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Abstract—Wireless sensor networks are deployed in various 
territories executing different tasks. In many applications, it is 
very useful to understand their topological characteristics. This 
paper studies the problem of discovering the topological 
properties of a sensor network such as boundaries and holes. 
Previous works have revealed that, such a problem could be 
addressed with knowledge of node locations, measures of inter-
distances, or ideal assumptions of particular communication 
models, e.g., unit disk graph model. In this work, however, we 
explore the possibility of discovering sensor network topology 
merely with connectivity information. We propose a virtual 
voronoi diagram approach to detect both the inner and outer 
boundaries of a sensor network. We do not rely on any 
communication models, yet any geometric knowledge of the 
network. Compared with previous connectivity based approaches, 
we further release the assumption of regular wireless signals. 
Our approach works even for anisotropic network with irregular 
wireless links. We design our approach to be light-weight, 
preventing frequent global operations that have been intensively 
used in previous designs. We conduct intensive simulations in 
networks of different topologies with different node degrees and 
densities, and containing various signal irregularities. The 
results validate the effectiveness and efficiency of our approach. 

1. Introduction  

Wireless Sensor Networks (WSNs) have rapidly developed 
during the past years. Current electronic and communicational 
techniques have made it possible to deploy sensor networks in a 
very large scale with a large number of individual sensor nodes 
cooperatively working in various applications. To efficiently ma-
nipulate such huge and complex networks, it becomes extremely 
important to macroscopically abstract the geometric and topologi-
cal features, such as network localization, topology discovery, 
sensor clustering and etc [4, 6, 8, 11]. This work studies the prob-
lem of topology discovery, e.g., boundary and hole detection, of 
the underlying sensor network. 

Topology discovery has been considered essential in large 
scale WSNs for many reasons. (1) The topological information 
such as boundaries acts as basis for implementing many upper 
layer networking operations. By solely knowing the network 
boundaries, researchers are able to step further in developing sim-
pler, more efficient and scalable mechanisms like range-free lo-

calization [13] and topological routing [3], which are designed 
adaptive to the intrinsic topology properties of sensor networks. (2) 
The topological information is also of great importance while 
designing operations in WSNs and refining the structure of the 
network. For instance, in the deployment of WSNs, network 
boundaries indicate those void areas where sensors can not cover 
and are not connected [1]. Such information can be used to guide 
the redeployment of sensors to satisfy application specific needs, 
e.g., extending the coverage area or adjusting the network density. 
Mobile sensor networks can also use the topological information 
to reconstruct the network to achieve a better coverage [18]. (3) A 
WSN is inherently bound with the underlying physical environ-
ment it observes. Thus the boundary information of a sensor net-
work indeed reflects important characteristics of its tightly related 
physical environment. For example, the boundaries of the inner 
void areas in the sensor network usually indicate obstacles that are 
physically inaccessible or isolated in communications. Such in-
formation is especially important for applications such as envi-
ronment monitoring, event detection and navigation, etc. 

Existing works. As we can see, topological features play an im-
portant role in WSNs, many efforts have been made to address the 
issue of topology discovery, especially for boundary recognition 
and hole detection, driven by such a wide range of applications.  

Early works rely on sensor locations to detect the network 
boundaries. Having the locations of sensor nodes indeed provides 
us rich geometric information that largely facilitates the boundary 
recognition. Fang et al. observe that when a packet is geographi-
cally forwarded, it will get stuck at the nodes on network bounda-
ries. Thus they are able to identify the boundaries by detecting the 
stuck nodes [5]. They assume the availability of locations and the 
unit disk graph (UDG) communication model. Unfortunately, 
subject to the WSN deployment, location information is not al-
ways available [14] and precise [20]. Yet, the requirement of loca-
tion information limits the application of boundary recognition, 
e.g., the range-free localization approach [13] takes the network 
boundaries as inputs before the sensor locations can be obtained. 

To accommodate the unavailability of location information, 
more works are proposed in the location free context. Fekete et al. 
[7] observe the fact that in a dense network, nodes near holes in 
the network have a smaller degree compared with those inside the 
network. The proposed algorithm, however, works only for those 
networks where nodes are uniform distributed, and of very high 
density (degree > 100). They further report an algorithm [12] that  
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Figure 1. The boundary recognition algorithm of Wang et al. [19] 
misreports cut pairs under link irregularities. 

 
 

detects the network boundaries by searching the “flower” struc-
tures. By iteratively augmenting the interior node set, their algo-
rithm is able to reach the network boundaries. Such an algorithm 
does not need the location information but assumes the d-quasi 
UDG model [2] to be valid. A more recent work by Saukh et al. 
designs several node connectivity patterns and detects the bounda-
ries by finding the weak and strong patterns in the sensor network 
[15]. Similarly, the UDG or d-quasi UDG model is presumed as a 
de facto wireless communication model in their work. Funke de-
velops a method for boundary recognition that utilizes only con-
nectivity information [9, 10, 17]. The main idea is to propagate 
from a root node and build iso-contours based on the hop count 
from the root. A heuristic is that the contours are broken when 
they meet the network inner boundaries. The proposed approach 
identifies the nodes close to the boundaries without connecting 
them in a meaningful way. Its correctness is proven under the 
assumption of UDG model. Nevertheless, as widely proven by 
practical experiment results [16-18], the UDG or quasi UDG 
model is far from accurately approximating the physical behaviors 
in node communication. Thus it is still questionable how realistic 
to apply the above theoretical results practically. 

Towards a more practical solution with less critical assump-
tions, Wang et al. present a topological method for boundary rec-
ognition solely with connectivity information, which does not 
assume any specific node communication model [19]. Their ap-
proach explores the fact that the shortest path tree splits when 
meeting the network boundaries. By detecting the cut pairs and 
compositing all inner holes into one, their approach first finds the 
coarse boundary. Finally, the fine grained boundaries can be ob-
tained by refining the coarse boundary. Without relying on any 
geometric dependence, their approach steps further towards real 
applicability in practical sensor networks that are usually de-
ployed in constraint environment where the geometric informa-
tion is difficult to access and node communication style is diffi-
cult to model. Such an approach, on the other hand, has its own 
drawbacks. Many rounds of global operations are conducted in 
their approach, in building the shortest path tree, finding the 
coarse boundary, refining the boundaries, and the like. Those 
global operations inevitably introduce huge traffic burden to the 
resource constraint sensor networks. Their approach is invalidated 
when the radio signals of sensors become irregular, i.e., the radio  
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Figure 2. (a) The voronoi diagram divides the plane into subregions, 
and (b) The voronoi segments are blocked by network boundaries 
(at green points). 

 
 

signal ranges are different for different sensors or on different 
directions of a sensor. As figure 1 depicts, the shortest path tree 
built by Wang’s algorithm misreports many cut pairs as shown by 
red nodes in a network of sensors with irregular signal ranges. 
Those sensors with smaller radio signal ranges in the central area 
are taken as a large void by the misreported cut pairs.  

The goal and contributions. This paper studies the network topo-
logical features, more specifically, boundaries and holes in the 
network which separate the connected sensor network component 
from the void field. Indeed, these topological features of a net-
work are not related to any specific geometric embeddings. This 
enables us to design topological approaches for recognizing the 
network boundaries and holes inside, like Wang’s work, valid for 
various situations where the geometric information is difficult to 
access. In this work, we propose a Virtual Voronoi Diagram 
(VVD) based approach, for topological boundary recognition in 
wireless sensor networks. 
This approach is designed to be more effective, detecting both the 
inner and outer boundaries of the targeted network. It tolerates 
network irregularities. According to our simulation results, even 
when the network links are not uniform, our approach achieves 
accurate boundary recognition. None previous studies consider 
this problem, and as a matter of fact, most existing approaches fail 
under such network irregularities. 

This approach is designed to be more efficient, with much re-
duced network traffic. It limits most of its operations within a 
local area such that the traffic will not be propagated to the entire 
network, reducing the overhead. 

This approach is designed to be more applicable, lowering the 
application barriers with minimum requirements. Our approach 
prevents to use the geometric information like distance measures 
or node positions. We do not assume any simplified node com-
munication models like UDG or quasi UDG models. The network 
links are not necessarily uniform. Different sensor nodes may 
have different communication scopes. 

Paper organization. The rest of this paper is organized as follows. 
In Section 2, we present an overview of our design. In Section 3, 
we elaborate our protocol in details. We prove the correctness of 
the principle of our protocol in Section 4. We discuss related is-
sues of our protocol in Section 5, and in Section 6 we conduct 
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intensive simulations to validate our design. Finally, we conclude 
this work in Section 7. 

2. Overview 

We design a Virtual Voronoi Diagram (VVD) based approach 
to detect the inner and outer boundaries of a wireless sensor net-
work. Like existing works did, we assume symmetric links be-
tween any pair of sensors in the network. Indeed, for an asymmet-
ric network graph, we can easily reduce it into a symmetric graph 
by eliminating the unidirectional links. We also assume reliable 
message delivery in the network. This can be easily achieved by 
reliable communication techniques on those links, e.g., acknowl-
edgements and retransmissions. Unlike most existing works, we 
do not assume any prior knowledge of sensor locations; neither 
the communication model to be UDG or quasi UDG model. The 
radio signals of sensors are not required to be regular. 

Our approach is inspired by the observation that if we build a 
voronoi diagram on the network connectivity graph, the network 
boundaries (the outer boundary of the network or inner bounda-
ries around voids inside the network) will block the segments in 
such a graph. As figure 2 (a) depicts, a voronoi diagram is built 
according to a specified set of site points. It is a subdivision of the 
plane determined by the distances between each pair of the site 
points. Each site point is denoted by a black dot in figure 2 (a). 
The points that have equal distance to two or more site points 
compose the voronoi segments. Those points equidistant to 3 or 
more site points are defined as voronoi nodes, denoted as red dots 
in the figure. The voronoi cell of a site point p consists of points 
that are closer to p. More formally, denote the set of voronoi sites 
by S = {si | i=1, 2, …, k} and the distance between two point s and 
t by d(s, t). The voronoi cell of each site si is then denoted as Celli 
= {p | d(si, p) � d(sj, p) for any j � i}. The voronoi segments are 
the set of points {p |  p � Celli � Cellj, where i � j} and the vo-
ronoi nodes are the set of points {p | � i � j � k, d(si, p) = d(sj, p) 
= d(sk, p) � d(sl, p) for any l � i �  j � k}. 

The boundaries of the network will block the voronoi seg-
ments and make them disconnected. As figure 2 (b) depicts, the 
green nodes, which are denoted by cut nodes, reside at the place 
where the voronoi segments are blocked. Hereby, by identifying 
the cut nodes, i.e., where the voronoi segments are blocked, we 
are aware of the network boundaries. By connecting the adjacent 
cut nodes, we can first obtain coarse boundaries. Utilizing the 
voronoi cells, our VVD approach automatically generates sepa-
rated coarse boundaries around different voids as well as the outer 
boundary of the network. After that, by refining the coarse 
boundaries, VVD can reach the real boundaries of the network. 
Most of the operations in VVD are local, strictly limited by vo-
ronoi cells, preventing unnecessary traffic generation over the 
entire network.  

3. Protocol Description 

The key idea of VVD is that first we find some featuring 
points on the boundaries, and then by connecting the featuring 
points with voronoi sites we are able to obtain the coarse skeleton 

of the boundaries. Finally by refining the coarse skeleton, we rec-
ognize the real boundaries.  

We elaborate VVD in steps and show the details of each step 
in the following subsections. In figure 3, we illustrate the execu-
tion of the protocol on an example network. As depicted in figure 
3 (a), we execute our VVD on a 2500 node network containing a 
concave void area inside. It is a sparse network with an average 
degree of around 8. 

3.1 Building Voronoi Diagram 

The basis of VVD is building a voronoi diagram. In order to 
build the voronoi diagram, several sensor nodes in the network are 
selected as voronoi sites. A randomized approach can be used to 
select sensor nodes as voronoi sites. As the number of sites can be 
determined before the selection, a constant number p standing for 
the selection probability between 0 and 1 can be calculated. The 
number p is then flooded into the network from the sink to inform 
all nodes in the network. Every node generates whether it is in-
dentified as a voronoi site according to the probability p. Such an 
approach ensures that the expected number of selected voronoi 
sites is equal to the specified number and the selected nodes are 
uniformly distributed in network. 

Base on the selected voronoi sites, VVD builds the voronoi 
diagram. As there are no location or distance measures input to 
our algorithm, VVD utilizes the hop count information to ap-
proximate the distance when building the voronoi diagram. 

Each voronoi site floods a Build Voronoi Diagram Message 
(BVDMsg) within the network that records the ID of the voronoi 
site and the hop count to it. Other sensors on receiving the 
BVDMsg maintain a distance table that records the ID of each 
received voronoi site and updates its shortest distance to the site. 
The BVDMsg is only relayed by a sensor when it contains a 
shorter distance from the same voronoi site. Each sensor checks 
the distance table to determine the number of the closest voronoi 
sites. Sensors with two or more equidistant closest voronoi sites 
claim themselves to be on the voronoi segments. Sensors with 
three or more equidistant closest voronoi sites claim to be the vo-
ronoi nodes. Figure 3 (a) depicts the voronoi diagram built at this 
step. The nodes on voronoi segments are green dotted.  

3.2 Detecting Cut Nodes 

According to our definition, the cut nodes are those nodes 
where the network boundaries block the voronoi segments. As 
depicted in figure 3 (c), it is easy to find that cut nodes are re-
sulted from the discontinuity of the voronoi segments on the net-
work boundaries. A specific feature of a cut node is that it has the 
local maximal distance to some node on the same voronoi seg-
ment. By exploring such a specific feature, we develop a method 
for VVD to detect the cut nodes on the voronoi segments.  

After the voronoi diagram is built, each voronoi node floods a 
Cruise Message (CRUISEMsg) within the voronoi segments con-
junct at itself. The CRUISEMsg records the ID of the voronoi 
node and counts the hops to it. Those nodes on each voronoi seg 
ment update their distances to the two voronoi nodes on the two 
ends of the segment according to the CRUISEMsg. If the voronoi  
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Figure 3: An example of the execution of VVD in a sparse network of a void with an average node degree of around 8. (a) Building the vo-
ronoi diagram; (b) Connecting adjacent cut nodes with the voronoi site in each voronoi cell; (c) Building the restricted area for limited flood-
ing operations; (c) Concatenating adjacent cut nodes to form the coarse boundaries; (d) Flooding the restricted areas to detect extremal nodes 
on network boundaries; (e) Finding the extremal nodes; (f) Refining coarse boundaries to be tight. 

 
 
 
segment is not blocked by a network boundary, the CRUISEMsg 
from one voronoi node at one end of the voronoi segment can 
reach the other voronoi node. Otherwise, the message will stop at 
some node on the voronoi segment with the maximal distance on 
the voronoi segment. Those nodes where the CRUISEMsgs stop 
are detected as cut nodes. At this step, each voronoi node only 
needs to flood one CRUISEMsg to voronoi segments conjunct at 
itself in order to detect all cut nodes. 

One special case at this step is that there might be the voronoi 
segment neither of whose two endpoints is a voronoi node. Such a 
case indeed implies that both two endpoints of the voronoi seg-
ment are cut nodes. Examples can be found in figure 3 (a) where 
the voronoi segments denoted a, b, c, d and e are all of this case. 
Therefore, in such a case the CRUISEMsgs will not be flooded on 
the voronoi segment. Instead, we let the intermediate nodes on the 
voronoi segment flood a Find Voronoi Node Message (FVNMsg) 
to the two ends of the segment. It is obvious that the two end-
points of the voronoi segment both have local maximal hop dis-
tance to the sender and they will claim to be cut nodes. 

3.3 Connecting Cut Nodes with Sites 

In the process of building the voronoi diagram, each sensor 
node receives the BVDMsg from the closest voronoi sites. Thus 
multiple shortest path trees rooted at the voronoi sites have been 
built in different voronoi cells. Each node knows its hop distance 
to its closest voronoi site and maintains a pointer to the parent 
node on the path from itself to the closest voronoi site. Nodes on 
voronoi segments maintain multiple pointers since they have two 
or more closest voronoi sites. 

As a result, in each voronoi cell, starting from the cut nodes 
and following the path along the shortest path tree, we can easily 
connect cut nodes with the voronoi site. We denote the edge con-
necting the cut node and the voronoi site as VC edge. As depicted 
by the blue edges in figure 3 (b), the VC edges indeed connect 
adjacent cut nodes through voronoi sites. They form connected-
circles containing the network boundaries, which we call VC cir-
cles. In the example of figure 3 (b), there are two such circles. 
One contains the inner boundary around the void area inside, and 
the other contains the outer boundary of the network. 
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3.4 Finding Coarse Boundaries 

Adjacent cut nodes are two cut nodes which are next to each 
other on the same boundary. Normally, each voronoi site connects 
two adjacent cut nodes so that adjacent cut nodes on the network 
boundaries will also be adjacent on the circles formed by VC 
edges. Therefore, by flooding along the VC circles each cut node 
can find its neighbor cut nodes. Nevertheless, it is more compli-
cated when a voronoi site connects cut nodes on different bounda-
ries as depicted as site O in figure 3 (b). In this case, VC circles of 
different boundaries intersect at one voronoi site so that searching 
on one VC circle may reach cut nodes on another VC circle. To 
address this problem in VVD we introduce a tricky method. We 
first color a restricted area in each voronoi cell corresponding to 
one VC circle, and then search neighboring cut nodes on the same 
boundary within the restricted area.  

First, the node on the voronoi segment which is closest to the 
cut node but not on the VC edges locally floods a Virtual Hole 
Message (VHMsg) within several hops, usually a value less than 
10 is sufficient, to generate a virtual hole. Nodes on VC edges 
discard this message such that the virtual hole does not affect the 
nodes within S. The virtual hole prevents messages sent by cut 
nodes from going out of S. The virtual hole and the VC circles 
compose a virtual boundary of the restricted area S. The objective 
of constructing the restricted area is to distinguish VC circles of 
different network boundaries and restrict the further operations of 
our algorithm in a local area.  

Within the restricted area S, each cut node floods an Adjacent 
Cut Node Notification Message (ACNMsg) with its id. The re-
stricted area S forces the ACNMsg flooding to the correct adjacent 
cut node no matter how many cut nodes from what different 
boundaries connect to a single voronoi site. After flooding the 
ACNMsg in S, every cut node eventually knows its adjacent cut 
nodes. 

Till now, each cut node knows its adjacent cut nodes. We then 
connect adjacent cut nodes with the shortest path between them. 
Indeed it will be very inefficient to rebuild the shortest path tree to 
find the shortest path. Hence, we aggregate such a process by in-
serting a hop counter to the ACNMsg. With the hop counter, every 
cut node can build a shortest path tree rooted at itself while flood-
ing the ACNMsgs within S. Thereby, shortest paths between two 
adjacent cut nodes can be built without any extra traffic overhead.  

The shortest paths between adjacent cut nodes concatenate 
themselves into a circle as the coarse boundary. Two coarse 
boundaries are formed, denoted in red. They are corresponding to 
the inner and outer boundaries of the network. 

3.5 Refining the Boundaries 

At currently stage, the coarse boundaries divide the network 
and indicate the topology shape of the network. Such boundaries, 
however, may not be tight enough, especially when the boundary 
is concave. 

To refine the detected boundaries, we map the coarse bounda-
ries to those extremal nodes on the real boundaries, similar with 
what Wang et al. did [19]. Extremal nodes are those nodes whose 
hop counts to the coarse boundaries are local maximum. To ex-

plore the extremal nodes, we tour along each coarse boundary R, 
and label the nodes on R in order. As depicted in figure 3 (d), after 
a local flooding from the nodes on R, each node will have a 
minimal hop count to the nodes on R and a parent pointer pointing 
the shortest path to R. The label of node at hop count k can be 
computed from the average of labels of its neighbor nodes at hop 
k-1. The extremal nodes are then labeled and pointed along the 
shortest paths to R. By checking neighbor extremal nodes with 
adjacent labels, we can connect those extremal nodes to compo-
nents. Figure 3 (e) depicts the detected extremal nodes and their 
connected components (colored in sky blue).  

We then force the boundary R to go through the connected 
components of extremal nodes. We denote the nodes on R that 
have branches to the extremal nodes as branch nodes. They can 
be detected through tracing the shortest paths from the extremal 
nodes to R. During the tracing process, reverse pointers are re-
corded to form a path from branch nodes to extremal node. After 
the branch nodes are detected, we tour R in a decreasing order 
according to the node labels, and force the boundary to go through 
the extremal nodes when encountering the branch nodes. Once 
branching to extremal nodes, we tour along the connected compo-
nents of extremal nodes as long as possible and then go back to R. 
Thereby, we refine the coarse boundary R to a tight boundary. The 
final result is shown in figure 3 (f), where both the inner and outer 
boundaries of the network are successfully recognized. 

4. Proof of Correctness 

In this section, we prove the correctness of VVD protocol in 
continuous case. Though practical sensor networks are in discrete 
case, the proof gives intuition of the correctness for discrete case. 
In practical, this approximates a scenario that sensor nodes are 
deployed where void areas are much larger compared to commu-
nication range. The communicational path between two nodes is 
thus a curve on the solid field connecting two points. 
Lemma 1. Let N�(C) be the �-neighborhood of a cut node C, N�(C) 
cannot fall into the same voronoi cell.  
Proof. We prove it by contradiction. As figure 4 (a) illustrates, 
assume the two closest voronoi sites to the cut node C are S1 and 
S2. Denote the shortest paths from S1 and S2 to C as S1C and S2C.  

If the �-neighborhood of C falls into the same voronoi cell, 
the entire voronoi segment containing C has to be within some 
voronoi cell VCi of some voronoi site Si. We show contradictions 
in the following 3 cases: 

Case 1: Both the two shortest paths S1C and S2C pass through 
some points in VCi, say Pi and Pi’. Then there exists one path 
SiPi+PiC from Si to C which is less than S1Pi+PiC. This is because 
Pi resides in cell VCi, such that SiPi < S1Pi. Similarly, the shortest 
path SiC is less than S2C. This leads to the conclusion that Si is a 
closer voronoi site to C than both S1 and S2 which is contradicted 
to the fact that there are two closest voronoi sites S1 and S2. 

Case 2: At least one of the shortest path passes through the vo-
ronoi segment. Assume S1C passes through the voronoi segment 
NC where N is a Voronoi node as depicted in figure 4 (b). The 
fact that NC is a part of the shortest path S1C indicates that S1C 
passes the voronoi node N. According to the definition of the vo-
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Figure 4: Proof of correctness. 
 
 

ronoi node, N has at least 3 equidistant voronoi sites. If one 
point on the shortest path S1C has 3 equidistant voronoi sites, 
then the remaining part of the path also has 3 equidistant sites. 
Therefore, the points on NC which belongs to the shortest path 
has at least 3 equidistant sites. This leads to a contradiction 
since cut node C is not a voronoi node and has only 2 equidis-
tant voronoi sites. 

Case 3: The last case is that the voronoi segment NC does 
not connect to a voronoi node. As depicted in figure 4 (c), both 
the shortest paths S1C and S2C in such a case certainly pass 
some points in some voronoi cell VCi in order to connect to 
point C. Similar to case 1, in this case, the voronoi site Si will 
be the only closest sites to C. This contradicts the fact that there 
are two closest sites S1 and S2. � 

Lemma 2. All cut nodes reside on the network boundaries. 
Proof. If a cut node is not on the network boundaries, it is easy 
to see that the �-neighborhood of this node will be in the same 
voronoi cell. This contradicts with Lemma 1. � 

We denote the voronoi segments enclosing the voronoi cell 
of voronoi site S as the corresponding voronoi segments of S 
and the cut nodes on the corresponding voronoi segments of S 
as the corresponding cut nodes of S. We have the following 
lemma. 

Lemma 3. A voronoi site cannot have exactly one correspond-
ing cut node on one boundary. 

Proof. Assume a voronoi site S has exactly one cut node C on 
the boundary as depicted in figure 4 (d). The �-neighborhood of 
cutnode C should be in the same voronoi cell since any two 
points in the �-neighborhood of C can be connected without 

crossing any other voronoi segments. This contradicts with 
Lemma 1. � 

Recall that the protocol executes in the following 4 steps. 
1. VVD selects points as the voronoi sites and accordingly 

builds the voronoi diagram on the plain. 
2. VVD detects all cut nodes and builds VC edges that connect 

cut nodes with the voronoi sites of the voronoi cells they re-
side in. 

3. By concatenating the adjacent cut nodes in order, VVD 
finds the coarse boundaries in the network. They are con-
nected by the shortest path betweens them through flooding 
in the restricted areas. 

4. VVD refines the coarse boundaries with the help of the ex-
tremal nodes. 
According to Lemma 2, all the cut nodes are on the bounda-

ries. As two cut nodes are adjacent if and only if they are adja-
cent on the same boundary, we have the following lemma. 
Lemma 4. Only adjacent cut nodes on the same boundary will 
be connected with the shortest path between them at step 3. 
Proof. We show this lemma by contradiction. According to 
Lemma 2, all cut nodes reside on the network boundaries. The 
virtual hole and VC edge form a circle containing the entire 
hole inside. Therefore, as depicted in figure 4 (e), if two cut 
nodes C1 and C2 on different boundaries can be connected by 
such a flooding, then the path connecting the two cut nodes 
must cross the VC edge or virtual hole. This contradicts with 
our requirement that the flooding is constrained inside the re-
stricted area. Therefore, only cut nodes on the same boundary 
are connected through such a restricted flooding. Similarly, as 
shown in figure 4 (f), connecting two cut nodes on the same 
boundary which are not adjacent either crosses the VC edges or 
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Figure 5: Results of VVD for networks of different node densities. 
(a) Node degree = 7 (b) Node degree = 20. 
 
 
the virtual hole.  Thus flooding in the restricted area only con-
nects adjacent cut nodes.  � 
Lemma 5. Tight boundaries for voids of convex shapes can be 
obtained after step 3. 
Proof. According to Lemma 2, all cut nodes are on the network 
boundaries Lemma 4 shows that only adjacent cut nodes will be 
connected by the shortest paths we explore. Obviously, the 
shortest path between any pair of two points on the boundary of 
a convex void area goes along the boundary of the void area. 
Thus the boundary connected by the shortest paths between 
adjacent cut nodes is tight for voids of convex shape. � 
Theorem 1. After refining the coarse boundaries by forcing the 
boundaries go through the extremal nodes, we obtain tight 
boundaries for concave void areas. 

Proof. According to Lemma 3, we obtain the coarse boundary 
by concatenating the adjacent cut nodes. According to the proof 
in [19], the extremal nodes of the coarse boundary are on the 
real boundary, and tight boundaries can be obtained by forcing 
the coarse boundary to go through the extremal nodes. � 

 

 
(a) 

 
(b) 

Figure 6: Results of the approach of Wang et al. for networks of 
different node densities. (a) Node degree = 7; (b) Node degree = 20.
 
 

Theorem 1 shows that on the continuous plain our VVD ap-
proach successfully recognizes the boundaries for the solid area 
of both convex and concave shaped boundaries.  

5. Performance Evaluation 

We conduct intensive simulations to validate the design of 
VVD and compare it with the most recent topological ap-
proaches. In our simulations, we assume sensor nodes are uni-
formly randomly deployed in the field. Each node is firstly 
modeled with a basic communicational range. We then add 
random perturbations on the communications of each node to 
make the communication more realistic. When testing the net-
work irregularities, we further divide sensor nodes into different 
groups, each of which has a different basic communicational 
range. 

The simulation results show the effectiveness and efficiency 
of our approach. Our result shows that VVD has outstanding 
performance even with sparse and irregular networks.  
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(b) 

Figure 7: a sensor network where nodes in the center of the field 
have smaller communication ranges. 

 
 

5.1 Detection Accuracy with Node Density 

In this simulation, sensor nodes are uniformly randomly de-
ployed in a field of fixed size with a circular void at the center.  

We vary the number of sensors deployed inside the field 
and test the performance of VVD under different node densities. 
Figure 5 depicts the detected network boundaries by VVD 
when the average node degree is varied from 7 to 20. On the 
upper-left corner, we depict the basic node communicational 
range by a circle as reference. As figure 5 depicts, the detection 
accuracy of VVD is increased with the node density. We can 
observe from figure 5 (a) that even the average node degree is 
about 7 when there are less than 2000 nodes, VVD can achieve 
a good result. 

Certainly, node density is a critical factor that affects the 
performance of most boundary detection approaches. As indi-
cated by Wang et al. [19], other approaches such as [12] and [9] 
have extreme difficulties in dealing with the sparse networks. 
They generate many misreported boundary nodes when the 
node density is below 16. The work of Wang et al. [19] has  

 

 

Figure 8: The traffic overhead comparison of VVD and other 
works. 

 
 

been shown to be the most accurate topological method when 
dealing with sparse networks. In comparison, we simulate their 
approach and output the results in figure 6. From the results, we 
can find that both their approach and our VVD achieve similar 
accuracy with different node densities. Nevertheless, our further 
results show that VVD outperforms their approach when the 
network communications become irregular. 

5.2 Network Irregularities 

In this simulation, we test the performance of VVD under 
network irregularities. Network irregularities can be the result 
of many reasons, e.g., heterogeneous communication ranges, 
signal irregularities, environment interferences, and etc. We 
model the network irregularities by varying the node communi-
cation ranges. We divide the sensor nodes into different groups 
and assign them different basic communicational ranges. We 
compare VVD with the work of Wang et al. [19] under this 
scenario. 

We examine a sensor network where sensor nodes in the 
center of the field have smaller communication ranges. As de-
picted in figure 7 (a), the shortest path tree created in the work 
of Wang et al. bypasses the central area, meeting at the other 
end. The misreported cut pairs announce a non-existing void 
area. This is because the shortest path tree created in their ap-
proach is prone to explore the long links around the central area 
that lead to smaller hop distances. Oppositely, as depicted in 
figure 7 (b), with only 5 voronoi sites, VVD successfully de-
tects the outer boundary of the network without any misreports. 

Generally, the network irregularities introduce inevitable er-
rors in approximating the real distances with hop count distance. 
The work of Wang et al. aggressively utilizes the distance 
measures on network topology, and thus leads to failures when 
large errors are introduced due to network irregularities. The 
VVD approach, on the other hand, prevents to directly utilize 
the concrete value of network distance, and is thus immune to 
such irregularities. 
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5.3 Traffic Overhead 

Finally, we conduct simulations to examine the traffic over-
head in recognizing the boundaries. Sensor network is widely 
known as resource constraint and the communication module 
plays a major role in energy consumption. A reasonable way to 
evaluate the network efficiency is to compute the number of 
messages transmitted.  

In this simulation, we compare the number of messages 
transmitted in VVD with those in Wang et al. and Funke’s ap-
proaches [9, 19]. We vary the number of sensors deployed in a 
60 × 60 area. Results in figure 8 show that VVD is much more 
efficient with less than one third of their total message amount. 
Such effect is much more apparent when the network size is 
large.  

The reason is that most of the operations in VVD are 
bounded within local areas. Due to the multiple floodings, most 
of the time, the cost of Funke’s approach has the highest cost. 
The number of messages in Wang’s approach increases rapidly 
when the network becomes large, because their approach needs 
to check more leaf nodes on the shortest path tree to verify 
whether they are nodes on cut. 

6 Conclusion 

Topological boundary recognition enables us to obtain 
meaningful boundaries of sensor networks with minimum in-
formation under practical network settings. In this paper, we 
proposed VVD approach to detect network boundaries in 
WSNs solely with node connectivity information. We do not 
assume any distance or position measures, yet we do not as 
sume UDG or quasi UDG models for node communication 
styles, making our method more applicable in a broad scope of 
WSN applications. Compared with existing topological ap-
proaches, VVD is more effective in dealing with network ir-
regularities and more efficient on reducing traffic overhead. 
Simulation results show that, compared with existing ap-
proaches, VVD achieves outstanding performance with sparse 
networks, irregular links and those networks of multiple void 
areas. 
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