delay profiles characterize multipath channel features, which
are widely used in motion- or localization-based applications. Re-
cent studies show that the power delay profile may be derived from
the CSI traces collected from commodity WiFi devices, but the
performance is limited by two dominating factors. The resolution
of the derived power delay profile is determined by the channel
bandwidth, which is however limited on commodity WiFi. The
collected CSI reflects the signal distortions due to both the chan-
nel attenuation and the hardware imperfection. A direct deriva-
tion of power delay profiles using raw CSI measures, as has been
done in the literature, results in significant inaccuracy. In this pa-
per, we present Splicer, a software-based system that derives high-
resolution power delay profiles by splicing the CSI measurements
from multiple WiFi frequency bands. We propose a set of key tech-
niques to separate the mixed hardware errors from the collected
CSI measurements. Splicer adapts its computations within strin-
gent channel coherence time and thus can perform well in presence
of mobility. Our experiments with commodity WiFi NICs show
that Splicer substantially improves the accuracy in profiling multi-
path characteristics, reducing the errors of multipath distance esti-
mation to be less than 2m. Splicer can immediately benefit upper-
layer applications. Our case study with recent single-AP localiza-
tion achieves a median localization error of 0.95m.

Categories and Subject Descriptors
B.2.1 [ Computer-Communication networks]: Wireless Com-
munication

Keywords
Wireless; channel state information (CSI); power delay profile; res-
olution; bandwidth; channel combination; phase; localization

1. INTRODUCTION
Motivation. The power delay profile gives the power strength

of a signal received through a multipath channel as a function of
propagation delay, that profiles the multipath arrivals of the signal.
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Figure 1: Transformation from a channel frequency response
to the power delay profile. (a) A channel frequency response,
where f0, Δ f , and B represent starting frequency, frequency sam-
pling resolution, and bandwidth, respectively; (b) Derived power
delay profile, where τ0 and Δτ represent the propagation delay of
LoS path and the power delay profile resolution, respectively.

A power delay profile fully characterizes a multipath channel, and
has been recently used in various motion- or location-based appli-
cations [9, 17, 27, 28, 35, 37, 38, 46] — multipath channel dynam-
ics can be unveiled from consecutive measures of the power delay
profile, e.g., tracking the power delay profile changes in a multi-
path channel can detect an object’s movement [9, 10, 34, 35, 38],
like a person’s walking, falling, talking, or gestures, etc. In addi-
tion, the exact power level measured from each signal path can also
be used to estimate the path length, i.e., ranging between a pair of
transmitters [28, 37].

A power delay profile can be measured by directly detecting mul-
tipath signals with different arrival times in the time domain, which
however requires dedicated hardware of high signal sampling fre-
quency [23, 26]. An alternative way to describe the channel is us-
ing the Channel State Information (CSI) which can be obtained
from commodity WiFi network interface cards (NICs), e.g., Intel
5300, Atheors 9580, etc. Theoretically, the frequency domain CSI
can be transformed lossless to the time domain power delay profile
through IFFT (Inverse Fast Fourier Transform). Figure 1 illustrates
the process (which will be detailed in §2).

The time resolution of the derived power delay profile from CSI,
e.g., Δτ in Figure 1(b), is limited by the bandwidth of the transmit-
ted signal [7, 26], e.g., B in Figure 1(a), and Δτ = 1/B. A high res-
olution power delay profile can differentiate subtle multipath chan-
nel changes, and consequently detect tiny activities. For the widely
used 20MHz bandwidth in 802.11n [12], the power delay profile
resolution is up to 50ns, which leads to a 15m resolution in mea-
suring the multipath lengths. Such a resolution imposes inevitable
uncertainty in mobility detection [9, 35, 38, 45, 46], gesture recog-
nition [33], or localization [28, 37]. For a finer grained motion
detection, e.g., less than 1.5m uncertainty to differentiate slight
human body movements, at least 200MHz bandwidth is needed,
which is impossible for current commodity WiFi NICs. Some re-
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Figure 2: CSI amplitude measurements. Raw CSI amplitudes
from (a) one 40MHz 802.11n band and (b) three 20MHz bands;
Amplitudes after the offset removal from (c) the 40MHz band and
(d) three 20MHz bands.

cent works directly use CSI in replacement of power delay profile
to learn the channel dynamics. The CSI description of the channel
is, however, essentially limited by the bandwidth. In addition, CSI
description is indirect and dependent of hardware uncertainty.

In this paper, we observe that although the width of each individ-
ual WiFi band is limited, e.g., 20MHz/40MHz, the total bandwidth
allocated to 802.11 WiFi is wide, e.g., more than 200MHz at 5GHz
frequency band in 802.11n, which covers 10/5 different 20/40MHz
channels. Furthermore, the CSIs measured from these individual
WiFi channels can be spliced to derive a finer power delay profile
with much higher time resolution. Figure 2 reports the results of our
initial measurement study in 802.11n (detailed experiment settings
reported in §3.1). The CSI measurements are complex values and
hence contain two parts, the amplitude and the phase. Figure 2 (a)
presents the CSI amplitude measurements (multiple times) from
one 802.11n 40MHz band and Figure 2 (b) presents the CSI ampli-
tude measurements from three 802.11n 20MHz bands that together
cover the same 40MHz band in Figure 2 (a). From Figure 2 (a)
and (b), we can observe obvious offsets between the measured CSI
amplitudes at different times. After removing the amplitude offsets
among all measurements, we see that the spliced CSI from 20MHz
bands can be very similar in its shape to the one measured from the
40MHz band (Figure 2 (c) and (d)).

Compared with the amplitude splicing, the phase splicing may
result much severer errors. Figure 3 depicts the phases of the same
CSI traces in Figure 2. The raw CSI phases1 measured at different
times have offsets as well (Figure 3 (a) and (b)). However, even
we remove their mutual offsets when splice the traces, the resid-
ual phases do not have a common shape, demonstrating diverse
phase shifts in different sub-carriers. Consequently, the multiple
instances of the 40MHz CSI phase measurements as depicted in
Figure 3 (c) do not match each other. The CSI traces from 20MHz
bands cannot match the 40MHz measurement neither. To derive
an accurate power delay profile, such phase shifts must be pre-
cisely compensated because the phase value falls in a small range
of [−π,π), and a slight phase error will result in significant inaccu-
racy in the power delay profile (as we will demonstrate in §3.1).

Challenges. Removing the CSI measurement error, however,
is challenging. The CSI calculated by the commodity WiFi NICs
contains the signal distortions due to both channel propagation and

1A raw CSI phase is in the range of [−π,π). For a clear represen-
tation, we expand the measured CSI phases θ, using θ = θ ± 2kπ,
to the range of [−∞,+∞] across different channels.
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Figure 3: CSI phase measurements. Raw CSI phases from (a)
the 40MHz band and (b) three 20MHz bands; Phases after the offset
removal from (c) the 40MHz band and (d) three 20MHz bands. The
CSI traces in this Figure are the same with Figure 2.

imperfect signal processing on the hardware, e.g., imprecise sam-
pling frequencies at the sender and receiver, shift of the central
frequencies, and power control uncertainties. WiFi communica-
tion systems do not have to explicitly separate the two sources of
signal distortions, because only end-to-end distortion needs to be
captured and compensated as a whole in the equalization stage.
To derive a precise power delay profile for the channel, however,
it requires to precisely separate the channel attenuation part from
the mixed signal distortions due to hardware imperfection, which
is non-trivial. The sampling clock frequency uncertainty causes
frequency-relevant CSI phase measurement errors in each individ-
ual channel. The central clock frequency shift and the power con-
trol uncertainty further introduce notable phase and amplitude off-
sets cross different channels, respectively. Based on the raw CSI
measures, it is unknown how to compensate those errors for CSI
splicing without the knowledge of ground-truth CSI. In addition
to above challenges, wireless channels are time-varying, especially
in the mobile environment. Few CSI measurements are allowed
for scanning the whole WiFi band during a short coherence time.
To deal with such a practical limit, we have to devise an effective
method to correct and splice CSI measurements with insufficient
samples and affordable computation cost.

Contributions. This paper presents a set of key techniques to
address above challenges. At the high level, we exercise the ob-
servation that the CSIs collected from different frequency bands
should lead to the same power delay profile that characterizes the
communication channel itself. We propose an efficient method
that searches for a CSI manipulation that maximizes the match-
ing between the power delay profiles derived from CSIs obtained
at different frequency bands, based on which we can perform a
preliminary CSI splicing. However, the power delay profiles used
for matching are derived from narrow WiFi bands with limited
bandwidth, so the spliced CSI is still of low quality. We devise
a wider frequency window and perform a rolling-based calibration
on the spliced CSI, based on which we refine the error correction to
achieve a precisely spliced CSI. To accommodate the computations
in the limited coherence time, we further develop a lightweight
scheduler that is able to determine the optimal number of CSIs to
measure from each individual WiFI band to strike a trade-off be-
tween the error compensation and the total bandwidth that can be
afforded for the CSI splicing.

We develop a system, called Splicer, to incorporate above tech-
niques on commodity Atheors 9580 NICs. Our benchmark exper-
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Figure 4: Power delay profiles derived using two CSI with an
amplitude offset of 7dB.

iments show that Splicer can derive high resolution power delay
profiles from spliced CSI. We evaluate the derived power delay pro-
file by estimating the distance between the sender and the receiver.
According to our experiments, Splicer can reduce the median rang-
ing error from 7.1m to 1.63m compared with using raw CSI traces
from NICs. In light of such a high resolution, Splicer can imme-
diately enhance the performance of a plethora of upper-layer ap-
plications, e.g., object tracking, gesture recognition, localization,
etc., without additional modification to the original application de-
sign. We demonstrate this benefit with a case study. We build the
recent single-AP localization CUPID [28] on top of Splicer. Our
evaluations show that the localization accuracy can be substantially
improved. In particular, Splicer improves the CUPID localization
accuracy by 71%, with median localization errors about 0.95m.

The rest of the paper is organized as follows. The design prin-
ciple is stated in §2 and the Splicer design is detailed in §3. We
investigate the accuracy of the derived power delay profile using
spliced CSIs and evaluate a case study atop Splicer in §4. Related
works are reviewed in §5. We conclude in §6.

2. PRINCIPLE OF CSI SPLICING
In this section, we give the theoretical foundation for CSI splic-

ing. According to [7, 26], the channel frequency response h( f ) can
be expressed by Eq. (1):

h( f ) =
∑L

l=0
αl · e− j ·2π · f ·τl , (1)

where L is the total number of multipaths, αl and τl stand for the
attenuation and the propagation delay of the signal through path
l, respectively. Figure 1 (a) depicts a channel frequency response
when the channel bandwidth is B, e.g., f0 ≤ f ≤ f0 + B. Channel
frequency response is reported in the form of CSI in 802.11 WiFi,
which is a set of discrete channel frequency response samples. With
the sampling rate Ff =

1
Δ f , where Δ f is the sampling resolution

in the frequency domain, a receiver can obtain M = B
Δ f channel

frequency response samples, and each sample contains amplitude
and phase information.

To obtain the power delay profile, the CSI can be transformed to
the channel impulse response f (t) by IFFT:

f (t) =
∑L

l=0
αl · δ(t − τl ), (2)

where δ(·) is the delta function, and L, αl , and τl have the same
definitions as they are in Eq. (1). Figure 1 (b) illustrates the channel
impulse response transformed from Figure 1 (a). The norm of f (t),
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Figure 5: Power delay profiles derived using two CSIs with raw
phases and average amplitude of the CSI traces in Figure 4.

| | f (t) | |2, then gives the power delay profile, which describes the
power levels of each multipath with different propagation delays.

Feasibility of CSI splicing. According to Eq (1), given one mul-
tipath channel, i.e., given each αn , τn , and N in Eq (1), and channel
bandwidth B, the channel state information is deterministic at each
frequency f . We can thus obtain all M CSI samples from either a
single measurement covering the entire bandwidth or multiple mea-
surements where each measurement covers a subset of M samples.
With the M samples, we can derive a unique power delay profile
using Eq. (2) and the norm operation.

Resolution of power delay profile. After the IFFT transforma-
tion, we obtain a series of signal samples in the time domain with
various delays τl in Eq. (2). The norm of each multipath compo-
nent, | |αl · δ(t − τl ) | |2, indicates its power level as shown in Fig-
ure 1 (b), where the first impulse corresponds to the Line-of-Sight
(LoS) path. According to the IFFT theory, the time resolution Δτ
of power delay profile is connected to the sampling resolution Δ f
of the channel impulse response, i.e., Δτ = 1/(N ·Δ f ), where N is
the IFFT length. As N · Δ f = 1/B, we have Δτ = 1/B, where B is
the bandwidth. Such a connection indicates that a wider bandwidth
CSI leads to a higher resolution of power delay profile.

Given channel bandwidth B, two multipaths of propagation de-
lays τ1 and τ2 are not distinguishable if |τ1 − τ2 | < 1/B. Hence,
all multipaths whose propagation delays differences are less than
1/B are viewed as one multipath component in the power delay
profile, and the corresponding power level indicates the aggregated
power level of those multipaths. As a result, the time resolution Δτ
leads to c

B uncertainty in terms of the length difference between
non-distinguishable paths, where c is the speed of the signal prop-
agation. In 802.11 WiFi in a 20MHz or 40MHz channel, the path
length uncertainty is 15m or 7.5m, respectively, which can merely
support coarse mobility tracking and activity recognition.

3. DESIGN

3.1 CSI splicing in practice
We first locate the error sources of CSI splicing in the 802.11

physical layer in §3.1 and then present the design details to address
each of them from §3.2 to §3.5.

CSI measurement errors. We perform preliminary CSI mea-
surements to investigate how CSI measurement errors will affect
the derived power delay profiles. We use Atheros 9580 NICs that
support 802.11n with 20MHz/40MHz channels at the 2.4G/5G fre-
quency band, and modify the driver to extract CSI from the physical
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layer. We configure Atheros nodes to transmit packets with mini-
mum payload to ensure a short transmission delay, i.e., about 0.2ms
in our experiment. We collect the CSI traces from one 802.11n
40MHz band as well as three 20MHz bands. The measurement re-
sults are reported in Figures 2 and 3, which have been discussed in
§1. In this section, we further derive the power delay profiles from
the CSI traces and investigate how the CSI amplitude and phase
errors may impact the final power delay profiles.

CSI amplitude. In Figure 4, we select two arbitrary CSI traces
from the same WiFi band (20MHz-2 in Figure 2) with an amplitude
offset of 7dB, and derive two power delay profiles2. Figure 4 shows
that although two derived power delay profiles have different power
levels, e.g. the average difference is 7.05 dB, they follow similar
shapes. We compute the variance of the power difference for each
path to quantify the similarity of two power delay profiles, which
is less than 1.0 dB. We observe similar results from other CSI com-
binations. All of these results indicate that the derived power delay
profiles approximately characterize the same multipath channel en-
vironment except that their power levels are scaled due to amplitude
offsets of the CSI measurements.

CSI phases. In Figure 5, we use the raw phases of two CSI traces
in Figure 4 to derive two power delay profiles3. The two profiles
in Figure 5 demonstrate opposite results. One power delay profile
indicates the existence of the LoS between the transmission pair
(i.e., the first multipath component has the strongest power level),
however another one indicates that there is no LoS (NLoS) path
(i.e., the first arrived signal is much weaker in strength than later
arrived signals). In addition, the power levels of each multipath
component in these two profiles are very different, e.g., the power
difference of the LoS path is more than 10 dB and the variance of
the power level differences is up to 4.7 dB. Figure 5 indicates that
the CSI phase errors will significantly impact the derived power
delay profiles, which completely change both the power loss and
the multipath channel features.

As our initial experiment results suggest, the CSIs collected from
WiFi NICs are mixed with rich hardware distortions. The raw CSIs
cannot derive accurate power delay profiles. We identify the mea-
surement error sources in 802.11 physical layer process and pro-
pose solutions to compensate each of them.

Sources of CSI measurement errors. Figure 6 illustrates the
wireless signal processing in the 802.11 NICs. An incoming signal
from the antenna is down converted to the base band signal s(t) and
sampled by Analog-to-Digital (ADC) to derive the digital s[n]. The
packet boundary detector (PBD) performs correlation between s[n]

2To isolate the impact of the CSI phases, we use the average phases
of the two CSI traces such that the derived power delay profiles only
differ in the amplitude.
3Similar to the experiment in Figure 4, we use the average ampli-
tude of the two CSI traces to derive power delay profiles to avoid
the impact from the amplitude.

and a pre-defined 802.11 preamble pattern to confirm an incoming
packet. Once the preamble of a packet is detected, the signal cen-
tral frequency is calibrated by the central frequency offset (CFO)
corrector. The OFDM receiver estimates the CSI based on the cal-
ibrated s[n] and the CSI is passed to the subsequent equalization
module (not shown) to compensate errors prior to the packet de-
coding. Due to the hardware imperfection, the CSIs measured by
NICs introduce the following errors.

Power control uncertainty. Limited by the hardware resolution,
Automatic Gain Controller (AGC) cannot perfectly compensate the
signal amplitude attenuation to the transmitted power level. The
measured CSI amplitude equals to the compensated power level,
which is mixed with the power control uncertainty error. Accord-
ing to [14], the CSI amplitude offsets in individual bands can be re-
moved by averaging. However, if the number of CSI measurements
on each channel is not sufficient, which may be the usual case due
to the stringent delay constraint (§3.5), the averaging cannot per-
fectly eliminate the power uncertainty. The residual offset between
different WiFi bands disallows a direct CSI amplitude splicing.

Sampling frequency offset (SFO). The sampling frequencies of a
transmission pair exhibit an offset due to non-synchronized clocks,
which can cause s[n] after ADC a time shift τo with respect to
the transmitted signal. Because clock offsets are relatively stable
within a short time, τo will introduce near constant errors λo to the
CSI phases measured from different sub-carriers.

Packet boundary detection (PBD) error. Due to correlator sen-
sitivity of packet detector, the packet detection introduces another
time shift τb , with respect to the transmitted signal [6, 31]. The tim-
ing shift τb causes random errors λb to the measured CSI phases.

Central frequency offset (CFO). The central frequencies of the
transceiver cannot be perfectly synchronized. The central frequency
offset is compensated by the CFO corrector, but due to the hardware
imperfection, the compensation is incomplete. Signal s[n] still car-
ries residual errors, which can cause the CSI phase offsets β.

The last three error sources cause CSI phase measurement errors.
Due to the diverse phase shifts from SFO and PBD, the phases of
the overlapped sub-carriers measured from two consecutive bands
are inconsistent (different), which impairs the CSI phase splicing.
The CSI phases measured from different bands also suffer from
notable offsets. In the next section, we introduce our solutions to
compensate above CSI errors.

3.2 Phase error correction
We denote S as the number of sub-carriers in one WiFi band.

Based on [31, 32], the reported CSI phase value φk from any sub-
carrier k by WiFi NICs can be expressed:

φk = θk + k · (λb + λo ) + β, (3)

where θk is the phase rotation of subcarrier k which is caused by
the channel propagation, λb and λo are phase errors introduced
by the packet boundary detection uncertainty and the sampling fre-
quency offset, respectively, β is the phase error caused by the cen-
tral frequency offset, and k = 1,2, . . . ,S. As λb + λo is multiplied
by the sub-carrier index k in Eq. (3), the phase errors cross different
sub-carriers are diverse among different CSI measures as shown in
Figure 3. Our target is to obtain the phase value θk by eliminat-
ing the impact of other parameters, i.e., the λb , the λo and the β.
We focus on the removal of λb and λo from φk in the rest of this
subsection, and introduce the removal of β when we splice the CSI
phases in §3.3.

PBD phase error λb removal. Phase error λb is caused by
the time shift τb from the packet boundary detection uncertainty.
To investigate the effect of τb , we examine the discrete Fourier
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tion of Δλb . (a) The phase differences k · Δλb of 8 randomly CSI
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transform of the channel frequency response in Eq. (4):

h[k] =
∑N−1

n=0
f [n] · e− j ·2π ·k ·n/N , (4)

where h[k] and f [n] are the discrete versions of h( f ) in Eq. (1) and
f (t) in Eq. (2), respectively, and N is the IFFT length. With a time
shift τb in f [n], Eq. (4) can be rephrased as:

h[k] · e− j ·2π ·k ·τb/N =
N−1∑

n=0

f [(n − τb )N ] · e− j ·2π ·k ·n/N ,

where the term e− j ·2π ·k ·τb/N indicates that the time shift τb can
introduce a phase error, 2π · k · τb/N , in each sub-carrier k. There-
fore, λb = 2π · τb/N .

To remove λb from each φk , we leverage an observation that the
time shift τb varies in each packet reception but follows a Gaussian
distribution with the zero mean [31]. The error λb thus changes
accordingly in different CSI measurements and λb ∼ N (0,σ2),
where σ is the standard deviation. According to the weak law of
large numbers, λb can be removed by averaging over the measured
CSI phases φk .

To validate this observation, we perform a trial of experiments
in Figure 7. In Eq. (3), λb is mixed with λo , β, and θk in the
CSI phase φk , and we cannot directly investigate its distribution.
Therefore, for the collected CSIs from the same WiFi band, we
calculate the mutual phase differences of those CSIs and obtain a
set of Δθk + k · (Δλb + Δλo ) + Δβ = k · Δλb + a for each sub-
carrier k4, where a is a constant. We thus examine the distribution
of Δλb , because if λb ∼ N (0,σ2), Δλb should be a Gaussian
with the zero mean as well. We collect 180 CSIs from a 20MHz
channel within a short time interval when the environment is stable.
Figure 7 (a) plots the k · Δλb value versus the sub-carrier index k
for 8 randomly selected CSI pairs (we omit the constant a for the
presentation clarity). Figure 7 (a) shows each line is a straight line
and the slopes of those lines are different. The result indicates that
λb is a constant to each sub-carrier in each individual measure, but
varies cross different measures. To further examine its distribution,
in Figure 7 (b), we divide the range [−0.075,0.075] into 100 bins
on the x-axis and plot the frequency of Δλo falling into each bin on
the y-axis. After the curve fitting, we find that Δλb indeed follows
a Gaussian distribution with the zero mean.

According to the λb distribution, we can remove it by averaging
over the measured CSI phases φk s. In principle, more measure-
ments lead to a better error removal, but it will prolong the latency

4λo is a constant that can be removed by the deduction, which is
detailed in the SFO phase error removal.
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to scan each single band. In §3.5, we will determine an optimal
number of CSIs collected from each band to balance this trade-off
subjected to the stringent channel coherence time. Given the opti-
mal amount ṅi for any band i, we calculate:

φ
i
k =
∑ṅi

i=1
φik ( j)/ṅi , (5)

where φi
k

( j) stands for the j-th CSI measure from band i. After

λb is removed, φ
i
k = θ

i
k

+ k · λo + β. In the next subsection, we

introduce how to remove λo from φ
i
k .

SFO phase error λo removal. Phase error λo is caused by the
offset of the sampling frequencies of the sender and the receiver,

fs and fr . We denote ζ =
fs
fr
− 1 as the fractional difference in

sampling frequency, and the effect of the sampling frequency offset
is to introduce a term, e j ·ζ′ ·k , to the channel frequency response:
h′[k] = h[k] · e j ·ζ′ ·k , where ζ ′ stands for ζ multiplied with a con-
stant and h[k] is the channel frequency response without the sam-
pling frequency offset (Eq. (4)). Hence, λo = ζ

′. As the fractional
frequency difference keeps stable in the order of minutes [13], λo
is a constant during the process of the CSI splicing.

To remove λo from φ
i
k = θ

i
k

+ k · λo + β, obtained from Eq. (5),
we leverage an observation that the power delay profiles derived
from different WiFi bands should be the same after λo is removed
(we will show in §3.3 that the phase offest β has no impact on
the derived power delay profile), since they characterize the same

multipath channel. For any WiFi band i, the CSI phases φ
i
k s from

all S sub-carriers form a vector Φ
i
= [φ

i
1, φ

i
2, . . . , φ

i
S ]T . There-

fore, we propose to gradually “rotate” two distinct Φ
i

and Φ
j

in
the frequency domain5 and stop when the two derived power delay
profiles best match each other. We repeat this process for different
pairs of WiFi bands to improve the accuracy. To quantify the like-
lihood of two power delay profiles, e.g., P1 and P2, we define their
similarity as:

ρ(P1,P2) =
1

| |P1 − P2 | |2 , (6)

where the dominator essentially measures the power level differ-
ences of each multipath component in the two power delay profiles.
A large ρ(P1,P2) value indicates that P1 and P2 are more similar.

To illustrate this solution, we measure four different 20MHz WiFi
bands, and compute the similarities for two channel pairs in Fig-
ure 8. We compensate λo by λo − ε and search for the optimal

5We multiply Φ
i

and Φ
j

with e j ·ε ·k , and gradually vary ε .



Algorithm 1: SFO Phase Error Compensation

1 for each WiFi band pair c do
2 Record the top-two local maximal similarity values and

the corresponding ε : < εc
1
, ρc

1
> and < εc

2
, ρc

2
>.

3 Clustering on ε and find the cluster with the maximal
similarity sum.

4 Return the cluster center as the final ε value.
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Figure 9: CSI phases after the removal of λs and λo .

ε for both positive and negative directions. For the first pair, we
observe four local maximum points, and for the second pair, we
observe three local maximum points when ε varies in [−0.1,0.1].
According to Algorithm 1, we can determine the final ε as the av-
erage of ε1 and ε2 in Figure 8. With the optimal ε obtained from

Algorithm 1, for each Φ
i

after the PBD phase error λb removal,

we can further remove λo by ˜Φi = Φ
i − [ε,2ε, . . . ,Sε]T , where S

is the number of subcarriers.
Although the ε searching introduces extra computational delays,

Algorithm 1 does not need to be executed parallel to the CSI sam-
pling in real-time. As a matter of fact, once sufficient CSIs can be
obtained subjected to the stringent channel coherence time (§3.5),
the latency of Algorithm 1 only impacts the frequency to generate
power delay profiles to the upper-layer applications. We evaluate
the computational efficiency in §4.

3.3 CSI phase splicing
Figure 9 plots the corrected CSI phases at this stage for the three

20MHz channels in Figure 3 (b). From the result, we observe that
after the phase error removals of λb and λo , the shapes of the over-
lapped sub-carrier phases from different WiFi bands now become
similar and consistent. The only barrier that remains is the offsets.
In this subsection, we target to removing offsets to finally enable
the phase splicing.

CSI phase offset β removal. Phase offset β is caused by the
central frequency offset of the transmission pair. Through our study,
we find that for individual WiFi bands, phase offset β has no im-
pact on the derived power delay profile, i.e., given a pair of CSI
amplitude (ω) and phase (θ), the power delay profile derived by ω
and θ is identical to the one derived by ω and θ + β. The reason
is that offsets are frequency independent. After IFFT, the error will
result in a constant phase rotation term in each αl of Eq. (2), which
will not change the norm operation result. Hence the power level
of each multipath component keeps unchanged. According to this
observation, we can use the phase measured from any band as a ref-
erence and compensate β by calibrating the phases measured from
other bands with respect to the reference.

Spliced CSI phase refinement. So far, the CSI phases measured
from different channels can be spliced already. However, we find
that the CSI phase accuracy can be further improved by leveraging

l
l

frequency

...

Figure 10: Spliced CSI phase refinement.

the primarily spliced result. In the SFO phase error λo removal,
we rely on the similarity of the derived power delay profile to com-
pensate λo , but the derived power delay profiles are based on the
CSI from single WiFi bands with limited bandwidth. The phase er-
ror λo thus cannot get fully corrected using low-resolution power
delay profiles. To refine the phase information, in the phase splicer,
we further manually divide the spliced channel bandwidth into mul-
tiple windows illustrated in Figure 10. Each window has a much
wider bandwidth, denoted as l, than each single WiFi band. We
slide the window and obtain a set of l-wide phase pieces. For each
phase pair, we call Algorithm 1 to estimate the SFO phase error
compensator ε , and use their average value to further compensate
the spliced CSI phase.

In Figure 10, the window size l balances a trade-off. A larger l
will lead to a higher-resolution power delay profile, which poten-
tially can better compensate the phase error λo . However, with a
large l, the channel information carried by each divided CSI piece
will be highly redundant (more overlapped sub-carriers). Two such
power delay profiles will produce a large body of local maximal
points in Figure 8, which are dominated by the channel informa-
tion redundancy, instead of the removal of the phase error λo . It
thus prevents to find the optimal ε to compensate λo . Therefore,
the length l needs to be carefully selected. In Figure 11, we in-
vestigate this trade-off. The experimental setting is detailed in §4,
where we use ranging accuracy as the metric for the evaluation. We
set the window size l as a fraction of the total bandwidth that the
spliced CSI covers. Initially, when we increase the window size,
the ranging accuracy improves because λo is better compensated
by higher-resolution power delay profiles. However, when l is ex-
cessive large, e.g., close to 0.95, the accuracy decreases due to the
unreliability in the optimal ε search. According to Figure 11, we
set l to be 3

4 of the total bandwidth that the spliced CSI covers as
default in Splicer.

3.4 CSI amplitude splicing
In Figure 2, we have shown that the amplitudes of raw CSIs

also exhibit significant offsets. The reason is that the power con-
trol uncertainty [8, 14], which also follow a Gaussian distribution.
However, different from the CSI phases, the power uncertainty is
frequency band independent, i.e., the amplitudes measured from
different bands follow the same distribution. Thus, for CSI ampli-
tudes, there is no need to average them for individual WiFi bands.
Instead, we can average the amplitudes after we collect all CSIs for
the splicing. The total number of CSIs to collect for splicing is de-
termined by the channel coherence time, which will be discussed
and given in the next subsection.

So far, both the CSI amplitudes and phases both can be spliced.
Figure 12 depicts the splicing result covering the entire 802.11n
WiFi band, 200MHz, obtained from our experiments in §4.

3.5 Battle the coherence time constraint
Wireless channels are time-varying, which enforce a stringent

time budget for each round of CSI splicing, since the spliced CSI
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Figure 11: Empirical investigation of window size l.

is valid only when the channel condition is relatively stable. In
this subsection, we first estimate the minimum number of CSIs to
collect from each individual band that can fully compensate phase
errors, and then propose an efficient CSI sampling scheduler to bal-
ance the trade-off between the error compensation quality in each
individual band and the total bandwidth that can be afforded for the
CSI splicing within the time budget.

Stringent time budget. The channel coherence time Tc can be
expressed as Tc ≈ 1

2· fd , where fd stands for the Doppler shift. Pre-

vious works [7] have studied the Doppler shifts caused in typical
mobile environments. For instance, when people are walking, the
Doppler shifts are usually less than 12Hz, which can be translated
into Tc = 40ms with 2.4GHz WiFi. In Splicer, the transmission
delay of each packet (without minimum payload) is around 0.2ms,
e.g., approximately 200 CSIs can be collected within the time bud-
get. In our current design, we reply on the empirical results from
the literature to set Tc . We leave the cooperation with advanced
channel coherence time measurement schemes [16] in Splicer as
the future work of this study.

CSI measurements for each band. As aforementioned in §3.2,
for each WiFi band, we need to collect sufficient CSI measures
to fully compensate phase error λb , which is caused by the signal
boundary detection uncertainty and follows a Gaussian distribution.
According to the weak law of large numbers, more CSIs lead to a
better compensation. However, we have a stringent time budget Tc
to scan the entire WiFi band, which on the other hand limits the
number of CSI collected from each WiFi band. To deal with this
trade-off, we first investigate the minimum number of CSIs for each
band that can achieve a given confidence level.

When we collect n CSIs from one band, for any sub-carrier k, we
can calculate the average phase value φk by Eq. (5). According to
[2], we can define a confidence range (φk− σ√

n
zα/2, φk+ σ√

n
zα/2),

where σ is the standard deviation of λb , α is an error rate, and z j is
a normal distribution related parameter that can be obtained from a
table [2]. When n increases, the range shrinks, i.e., the confidence
increases. The theory in [2] proves that the probability that E[φk ]
falls into this range is greater than 1−α. Therefore, given α and the
confidence range length r , the minimal number of CSIs to collect,
ṅ, can be determined when σ√

ṅ
zα/2 ≤ r/2.

To cover the entire WiFi band, we need to scan multiple (e.g., C)
individual WiFi bands, e.g., C = 5 for 802.11n at 2.4GHz. How-
ever, due to the stringent time budget, it could be infeasible to col-
lect all C × ṅ CSIs within Tc . Therefore, we propose to balance the
trade-off between the error compensation quality in each individual
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Figure 12: CSI splicing result. (a) The spliced CSI amplitude; (b)
The spliced CSI phase.

band and the total bandwidth that can be afforded for the CSI splic-
ing. Through our study, we observe that for any three consecutive
WiFi bands, if the CSI phases in the first and the third channels are
well compensated, they can serve as two anchors to further cali-
brate the CSI phase from the second band if its phase error is not
fully corrected. In particular, we can rotate the CSI phase from the
second band and stop when its phase differences for the overlapped
sub-carriers with other two bands are minimized. With this obser-
vation, the scheduling of the CSI measurement for each band is as
follows. We have three constraints:
• Collecting ṅ CSIs from a set of WiFi bands whose indices are

odd. They form anchors.
• For each even-indexed band in between, we set a lower bound

that the number of CSIs collected from those even-indexed bands
is greater than this bound.
• All CSIs are collected within the time budget Tc .
The scheduling objective is to maximize the total number of bands,
both odd and even, that can be used for the CSI splicing. After
solving this optimization problem, we can determine the optimal
CSI collection assignment. When enough CSIs are collected from
each band, the time delay handler informs the physical layer to
send an ACK such that the sender and the receiver switch to the
next band synchronously. As a contingency plan, the sender and
receiver will switch back to the first channel if no packets received
for a given time-out duration.

Early termination. Due to the wireless channel dynamics, the
time budget we adopt from the literature may not always precisely
capture the channel coherence time. It is possible that the wireless
channel changes dramatically in the middle of CSI collection so
that the CSIs from rest WiFi bands will become useless for splic-
ing. To address this issue, we propose an early termination strategy
to detect such a case in real time, which leverages the following
observation. If the channel is stable, θk for any sub-carrier k of a
WiFi band in Eq. (3) keeps unchanged. When we collect multiple
CSIs from this band and compute their phase differences, we can
obtain a set of straight lines as shown in Figure 7. Later, when the
channel condition is changed, if we collect another CSI trace from
the new channel and compare the phase difference with the CSI
from the previous channel, the result demonstrates not a straight
line. Therefore, we can apply the linear regression on the phase



difference and use the regression error to indicate the level of the
channel condition change.

In light of this, after receiving all CSIs for each round of CSI
splicing, the receiver will not directly use them. Instead, for each
individual WiFi band involved in the splicing, the receiver will
compute the phase difference between the first and the last CSIs
collected from this band, and apply linear regression to check the
regression error. If the error is greater than a threshold, the receiver
will discard all CSIs from this band, as well as all subsequent bands
(we will evaluate its effectiveness in §4). CSI splicing only utilizes
non-discarded bands.

4. EVALUATION
In this section, we conduct testbed-based experiments to evaluate

the performance of Splicer. We introduce our experimental setting
in §4.1, evaluate the efficacy of Splicer in §4.2, and report the end-
to-end system performance of Splicer-enhanced CUPID in §4.3,
which is one of the state-of-the-art indoor localization designs [28].

4.1 Experimental setup
We conduct experiments in a laboratory, which is a typical in-

door office environment. We install five APs at five known loca-
tions. Each AP is a laptop connected to an Atheors 9580 NIC. The
five APs are configured in the monitoring mode as receivers. We
select 500 different locations in the laboratory and place another
AP, which is set to the RootAP mode as sender, at each of these
locations sequentially. At each location, the AP sender conducts
multiple rounds of CSI splicing to each of the five AP receivers.
To examine the accuracy of the power delay profiles derived by
Splicer, we first evaluate the accuracy of the power level measured
from the Line-of-Sight (LoS) path. To this end, we measure the
distance between the sender and each of the receivers at all 500 dif-
ferent locations as the ground truth. At each location, we compare
the derived distance from the power delay profile with the ground
truth for evaluation. In addition to the LoS path, we also evaluate
the quality of the derived power delay profiles using the power level
stability for Non-Line-of-Sight (NLoS) paths.

We first provides a detailed performance analysis of Splicer in
§4.2, we disable the sampling scheduler (described in §3.5), and
manually control the number of scanned channels. From each chan-
nel, we collect 30 CSI traces. After that, in §4.3, we enable the
sampling scheduler and evaluate the end-to-end performance with
the full-version Splicer in a localization application.

4.2 Results
Phase error correction. To investigate the effectiveness of the

CSI error correction designs in Splicer, we first evaluate the rang-
ing performance to estimate the LoS path length d in each single
20MHz WiFi band without using CSI splicing. We evaluate Splicer
for three different versions to investigate where the performance
gains Splicer achieves come from: the full version with both λb
and λo compensations, as well as two degraded versions — with-
out λb compensation and without any phase error compensation.
We compare the three versions against the measured ground truth
to one randomly selected receiver in Figure 13. In the figure, the x-
axis presents different locations and the y-axis illustrates the rang-
ing results of each Splicer version (as well as the ground truth).
Each reported accuracy value is the average from 10 measurements.
From the result, we observe that without any phase error correction,
the ranging performance is highly unreliable. After the phase error
λb removal, the ranging accuracy Splicer achieves has been dra-
matically improved, but it is still far away from the ground truth.
After the compensations of λb and λo , we find that the accuracy
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Figure 13: Ranging results at 500 different locations by differ-
ent versions of Splicer in a single WiFi band.
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Figure 14: CDF of ranging errors from a single band.

is very close to the true distance value between the sender and the
receiver at different locations.

In Figure 14, we provide detailed statistical results for the per-
formance achieved by different Splicer versions in Figure 13. From
the result, we see that when the raw CSI phases are used, the rang-
ing error is 10.7m for 80% of the measurements. The median and
the maximum errors are 6.1m and 24m, respectively, compared
with the ground truth. After the compensation of phase error λb ,
the ranging error is reduced to 6.3m for 80% measurements. After
the removal of both λb and λo , the ranging error is less than 4.3m
for 80% of cases. The improvement is as high as 4.8m on average
compared with the traditional ranging performance using the raw
phase information.

CSI splicing. In Figure 15, we evaluate the ranging performance
of Splicer after we enable CSI splicing from different WiFi bands.
As the power delay profile resolution is determined by the chan-
nel bandwidth, we select two representative bandwidths after splic-
ing, 200MHz that is the total bandwidth allocated to 802.11n and
120MHz that is in between the entire WiFi band and each single
WiFi band. We select all spliced CSIs with these two selected
bandwidths to report the the performance. As a benchmark, we
also include the performance of the full version Splicer in 20MHz
for comparison.

Figure 15 plots CDF of the ranging errors from those three ap-
proaches. From the result, we find that the performance of Splicer
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Figure 15: CDF of ranging errors with CSI splicing.

using merely a single WiFi band is still limited, even with the
CSI error correction. In general, the wider the bandwidth Splicer
uses, the smaller error the ranging can achieve. The performance
gain stems from more accurate power level measurement of the
LoS path. According to the statistics, on average Splicer-120MHz
and Splicer-200MHz can outperform Splicer-20MHz by 22.7% and
55.5%, respectively. The performance gain of Splicer stems from
both the CSI splicing as well as the CSI phase refinement (§3.2). In
Figure 15, we also show the performance gain the phase refinement
provides. From the result, we see that the CSI phase refinement can
reduce the ranging error by 0.42m approximately.

Non-line-of-sight paths. In Figures 13 to 15, we have evaluated
the LoS power accuracy in the derived power delay profiles. In this
experiment, we investigate the quality of the derived power delay
profiles for all other NLoS paths. In practice, the absolute power
level of a NLoS path is not directly useful in applications. Instead,
the relative change of the power level of each NLoS path indicates
the multipath channel dynamics, which has been used for activity or
gesture recognitions [24, 33, 35]. To this end, we randomly select
10 locations in the laboratory. At each location, the transmission
pair performs multiple rounds of CSI splicing. We evaluate the
stability of the measured power levels for NLoS paths.

Figure 16 depicts the results. In Figure 16 (a), we examine the
NLoS path power level stability using a single 20MHz WiFi chan-
nel. However, we observe that without the phase error compensa-
tion, the power variance is high, e.g., around 16 dB, even the pair of
transmitters are static at their locations. Our CSI error compensa-
tion designs can reduce the variance to be less than 10 dB on aver-
age for single WiFi bands. In Figure 16 (b), due to the CSI splicing,
we can derive higher-resolution power delay profiles. Hence, the
measured power level for each multipath component is aggregated
from fewer non-distinguishable multipaths (§2), which should suf-
fer from even less uncertainty. The result in Figure 16 (b) is con-
sistent to our analysis, which shows that the power level variance
for NLos paths in the derived power delay profiles using 200MHz
spliced bandwidth is less than 5.2dB in our experiment.

Computational delay. We evaluate the computational delay of
Splicer on commodity WiFi APs to investigate its frequency to gen-
erate new power delay profiles to upper-layer applications. We ex-
amine the absolute computation delays for Splicer to complete one
round of CSI splicing with different aggregated bandwidths in Fig-
ure 17. Overall, the computation delay increases when more bands
are spliced, since we need to compare more pairs of single bands
for the phase error λo removal. From Figure 17, we find that the de-
lays increase from 4.1ms to 7.9ms when the total bandwidth varies
from 20MHz to 200MHz. We suppose the channel coherence time
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Figure 16: Measured power level variance for NLoS path com-
ponents in the derived power delay profiles. (a) In 20MHz WiFi
band; (b) In 200MHz WiFi band.
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Figure 17: Computation delay of Splicer.

budget is 50ms. With the maximum bandwidth, one round of CSI
splicing can be finished within 60ms. Therefore, Splicer can gener-
ate 16 new power delay profiles in one second, which fits the needs
of most mobile applications [5, 11, 18, 19, 28].

4.3 Case study: indoor localization
In §4.2, we have evaluated the accuracy of the derived power

delay profiles by Splicer. With high resolution power delay pro-
files, the performance of a plethora of upper-layer applications, e.g.,
localization, object tracking, gesture recognition, etc., can be sig-
nificantly improved. In this subsection, we take localization as a
vehicle to demonstrate this capability of Splicer.

4.3.1 Case study overview
We integrate Splicer into the recent single-AP location approach

CUPID [28]. In CUPID, a mobile user can locate its location as
follows. The mobile device of the user transmits a packet to an AP
with known location. The AP extracts the CSI upon receiving this
packet and derives the power delay profile. According to the power
level of the LoS path, the AP can estimate this path length. On the
other hand, the AP further apply the MUSIC algorithm on the CSI
to compute its pseudo spectrum, which can approximate the signal
arrival direction from the LoS path. According to the path length
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and the signal arrival direction, the AP can locate the mobile user
and send the localization result back to the user.

To enhance CUPID, we use the spliced CSI as the system input
and keep the rest of the CUPID design unchanged. To evaluate the
performance, we install one AP in the laboratory with known lo-
cation and deploy one AP on a robot. The robot is programmed to
move along a predefined trajectory with a known speed. Accord-
ing to the time stamp contained in each packet, we can calculate
the instant location of the robot when the mobile AP transmits this
packet. To evaluate the end-to-end system performance, we enable
the sampling scheduler in Splicer.

4.3.2 Results
Localization accuracy. In Figure 18 (a), we compare the perfor-

mance of the original CUPID and the enhanced CUPID by Splicer,
denoted as Splicer-CUPID. We vary the moving speeds of the robot
in the experiment. Since the localization in the original CUPID de-
pends on a single CSI measurement, the localization performance
of CUPID is not impacted by the moving speed of the robot. For
Splicer-CUPID, a higher moving speed leads to a shorter channel
coherence time. As a consequence, fewer WiFi bands can be in-
cluded in each round of CSI splicing and the localization accuracy
will decrease. From Figure 18, we find that in general, the local-
ization accuracy of CUPID is not quite accurate, e.g., around 8m
for 80% of localizations, which is consistent to the performance re-
ported in [28]. For Splicer-CUPID, with a normal moving speed
of a person (< 2m/s), the accuracy can be dramatically improved,
e.g., the median localization error is 2.3m and 2.5m when the speed
is 1m/s and 2m/s, respectively. The localization error is less than
6.4m throughout the experiment. With an even higher moving
speed, e.g., 7m/s, Splicer-CUPID still outperforms CUPID.

In [28], the authors propose an AP selection scheme to further
improve the localization accuracy by harnessing a dense AP de-
ployment. According to the experiment results in [28], the localiza-
tion accuracy of Splicer-CUPID using a single AP achieves compa-
rable performance to CUPID with 5 APs, which can significantly
improve the usefulness of indoor localizations. In Figure 18, we
also leverage such an improvement opportunity. The result shows
that the gain from Splicer-CUPID is significant. Localization er-
rors are reduced to 1.75m for 80% cases and the median error is
0.95m when 5 APs are used. Although more APs may improve the
localization performance, if the ranging accuracy is not high at the
first place, improvement with more APs is limited.

Impact of moving speeds. In Figure 19 (left y-axis), we inves-
tigate the total bandwidth that can be spliced using Splicer with
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Figure 19: Bandwidth used for localization under different
moving speeds. (Left) Spliced bandwidth; (right) Percentages of
early terminations.

respect to different moving speeds of transmitters. In general, a
higher speed leads to a shorter channel coherence time. As a result,
CSI traces are spliced from fewer WiFi channels and the power de-
lay profile resolution is lower. From Figure 19, we see that Splicer
can make full use of the 200MHz available WiFi frequency band,
when the speed is smaller than 2m/s. The small localization er-
rors observed in this case in Figure 18 is compatible with such an
observation. When we accelerate the moving speed from 3m/s
to 6m/s, the utilized bandwidth drops from 130MHz to 60MHz,
which, however, is still wider than a single WiFi channel, i.e. 20MHz
or 40MHz. Further more, the bandwidth will drop to 45.5MHz
when the speed increases to 7m/s, which is comparable to one sin-
gle 40MHz channel. Nevertheless, Splicer-CUPID still improve the
localization performance since Splicer compensates the CSI mea-
surement errors.

In Figure 18, we further examine the percentages of early ter-
minations (§3.5) occurred in our experiment, in Figure 19 (right
y-axis). From the result, we see that the early termination strat-
egy can discover 4.8% to 18.7% rapid channel varying within the
channel coherence time budget.

Performance in different environments. In addition to the
evaluation in the laboratory environment, we further conduct ex-
periments in other representative environments for localization, in-
cluding a corridor, a car park, and a lecture hall. Figure 20 plots the
median localization error for Splicer-CUPID in comparison with
the original CUPID with normal walking speed (1m/s). From the
results, we see that the localization error of the original CUPID de-
sign can be largely reduced by Splicer-CUPID, e.g., 70.9% in labo-
ratory, 74.0% in corridor, 74.2% in car park, and 76% in the lecture
hall. In summary, Splicer achieves general performance gains with
different environments.

5. RELATED WORK
Channel sounding. Measuring the wideband channel frequency

response requires high-end hardware with high sampling frequen-
cies [4, 20]. The authors in [21, 22] develop systems to measure
channel frequency responses from a group of narrow bands to ap-
proximate a wideband channel. In [15], the receiver only listens to
a few harmonics of a wideband signal each time and then can recon-
struct the wideband frequency response. Such a design does not re-
quire the modification at the sender. In addition, CSI-SF proposed
in [3] can estimate the channel state information for multi-streams
using the single stream measurement result. Some ToA-based lo-
calization approaches [41, 42] also propose to increase the resolu-
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Figure 20: Localization errors in different environments using
the original CUPID and the enhanced CUPID by Splicer.

tion using the channel combination, however, only with Software-
Defined-Radio. Although Splicer shares a similar principle with
those existing works, most of them require tight synchronization
between the sender and receiver, e.g. devices are connected by the
same clock or use GPS and atomic clocks. In this work, however,
we meet and address particular challenges due to the hardware im-
perfection and stringent channel coherence delay constraint, which
do not exist in any of existing works. In addition, Splicer can be in-
tegrated into commodity NICs without any hardware modification.

CSI phase calibration. Prior works also notice that the CSI
traces reported by WiFi NICs contain phase errors introduced by
hardware [40, 43, 44]. ArrayPhaser [6] enables the phased ar-
ray signal processing on commodity WiFi devices. However, Ar-
rayPhaser does not correct any of those phase errors, instead they
just treat the phase values measured from one NIC as the refer-
ence to calibrate the phase values of other NICs. Hence, they can-
not truthfully remove the phase values to derive precise power de-
lay profiles. Prior works [28, 36] try to synchronize the phases
from two consecutive received CSIs via a linear transform. Af-
ter the transformation, if the two measurements are from the same
multipath channel, even the collected CSIs are different due to
hardware noises, the transformation on these two CSIs leads to
the same result, which could be used as fingerprint for localiza-
tion. Some recent works aim to explicitly correct CSI phase er-
rors, e.g., MegaMIMO [25]. However, MegaMIMO requires both
nanosecond-level synchronization and the access to the raw signal
at PHY layer, which are not available on commodity NICs. In sum-
mary, existing works cannot directly remove measurement errors
from CSIs reported by commodity WiFi NICs, and hence cannot
address the challenges we met in Splicer.

Power delay profile based applications. At different locations,
the received power delay profiles will be different, which can makes
them a good choice for the fingerprint-based localization design
[29, 39]. On the other hand, the Line-of-Sight information can be
directly inferred from the power delay profile [36]. The power level
of the LoS path can also be used to ranging between a pair of trans-
mitters [28, 37]. Indoor localization based on the ranging results
requires no dense AP deployments, no manual fingerprinting site
survey, and no sophisticated AP hardware [28, 37]. For activity
recognition, although the detailed relation between the multipath
channel variance and the different activities is unknown, recent
works propose to learn the inner relation. For example, to detect
the existence of human beings [46], to count the number of peo-
ple moving around [38], to detect human falling down in [9], and
recognize different types of human activities [1, 30, 35]. Splicer

can benefit all above applications since we can obtain a wider CSI
containing more frequency band information to derive a higher-
resolution power delay profile, which more precisely describes the
multipath channel.

6. CONCLUSION
This paper presents Splicer to derive precise power delay pro-

files on commodity WiFi devices. The Splicer design leverages the
CSIs measured from individual WiFi bands to obtain the CSI of an
equivalent wider WiFi band after the CSI splicing, based on which
Splicer can derive high-resolution power delay profiles. The major
design challenge is that the CSIs collected from commodity NICs
do not merely contain the channel information. They are mixed
with rich hardware errors. We propose a series of techniques to
address the challenge and also battle the stringent channel coher-
ence time constraint. Our experiments on commodity WiFi NICs
report high accuracy of the power delay profiles derived by Splicer.
The CSI measurement errors stem from several signal-processing
modules in the physical layer of standard 802.11 NICs, including
the AGC, signal sampler, and packet detector, so Splicer is general
for different WiFi chipsets and independent to the hardware. Due
to the channel hopping by Splicer, the normal communication of
other users to an AP may be interrupted, which is a limitation of
the current design. We believe that such a limitation can be miti-
gated by employing less-active or dedicated APs for Splicer. In the
paper, we use thet indoor localization application to showcase that
Splicer can immediately benefit existing motion- or location-based
systems. In the future work, we will study how the high-resolution
power delay profile derived from Splicer can be utilized to support
more interesting applications like, object tracking, gesture recogni-
tion, and so on.

Acknowledgement
We would like to thank the anonymous reviewers and shepherd for
their valuable comments and suggestions that improve the quality
of this paper. This work is supported by Singapore MOE AcRF Tier
2 Grant MOE2012-T2-1-070 and NTU Nanyang Assistant Profes-
sorship (NAP) Grant M4080738.020.

References
[1] F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller. 3d tracking

via body radio reflections. In Proc. of USENIX NSDI, 2014.
[2] A. Azzalini. A class of distributions which includes the nor-

mal ones. Scandinavian journal of statistics, 1985.
[3] R. Crepaldi, J. Lee, R. Etkin, S.-J. Lee, and R. Kravets. CSI-

SF: Estimating wireless channel state using CSI sampling and
fusion. In Proc. of IEEE INFOCOM, 2012.

[4] T. Felhauer, P. Baier, W. Konig, and W. Mohr. Opti-
mum spread spectrum signals for wideband channel sound-
ing. Electronics Letters, 1993.

[5] Y. Gao, W. Dong, C. Chen, J. Bu, T. Chen, M. Xia, X. Liu,
and X. Xu. Domo: passive per-packet delay tomography in
wireless ad-hoc networks. In Proc. of IEEE ICDCS, 2014.

[6] J. Gjengset, G. McPhillips, and K. Jamieson. Arrayphaser:
Enabling signal processing on WiFi access points. Proc. of
ACM MobiCom, 2014.

[7] A. Goldsmith. Wireless communications. Cambridge univer-
sity press, 2005.

[8] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable
802.11 packet delivery from wireless channel measurements.
In Proc. of ACM SIGCOMM, 2010.



[9] C. Han, K. Wu, Y. Wang, and L. Ni. WiFall: Device-free fall
detection by wireless networks. In Proc. of IEEE INFOCOM,
2014.

[10] J. Han, C. Qian, X. Wang, D. Ma, J. Zhao, P. Zhang, W. Xi,
and Z. Jiang. Twins: Device-free object tracking using passive
tags. In Proc. of IEEE INFOCOM, 2014.

[11] L. He, L. Fu, L. Zheng, Y. Gu, P. Cheng, J. Chen, and
J. Pan. Esync: An energy synchronized charging protocol
for rechargeable wireless sensor networks. In Proc. of ACM
MobiHoc, 2014.

[12] IEEE Standard for Information Technology—Part 11: Wire-
less LAN Medium Access Control (MAC) and Physical Layer
Specifications, Mar. 2012.

[13] S. Jana and S. K. Kasera. On fast and accurate detection of
unauthorized wireless access points using clock skews. In
Proc. of ACM MobiCom, 2008.

[14] V. Jimenez, M. Fernandez-Getino Garcia, F. Serrano, and
A. Armada. Design and implementation of synchronization
and agc for ofdm-based wlan receivers. IEEE Transactions
on Consumer Electronics, 2004.

[15] B. Kempke, P. Pannuto, and P. Dutta. Harmonia: Wideband
spreading for accurate indoor rf localization. In Proc. of ACM
HotWireless, 2014.

[16] M. Khalid, Y. Wang, I. Butun, H.-j. Kim, I.-h. Ra, and
R. Sankar. Coherence time-based cooperative mac protocol 1
for wireless ad hoc networks. In EURASIP Journal on Wire-
less Communications and Networking, 2011.

[17] H. Liu, Y. Gan, J. Yang, S. Sidhom, Y. Wang, Y. Chen, and
F. Ye. Push the limit of wifi based localization for smart-
phones. In Proc. of ACM MobiCom, 2012.

[18] Q. Ma, K. Liu, X. Xiao, Z. Cao, and Y. Liu. Link scanner:
Faulty link detection for wireless sensor networks. In Proc. of
IEEE INFOCOM, 2013.

[19] A. T. Mariakakis, S. Sen, J. Lee, and K.-H. Kim. SAIL: Sin-
gle access point-based indoor localization. In Proc. of ACM
MobiSys, 2014.

[20] A. Molina, P. Fannin, and J. Timoney. Generation of opti-
mum excitation waveforms for mobile radio channel sound-
ing. IEEE Transactions on Vehicular Technology, 1995.

[21] D. Molkdar and P. Matthews. Measurements and character-
ization of the UHF mobile radio channel. part 1: Measure-
ments over the band 853-885 MHz. Electronic and Radio
Engineers, Journal of the Institution of, 1988.

[22] K. Pahlavan and A. H. Levesque. Wireless information net-
works. John Wiley & Sons, 2005.

[23] J. Parsons, D. Demery, and A. Turkmani. Sounding tech-
niques for wideband mobile radio channels: a review. Com-
munications, Speech and Vision, IEE Proceedings I, 1991.

[24] Q. Pu, S. Gupta, S. Gollakota, and S. Patel. Whole-home
gesture recognition using wireless signals. In Proc. of ACM
MobiCom, 2013.

[25] H. S. Rahul, S. Kumar, and D. Katabi. Jmb: Scaling wireless
capacity with user demands. In Proc. of ACM SIGCOMM,
2014.

[26] T. S. Rappaport et al. Wireless communications: principles
and practice. prentice hall PTR New Jersey, 1996.

[27] S. Sen, R. R. Choudhury, and S. Nelakuditi. Spinloc: Spin
once to know your location. In Proc. of ACM HotMobile,

2012.
[28] S. Sen, J. Lee, K.-H. Kim, and P. Congdon. Avoiding multi-

path to revive inbuilding WiFi localization. In Proc. of ACM
MobiSys, 2013.

[29] S. Sen, B. Radunovic, R. R. Choudhury, and T. Minka. You
are facing the mona lisa: Spot localization using PHY layer
information. In Proc. of ACM MobiSys, 2012.

[30] L. Shangguan, Z. Yang, A. X. Liu, Z. Zhou, and Y. Liu. Rela-
tive localization of rfid tags using spatial-temporal phase pro-
filing. In Proc. of USENIX NSDI, 2015.

[31] M. Speth, S. Fechtel, G. Fock, and H. Meyr. Optimum re-
ceiver design for wireless broad-band systems using OFDM.
i. IEEE Transactions on Communications, 1999.

[32] J. K. Tan. An adaptive orthogonal frequency division mul-
tiplexing baseband modem for wideband wireless channels.
Master’s thesis, Massachusetts Institute of Technology, 2006.

[33] G. Wang, Y. Zou, Z. Zhou, K. Wu, and L. M. Ni. We can hear
you with Wi-Fi! In Proc. of ACM MobiCom, 2014.

[34] L. Wang, Y. He, Y. Liu, W. Liu, J. Wang, and N. Jing. It is not
just a matter of time: oscillation-free emergency navigation
with sensor networks. In Proc. of IEEE RTSS, 2012.

[35] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu.
E-eyes: Device-free location-oriented activity identification
using fine-grained WiFi signatures. In Proc. of ACM Mobi-
Com, 2014.

[36] C. Wu, Z. Yang, Z. Zhou, K. Qian, Y. Liu, and M. Liu.
Phaseu: Real-time LOS identification with wifi. In Proc. of
IEEE INFOCOM, 2014.

[37] K. Wu, J. Xiao, Y. Yi, M. Gao, and L. Ni. FILA: Fine-grained
indoor localization. In Proc. of IEEE INFOCOM, 2012.

[38] W. Xi, J. Zhao, X.-Y. Li, K. Zhao, S. Tang, X. Liu, and
Z. Jiang. Electronic frog eye: Counting crowd using WiFi.
In Proc. of IEEE INFOCOM, 2014.

[39] J. Xiao, K. Wu, Y. Yi, and L. Ni. FIFS: Fine-grained indoor
fingerprinting system. In Proc. of IEEE ICCCN, 2012.

[40] J. Xiong and K. Jamieson. Arraytrack: A fine-grained indoor
location system. In Proc. of USENIX NSDI, 2013.

[41] J. Xiong, K. Jamieson, and K. Sundaresan. Synchronicity:
Pushing the envelope of fine-grained localization with dis-
tributed mimo. In Proc. of ACM HotWireless, 2014.

[42] J. Xiong, K. Sundaresan, and K. Jamieson. Tonetrack: Over-
coming bandwidth constraints for indoor wireless localiza-
tion. In Proc. of ACM MobiCom, 2015.

[43] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu. Tago-
ram: Real-time tracking of mobile rfid tags to high precision
using cots devices. In Proc. of ACM MobiCom, 2014.

[44] L. Yang, J. Han, Y. Qi, C. Wang, T. Gu, and Y. Liu. Sea-
son: Shelving interference and joint identification in large-
scale rfid systems. In Proc. of IEEE INFOCOM, 2011.

[45] L. Zhang, K. Liu, Y. Jiang, X.-Y. Li, Y. Liu, and P. Yang. Mon-
tage: Combine frames with movement continuity for realtime
multi-user tracking. In Proc. of IEEE INFOCOM, 2014.

[46] Z. Zhou, Z. Yang, C. Wu, L. Shangguan, and Y. Liu. Om-
nidirectional coverage for device-free passive human detec-
tion. IEEE Transactions on Parallel and Distributed Systems,
2014.




