
Fractured Voronoi Segments: Topology Discovery
for Wireless Sensor Networks

Jiliang Wang

CSE Department
Hong Kong University of Science

and Technology
aliang@cse.ust.hk

Mo Li

Fok Ying Tung Graduate School
Hong Kong University of Science

and Technology
limo@cse.ust.hk

Yunhao Liu

CSE Department
Hong Kong University of Science

and Technology
liu@cse.ust.hk

Abstract—Wireless sensor networks are deployed in various
territories executing different tasks. In many applications, it is
very useful to understand their topological characteristics. This
paper studies the problem of discovering the topological
properties of a sensor network such as boundaries and holes.
Previous works have revealed that, such a problem could be
addressed with knowledge of node locations, measures of inter-
distances, or ideal assumptions of particular communication
models, e.g., unit disk graph model. In this work, however, we
explore the possibility of discovering sensor network topology
merely with connectivity information. We propose a virtual
voronoi diagram approach to detect both the inner and outer
boundaries of a sensor network. We do not rely on any
communication models, yet any geometric knowledge of the
network. Compared with previous connectivity based approaches,
we further release the assumption of regular wireless signals.
Our approach works even for anisotropic network with irregular
wireless links. We design our approach to be light-weight,
preventing frequent global operations that have been intensively
used in previous designs. We conduct intensive simulations in
networks of different topologies with different node degrees and
densities, and containing various signal irregularities. The
results validate the effectiveness and efficiency of our approach.

1. Introduction

Wireless Sensor Networks (WSNs) have rapidly developed
during the past years. Current electronic and communicational
techniques have made it possible to deploy sensor networks in a
very large scale with a large number of individual sensor nodes
cooperatively working in various applications. To efficiently ma-
nipulate such huge and complex networks, it becomes extremely
important to macroscopically abstract the geometric and topologi-
cal features, such as network localization, topology discovery,
sensor clustering and etc [4, 6, 8, 11]. This work studies the prob-
lem of topology discovery, e.g., boundary and hole detection, of
the underlying sensor network.

Topology discovery has been considered essential in large
scale WSNs for many reasons. (1) The topological information
such as boundaries acts as basis for implementing many upper
layer networking operations. By solely knowing the network
boundaries, researchers are able to step further in developing sim-
pler, more efficient and scalable mechanisms like range-free lo-

calization [13] and topological routing [3], which are designed
adaptive to the intrinsic topology properties of sensor networks. (2)
The topological information is also of great importance while
designing operations in WSNs and refining the structure of the
network. For instance, in the deployment of WSNs, network
boundaries indicate those void areas where sensors can not cover
and are not connected [1]. Such information can be used to guide
the redeployment of sensors to satisfy application specific needs,
e.g., extending the coverage area or adjusting the network density.
Mobile sensor networks can also use the topological information
to reconstruct the network to achieve a better coverage [18]. (3) A
WSN is inherently bound with the underlying physical environ-
ment it observes. Thus the boundary information of a sensor net-
work indeed reflects important characteristics of its tightly related
physical environment. For example, the boundaries of the inner
void areas in the sensor network usually indicate obstacles that are
physically inaccessible or isolated in communications. Such in-
formation is especially important for applications such as envi-
ronment monitoring, event detection and navigation, etc.

Existing works. As we can see, topological features play an im-
portant role in WSNs, many efforts have been made to address the
issue of topology discovery, especially for boundary recognition
and hole detection, driven by such a wide range of applications.

Early works rely on sensor locations to detect the network
boundaries. Having the locations of sensor nodes indeed provides
us rich geometric information that largely facilitates the boundary
recognition. Fang et al. observe that when a packet is geographi-
cally forwarded, it will get stuck at the nodes on network bounda-
ries. Thus they are able to identify the boundaries by detecting the
stuck nodes [5]. They assume the availability of locations and the
unit disk graph (UDG) communication model. Unfortunately,
subject to the WSN deployment, location information is not al-
ways available [14] and precise [20]. Yet, the requirement of loca-
tion information limits the application of boundary recognition,
e.g., the range-free localization approach [13] takes the network
boundaries as inputs before the sensor locations can be obtained.

To accommodate the unavailability of location information,
more works are proposed in the location free context. Fekete et al.
[7] observe the fact that in a dense network, nodes near holes in
the network have a smaller degree compared with those inside the
network. The proposed algorithm, however, works only for those
networks where nodes are uniform distributed, and of very high
density (degree > 100). They further report an algorithm [12] that

978-1-4244-7489-9/10/$26.00 ©2010 IEEE 137

Figure 1. The boundary recognition algorithm of Wang et al. [19]
misreports cut pairs under link irregularities.

detects the network boundaries by searching the “flower” struc-
tures. By iteratively augmenting the interior node set, their algo-
rithm is able to reach the network boundaries. Such an algorithm
does not need the location information but assumes the d-quasi
UDG model [2] to be valid. A more recent work by Saukh et al.
designs several node connectivity patterns and detects the bounda-
ries by finding the weak and strong patterns in the sensor network
[15]. Similarly, the UDG or d-quasi UDG model is presumed as a
de facto wireless communication model in their work. Funke de-
velops a method for boundary recognition that utilizes only con-
nectivity information [9, 10, 17]. The main idea is to propagate
from a root node and build iso-contours based on the hop count
from the root. A heuristic is that the contours are broken when
they meet the network inner boundaries. The proposed approach
identifies the nodes close to the boundaries without connecting
them in a meaningful way. Its correctness is proven under the
assumption of UDG model. Nevertheless, as widely proven by
practical experiment results [16-18], the UDG or quasi UDG
model is far from accurately approximating the physical behaviors
in node communication. Thus it is still questionable how realistic
to apply the above theoretical results practically.

Towards a more practical solution with less critical assump-
tions, Wang et al. present a topological method for boundary rec-
ognition solely with connectivity information, which does not
assume any specific node communication model [19]. Their ap-
proach explores the fact that the shortest path tree splits when
meeting the network boundaries. By detecting the cut pairs and
compositing all inner holes into one, their approach first finds the
coarse boundary. Finally, the fine grained boundaries can be ob-
tained by refining the coarse boundary. Without relying on any
geometric dependence, their approach steps further towards real
applicability in practical sensor networks that are usually de-
ployed in constraint environment where the geometric informa-
tion is difficult to access and node communication style is diffi-
cult to model. Such an approach, on the other hand, has its own
drawbacks. Many rounds of global operations are conducted in
their approach, in building the shortest path tree, finding the
coarse boundary, refining the boundaries, and the like. Those
global operations inevitably introduce huge traffic burden to the
resource constraint sensor networks. Their approach is invalidated
when the radio signals of sensors become irregular, i.e., the radio

Voronoi
node

Voronoi
site

Voronoi
segment

(a) (b)
Figure 2. (a) The voronoi diagram divides the plane into subregions,
and (b) The voronoi segments are blocked by network boundaries
(at green points).

signal ranges are different for different sensors or on different
directions of a sensor. As figure 1 depicts, the shortest path tree
built by Wang’s algorithm misreports many cut pairs as shown by
red nodes in a network of sensors with irregular signal ranges.
Those sensors with smaller radio signal ranges in the central area
are taken as a large void by the misreported cut pairs.

The goal and contributions. This paper studies the network topo-
logical features, more specifically, boundaries and holes in the
network which separate the connected sensor network component
from the void field. Indeed, these topological features of a net-
work are not related to any specific geometric embeddings. This
enables us to design topological approaches for recognizing the
network boundaries and holes inside, like Wang’s work, valid for
various situations where the geometric information is difficult to
access. In this work, we propose a Virtual Voronoi Diagram
(VVD) based approach, for topological boundary recognition in
wireless sensor networks.
This approach is designed to be more effective, detecting both the
inner and outer boundaries of the targeted network. It tolerates
network irregularities. According to our simulation results, even
when the network links are not uniform, our approach achieves
accurate boundary recognition. None previous studies consider
this problem, and as a matter of fact, most existing approaches fail
under such network irregularities.

This approach is designed to be more efficient, with much re-
duced network traffic. It limits most of its operations within a
local area such that the traffic will not be propagated to the entire
network, reducing the overhead.

This approach is designed to be more applicable, lowering the
application barriers with minimum requirements. Our approach
prevents to use the geometric information like distance measures
or node positions. We do not assume any simplified node com-
munication models like UDG or quasi UDG models. The network
links are not necessarily uniform. Different sensor nodes may
have different communication scopes.

Paper organization. The rest of this paper is organized as follows.
In Section 2, we present an overview of our design. In Section 3,
we elaborate our protocol in details. We prove the correctness of
the principle of our protocol in Section 4. We discuss related is-
sues of our protocol in Section 5, and in Section 6 we conduct

138

intensive simulations to validate our design. Finally, we conclude
this work in Section 7.

2. Overview

We design a Virtual Voronoi Diagram (VVD) based approach
to detect the inner and outer boundaries of a wireless sensor net-
work. Like existing works did, we assume symmetric links be-
tween any pair of sensors in the network. Indeed, for an asymmet-
ric network graph, we can easily reduce it into a symmetric graph
by eliminating the unidirectional links. We also assume reliable
message delivery in the network. This can be easily achieved by
reliable communication techniques on those links, e.g., acknowl-
edgements and retransmissions. Unlike most existing works, we
do not assume any prior knowledge of sensor locations; neither
the communication model to be UDG or quasi UDG model. The
radio signals of sensors are not required to be regular.

Our approach is inspired by the observation that if we build a
voronoi diagram on the network connectivity graph, the network
boundaries (the outer boundary of the network or inner bounda-
ries around voids inside the network) will block the segments in
such a graph. As figure 2 (a) depicts, a voronoi diagram is built
according to a specified set of site points. It is a subdivision of the
plane determined by the distances between each pair of the site
points. Each site point is denoted by a black dot in figure 2 (a).
The points that have equal distance to two or more site points
compose the voronoi segments. Those points equidistant to 3 or
more site points are defined as voronoi nodes, denoted as red dots
in the figure. The voronoi cell of a site point p consists of points
that are closer to p. More formally, denote the set of voronoi sites
by S = {si | i=1, 2, …, k} and the distance between two point s and
t by d(s, t). The voronoi cell of each site si is then denoted as Celli
= {p | d(si, p) � d(sj, p) for any j � i}. The voronoi segments are
the set of points {p | p � Celli � Cellj, where i � j} and the vo-
ronoi nodes are the set of points {p | � i � j � k, d(si, p) = d(sj, p)
= d(sk, p) � d(sl, p) for any l � i � j � k}.

The boundaries of the network will block the voronoi seg-
ments and make them disconnected. As figure 2 (b) depicts, the
green nodes, which are denoted by cut nodes, reside at the place
where the voronoi segments are blocked. Hereby, by identifying
the cut nodes, i.e., where the voronoi segments are blocked, we
are aware of the network boundaries. By connecting the adjacent
cut nodes, we can first obtain coarse boundaries. Utilizing the
voronoi cells, our VVD approach automatically generates sepa-
rated coarse boundaries around different voids as well as the outer
boundary of the network. After that, by refining the coarse
boundaries, VVD can reach the real boundaries of the network.
Most of the operations in VVD are local, strictly limited by vo-
ronoi cells, preventing unnecessary traffic generation over the
entire network.

3. Protocol Description

The key idea of VVD is that first we find some featuring
points on the boundaries, and then by connecting the featuring
points with voronoi sites we are able to obtain the coarse skeleton

of the boundaries. Finally by refining the coarse skeleton, we rec-
ognize the real boundaries.

We elaborate VVD in steps and show the details of each step
in the following subsections. In figure 3, we illustrate the execu-
tion of the protocol on an example network. As depicted in figure
3 (a), we execute our VVD on a 2500 node network containing a
concave void area inside. It is a sparse network with an average
degree of around 8.

3.1 Building Voronoi Diagram

The basis of VVD is building a voronoi diagram. In order to
build the voronoi diagram, several sensor nodes in the network are
selected as voronoi sites. A randomized approach can be used to
select sensor nodes as voronoi sites. As the number of sites can be
determined before the selection, a constant number p standing for
the selection probability between 0 and 1 can be calculated. The
number p is then flooded into the network from the sink to inform
all nodes in the network. Every node generates whether it is in-
dentified as a voronoi site according to the probability p. Such an
approach ensures that the expected number of selected voronoi
sites is equal to the specified number and the selected nodes are
uniformly distributed in network.

Base on the selected voronoi sites, VVD builds the voronoi
diagram. As there are no location or distance measures input to
our algorithm, VVD utilizes the hop count information to ap-
proximate the distance when building the voronoi diagram.

Each voronoi site floods a Build Voronoi Diagram Message
(BVDMsg) within the network that records the ID of the voronoi
site and the hop count to it. Other sensors on receiving the
BVDMsg maintain a distance table that records the ID of each
received voronoi site and updates its shortest distance to the site.
The BVDMsg is only relayed by a sensor when it contains a
shorter distance from the same voronoi site. Each sensor checks
the distance table to determine the number of the closest voronoi
sites. Sensors with two or more equidistant closest voronoi sites
claim themselves to be on the voronoi segments. Sensors with
three or more equidistant closest voronoi sites claim to be the vo-
ronoi nodes. Figure 3 (a) depicts the voronoi diagram built at this
step. The nodes on voronoi segments are green dotted.

3.2 Detecting Cut Nodes

According to our definition, the cut nodes are those nodes
where the network boundaries block the voronoi segments. As
depicted in figure 3 (c), it is easy to find that cut nodes are re-
sulted from the discontinuity of the voronoi segments on the net-
work boundaries. A specific feature of a cut node is that it has the
local maximal distance to some node on the same voronoi seg-
ment. By exploring such a specific feature, we develop a method
for VVD to detect the cut nodes on the voronoi segments.

After the voronoi diagram is built, each voronoi node floods a
Cruise Message (CRUISEMsg) within the voronoi segments con-
junct at itself. The CRUISEMsg records the ID of the voronoi
node and counts the hops to it. Those nodes on each voronoi seg
ment update their distances to the two voronoi nodes on the two
ends of the segment according to the CRUISEMsg. If the voronoi

139

a

b

c

d

e

O

(a)

(b) (c)

(d) (e) (f)

Figure 3: An example of the execution of VVD in a sparse network of a void with an average node degree of around 8. (a) Building the vo-
ronoi diagram; (b) Connecting adjacent cut nodes with the voronoi site in each voronoi cell; (c) Building the restricted area for limited flood-
ing operations; (c) Concatenating adjacent cut nodes to form the coarse boundaries; (d) Flooding the restricted areas to detect extremal nodes
on network boundaries; (e) Finding the extremal nodes; (f) Refining coarse boundaries to be tight.

segment is not blocked by a network boundary, the CRUISEMsg
from one voronoi node at one end of the voronoi segment can
reach the other voronoi node. Otherwise, the message will stop at
some node on the voronoi segment with the maximal distance on
the voronoi segment. Those nodes where the CRUISEMsgs stop
are detected as cut nodes. At this step, each voronoi node only
needs to flood one CRUISEMsg to voronoi segments conjunct at
itself in order to detect all cut nodes.

One special case at this step is that there might be the voronoi
segment neither of whose two endpoints is a voronoi node. Such a
case indeed implies that both two endpoints of the voronoi seg-
ment are cut nodes. Examples can be found in figure 3 (a) where
the voronoi segments denoted a, b, c, d and e are all of this case.
Therefore, in such a case the CRUISEMsgs will not be flooded on
the voronoi segment. Instead, we let the intermediate nodes on the
voronoi segment flood a Find Voronoi Node Message (FVNMsg)
to the two ends of the segment. It is obvious that the two end-
points of the voronoi segment both have local maximal hop dis-
tance to the sender and they will claim to be cut nodes.

3.3 Connecting Cut Nodes with Sites

In the process of building the voronoi diagram, each sensor
node receives the BVDMsg from the closest voronoi sites. Thus
multiple shortest path trees rooted at the voronoi sites have been
built in different voronoi cells. Each node knows its hop distance
to its closest voronoi site and maintains a pointer to the parent
node on the path from itself to the closest voronoi site. Nodes on
voronoi segments maintain multiple pointers since they have two
or more closest voronoi sites.

As a result, in each voronoi cell, starting from the cut nodes
and following the path along the shortest path tree, we can easily
connect cut nodes with the voronoi site. We denote the edge con-
necting the cut node and the voronoi site as VC edge. As depicted
by the blue edges in figure 3 (b), the VC edges indeed connect
adjacent cut nodes through voronoi sites. They form connected-
circles containing the network boundaries, which we call VC cir-
cles. In the example of figure 3 (b), there are two such circles.
One contains the inner boundary around the void area inside, and
the other contains the outer boundary of the network.

140

3.4 Finding Coarse Boundaries

Adjacent cut nodes are two cut nodes which are next to each
other on the same boundary. Normally, each voronoi site connects
two adjacent cut nodes so that adjacent cut nodes on the network
boundaries will also be adjacent on the circles formed by VC
edges. Therefore, by flooding along the VC circles each cut node
can find its neighbor cut nodes. Nevertheless, it is more compli-
cated when a voronoi site connects cut nodes on different bounda-
ries as depicted as site O in figure 3 (b). In this case, VC circles of
different boundaries intersect at one voronoi site so that searching
on one VC circle may reach cut nodes on another VC circle. To
address this problem in VVD we introduce a tricky method. We
first color a restricted area in each voronoi cell corresponding to
one VC circle, and then search neighboring cut nodes on the same
boundary within the restricted area.

First, the node on the voronoi segment which is closest to the
cut node but not on the VC edges locally floods a Virtual Hole
Message (VHMsg) within several hops, usually a value less than
10 is sufficient, to generate a virtual hole. Nodes on VC edges
discard this message such that the virtual hole does not affect the
nodes within S. The virtual hole prevents messages sent by cut
nodes from going out of S. The virtual hole and the VC circles
compose a virtual boundary of the restricted area S. The objective
of constructing the restricted area is to distinguish VC circles of
different network boundaries and restrict the further operations of
our algorithm in a local area.

Within the restricted area S, each cut node floods an Adjacent
Cut Node Notification Message (ACNMsg) with its id. The re-
stricted area S forces the ACNMsg flooding to the correct adjacent
cut node no matter how many cut nodes from what different
boundaries connect to a single voronoi site. After flooding the
ACNMsg in S, every cut node eventually knows its adjacent cut
nodes.

Till now, each cut node knows its adjacent cut nodes. We then
connect adjacent cut nodes with the shortest path between them.
Indeed it will be very inefficient to rebuild the shortest path tree to
find the shortest path. Hence, we aggregate such a process by in-
serting a hop counter to the ACNMsg. With the hop counter, every
cut node can build a shortest path tree rooted at itself while flood-
ing the ACNMsgs within S. Thereby, shortest paths between two
adjacent cut nodes can be built without any extra traffic overhead.

The shortest paths between adjacent cut nodes concatenate
themselves into a circle as the coarse boundary. Two coarse
boundaries are formed, denoted in red. They are corresponding to
the inner and outer boundaries of the network.

3.5 Refining the Boundaries

At currently stage, the coarse boundaries divide the network
and indicate the topology shape of the network. Such boundaries,
however, may not be tight enough, especially when the boundary
is concave.

To refine the detected boundaries, we map the coarse bounda-
ries to those extremal nodes on the real boundaries, similar with
what Wang et al. did [19]. Extremal nodes are those nodes whose
hop counts to the coarse boundaries are local maximum. To ex-

plore the extremal nodes, we tour along each coarse boundary R,
and label the nodes on R in order. As depicted in figure 3 (d), after
a local flooding from the nodes on R, each node will have a
minimal hop count to the nodes on R and a parent pointer pointing
the shortest path to R. The label of node at hop count k can be
computed from the average of labels of its neighbor nodes at hop
k-1. The extremal nodes are then labeled and pointed along the
shortest paths to R. By checking neighbor extremal nodes with
adjacent labels, we can connect those extremal nodes to compo-
nents. Figure 3 (e) depicts the detected extremal nodes and their
connected components (colored in sky blue).

We then force the boundary R to go through the connected
components of extremal nodes. We denote the nodes on R that
have branches to the extremal nodes as branch nodes. They can
be detected through tracing the shortest paths from the extremal
nodes to R. During the tracing process, reverse pointers are re-
corded to form a path from branch nodes to extremal node. After
the branch nodes are detected, we tour R in a decreasing order
according to the node labels, and force the boundary to go through
the extremal nodes when encountering the branch nodes. Once
branching to extremal nodes, we tour along the connected compo-
nents of extremal nodes as long as possible and then go back to R.
Thereby, we refine the coarse boundary R to a tight boundary. The
final result is shown in figure 3 (f), where both the inner and outer
boundaries of the network are successfully recognized.

4. Proof of Correctness

In this section, we prove the correctness of VVD protocol in
continuous case. Though practical sensor networks are in discrete
case, the proof gives intuition of the correctness for discrete case.
In practical, this approximates a scenario that sensor nodes are
deployed where void areas are much larger compared to commu-
nication range. The communicational path between two nodes is
thus a curve on the solid field connecting two points.
Lemma 1. Let N�(C) be the �-neighborhood of a cut node C, N�(C)
cannot fall into the same voronoi cell.
Proof. We prove it by contradiction. As figure 4 (a) illustrates,
assume the two closest voronoi sites to the cut node C are S1 and
S2. Denote the shortest paths from S1 and S2 to C as S1C and S2C.

If the �-neighborhood of C falls into the same voronoi cell,
the entire voronoi segment containing C has to be within some
voronoi cell VCi of some voronoi site Si. We show contradictions
in the following 3 cases:

Case 1: Both the two shortest paths S1C and S2C pass through
some points in VCi, say Pi and Pi’. Then there exists one path
SiPi+PiC from Si to C which is less than S1Pi+PiC. This is because
Pi resides in cell VCi, such that SiPi < S1Pi. Similarly, the shortest
path SiC is less than S2C. This leads to the conclusion that Si is a
closer voronoi site to C than both S1 and S2 which is contradicted
to the fact that there are two closest voronoi sites S1 and S2.

Case 2: At least one of the shortest path passes through the vo-
ronoi segment. Assume S1C passes through the voronoi segment
NC where N is a Voronoi node as depicted in figure 4 (b). The
fact that NC is a part of the shortest path S1C indicates that S1C
passes the voronoi node N. According to the definition of the vo-

141

(a) (b) (c)

C1

S

C2

S C2

C1

C3

(d) (e) (f)

Figure 4: Proof of correctness.

ronoi node, N has at least 3 equidistant voronoi sites. If one
point on the shortest path S1C has 3 equidistant voronoi sites,
then the remaining part of the path also has 3 equidistant sites.
Therefore, the points on NC which belongs to the shortest path
has at least 3 equidistant sites. This leads to a contradiction
since cut node C is not a voronoi node and has only 2 equidis-
tant voronoi sites.

Case 3: The last case is that the voronoi segment NC does
not connect to a voronoi node. As depicted in figure 4 (c), both
the shortest paths S1C and S2C in such a case certainly pass
some points in some voronoi cell VCi in order to connect to
point C. Similar to case 1, in this case, the voronoi site Si will
be the only closest sites to C. This contradicts the fact that there
are two closest sites S1 and S2. �

Lemma 2. All cut nodes reside on the network boundaries.
Proof. If a cut node is not on the network boundaries, it is easy
to see that the �-neighborhood of this node will be in the same
voronoi cell. This contradicts with Lemma 1. �

We denote the voronoi segments enclosing the voronoi cell
of voronoi site S as the corresponding voronoi segments of S
and the cut nodes on the corresponding voronoi segments of S
as the corresponding cut nodes of S. We have the following
lemma.

Lemma 3. A voronoi site cannot have exactly one correspond-
ing cut node on one boundary.

Proof. Assume a voronoi site S has exactly one cut node C on
the boundary as depicted in figure 4 (d). The �-neighborhood of
cutnode C should be in the same voronoi cell since any two
points in the �-neighborhood of C can be connected without

crossing any other voronoi segments. This contradicts with
Lemma 1. �

Recall that the protocol executes in the following 4 steps.
1. VVD selects points as the voronoi sites and accordingly

builds the voronoi diagram on the plain.
2. VVD detects all cut nodes and builds VC edges that connect

cut nodes with the voronoi sites of the voronoi cells they re-
side in.

3. By concatenating the adjacent cut nodes in order, VVD
finds the coarse boundaries in the network. They are con-
nected by the shortest path betweens them through flooding
in the restricted areas.

4. VVD refines the coarse boundaries with the help of the ex-
tremal nodes.
According to Lemma 2, all the cut nodes are on the bounda-

ries. As two cut nodes are adjacent if and only if they are adja-
cent on the same boundary, we have the following lemma.
Lemma 4. Only adjacent cut nodes on the same boundary will
be connected with the shortest path between them at step 3.
Proof. We show this lemma by contradiction. According to
Lemma 2, all cut nodes reside on the network boundaries. The
virtual hole and VC edge form a circle containing the entire
hole inside. Therefore, as depicted in figure 4 (e), if two cut
nodes C1 and C2 on different boundaries can be connected by
such a flooding, then the path connecting the two cut nodes
must cross the VC edge or virtual hole. This contradicts with
our requirement that the flooding is constrained inside the re-
stricted area. Therefore, only cut nodes on the same boundary
are connected through such a restricted flooding. Similarly, as
shown in figure 4 (f), connecting two cut nodes on the same
boundary which are not adjacent either crosses the VC edges or

142

(a)

(b)

Figure 5: Results of VVD for networks of different node densities.
(a) Node degree = 7 (b) Node degree = 20.

the virtual hole. Thus flooding in the restricted area only con-
nects adjacent cut nodes. �
Lemma 5. Tight boundaries for voids of convex shapes can be
obtained after step 3.
Proof. According to Lemma 2, all cut nodes are on the network
boundaries Lemma 4 shows that only adjacent cut nodes will be
connected by the shortest paths we explore. Obviously, the
shortest path between any pair of two points on the boundary of
a convex void area goes along the boundary of the void area.
Thus the boundary connected by the shortest paths between
adjacent cut nodes is tight for voids of convex shape. �
Theorem 1. After refining the coarse boundaries by forcing the
boundaries go through the extremal nodes, we obtain tight
boundaries for concave void areas.

Proof. According to Lemma 3, we obtain the coarse boundary
by concatenating the adjacent cut nodes. According to the proof
in [19], the extremal nodes of the coarse boundary are on the
real boundary, and tight boundaries can be obtained by forcing
the coarse boundary to go through the extremal nodes. �

(a)

(b)

Figure 6: Results of the approach of Wang et al. for networks of
different node densities. (a) Node degree = 7; (b) Node degree = 20.

Theorem 1 shows that on the continuous plain our VVD ap-
proach successfully recognizes the boundaries for the solid area
of both convex and concave shaped boundaries.

5. Performance Evaluation

We conduct intensive simulations to validate the design of
VVD and compare it with the most recent topological ap-
proaches. In our simulations, we assume sensor nodes are uni-
formly randomly deployed in the field. Each node is firstly
modeled with a basic communicational range. We then add
random perturbations on the communications of each node to
make the communication more realistic. When testing the net-
work irregularities, we further divide sensor nodes into different
groups, each of which has a different basic communicational
range.

The simulation results show the effectiveness and efficiency
of our approach. Our result shows that VVD has outstanding
performance even with sparse and irregular networks.

143

(a)

(b)

Figure 7: a sensor network where nodes in the center of the field
have smaller communication ranges.

5.1 Detection Accuracy with Node Density

In this simulation, sensor nodes are uniformly randomly de-
ployed in a field of fixed size with a circular void at the center.

We vary the number of sensors deployed inside the field
and test the performance of VVD under different node densities.
Figure 5 depicts the detected network boundaries by VVD
when the average node degree is varied from 7 to 20. On the
upper-left corner, we depict the basic node communicational
range by a circle as reference. As figure 5 depicts, the detection
accuracy of VVD is increased with the node density. We can
observe from figure 5 (a) that even the average node degree is
about 7 when there are less than 2000 nodes, VVD can achieve
a good result.

Certainly, node density is a critical factor that affects the
performance of most boundary detection approaches. As indi-
cated by Wang et al. [19], other approaches such as [12] and [9]
have extreme difficulties in dealing with the sparse networks.
They generate many misreported boundary nodes when the
node density is below 16. The work of Wang et al. [19] has

Figure 8: The traffic overhead comparison of VVD and other
works.

been shown to be the most accurate topological method when
dealing with sparse networks. In comparison, we simulate their
approach and output the results in figure 6. From the results, we
can find that both their approach and our VVD achieve similar
accuracy with different node densities. Nevertheless, our further
results show that VVD outperforms their approach when the
network communications become irregular.

5.2 Network Irregularities

In this simulation, we test the performance of VVD under
network irregularities. Network irregularities can be the result
of many reasons, e.g., heterogeneous communication ranges,
signal irregularities, environment interferences, and etc. We
model the network irregularities by varying the node communi-
cation ranges. We divide the sensor nodes into different groups
and assign them different basic communicational ranges. We
compare VVD with the work of Wang et al. [19] under this
scenario.

We examine a sensor network where sensor nodes in the
center of the field have smaller communication ranges. As de-
picted in figure 7 (a), the shortest path tree created in the work
of Wang et al. bypasses the central area, meeting at the other
end. The misreported cut pairs announce a non-existing void
area. This is because the shortest path tree created in their ap-
proach is prone to explore the long links around the central area
that lead to smaller hop distances. Oppositely, as depicted in
figure 7 (b), with only 5 voronoi sites, VVD successfully de-
tects the outer boundary of the network without any misreports.

Generally, the network irregularities introduce inevitable er-
rors in approximating the real distances with hop count distance.
The work of Wang et al. aggressively utilizes the distance
measures on network topology, and thus leads to failures when
large errors are introduced due to network irregularities. The
VVD approach, on the other hand, prevents to directly utilize
the concrete value of network distance, and is thus immune to
such irregularities.

144

5.3 Traffic Overhead

Finally, we conduct simulations to examine the traffic over-
head in recognizing the boundaries. Sensor network is widely
known as resource constraint and the communication module
plays a major role in energy consumption. A reasonable way to
evaluate the network efficiency is to compute the number of
messages transmitted.

In this simulation, we compare the number of messages
transmitted in VVD with those in Wang et al. and Funke’s ap-
proaches [9, 19]. We vary the number of sensors deployed in a
60 × 60 area. Results in figure 8 show that VVD is much more
efficient with less than one third of their total message amount.
Such effect is much more apparent when the network size is
large.

The reason is that most of the operations in VVD are
bounded within local areas. Due to the multiple floodings, most
of the time, the cost of Funke’s approach has the highest cost.
The number of messages in Wang’s approach increases rapidly
when the network becomes large, because their approach needs
to check more leaf nodes on the shortest path tree to verify
whether they are nodes on cut.

6 Conclusion

Topological boundary recognition enables us to obtain
meaningful boundaries of sensor networks with minimum in-
formation under practical network settings. In this paper, we
proposed VVD approach to detect network boundaries in
WSNs solely with node connectivity information. We do not
assume any distance or position measures, yet we do not as
sume UDG or quasi UDG models for node communication
styles, making our method more applicable in a broad scope of
WSN applications. Compared with existing topological ap-
proaches, VVD is more effective in dealing with network ir-
regularities and more efficient on reducing traffic overhead.
Simulation results show that, compared with existing ap-
proaches, VVD achieves outstanding performance with sparse
networks, irregular links and those networks of multiple void
areas.

Acknowledgements

This work is supported in part by NSFC/RGC Joint Re-
search Scheme N_HKUST602/08, National Basic Research
Program of China (973 Program) under Grant No.
2011CB302705, China NSFC Grants 60933011, the National
Science and Technology Major Project of China under Grant
No. 2009ZX03006-001-01, and the Science and Technology
Planning Project of Guangdong Province, China under Grant
No. 2009A080207002.

References

[1] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. H. Lai, "Deploying wire-
less sensors to achieve both coverage and connectivity," in Proceed-
ings of ACM MobiHoc, 2006.

[2] L. Barrire, P. Fraigniaud, and L. Narayanan, "Robust Position-based
Routing in Wireless Ad Hoc Networks with Unstable Transmission
Ranges," in Proceedings of ACM DIAL M, 2001.

[3] J. Bruck, J. Gao, and A. A. Jiang, "MAP: Medial Axis Based Geo-
metric Routing in Sensor Network," in Proceedings of ACM Mobi-
Com, 2005.

[4] S. Dulman, A. Baggio, P. Havinga, and K. Langendoen, "A Geomet-
ric Perspective on Localization," in Proceedings of ACM MELT,
2008.

[5] Q. Fang, J. Gao, and L. J. Guibas, "Locating and Bypassing Routing
Holes in Sensor Networks," in Proceedings of IEEE INFOCOM,
2004.

[6] Q. Fang, J. Liu, L. Guibas, and F. Zhao, "RoamHBA: Maintaining
Group Connectivity in Sensor Networks," in Proceedings of
IEEE/ACM IPSN, 2004.

[7] S. P. Fekete, A. Kroller, D. Pfister, S. Fischer, and C. Buschmann,
"Neighbor-based Topology Recognition in Sensor Networks," in
Proceedings of ALGOSENSORS, 2004.

[8] C. Frank and K. Romer, "Algorithms for Generic Role Assignment
in Wireless Sensor Networks," in Proceedings of ACM SenSys,
2005.

[9] S. Funke, "Topological Hole Detection in Wireless Sensor Networks
and its Applications," in Proceedings of Joint Workshop on Founda-
tions of Mobile Computing, 2005.

[10] S. Funke and C. Klein, "Hole detection or: "how much geometry
hides in connectivity?"" in Proceedings of ACM SCG, 2006.

[11] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher,
"Range-Free Localization Schemes in Large Scale Sensor Net-
works," in Proceedings of ACM MobiCom, 2003.

[12] A. Kroller, S. P. Fekete, D. Pfisterer, and S. Fischer, "Deterministic
Boundary Recognition and Topology Extraction for Large Sensor
Networks," in Proceedings of ACM-SIAM SODA, 2006.

[13] M. Li and Y. Liu, "Rendered Path: Range-Free Localization in Ani-
sotropic Sensor Networks with Holes," IEEE/ACM Transactions on
Networking, vol. 18, pp. 320-332, 2010.

[14] Y. Liu, Z. Yang, X. Wang, and L. Jian, "Location, Localization, and
Localizability," Journal of Computer Science and Technology, pp.
274-297, 2010.

[15] O. Saukh, R. Sauter, M. Gauger, P. J. Marron, and K. Rothermel,
"On Boundary Recognition without Location Information in Wire-
less Sensor Networks," in Proceedings of IEEE/ACM IPSN, 2008.

[16] S. Schmid and R. Wattenhofer, "Algorithmic Models for Sensor
Networks," in Proceedings of IEEE IPDPS, 2006.

[17] D. Son, B. Krishnamachari, and J. Heidemann, "Experimental
Analysis of Concurrent Packet Transmission in Low-Power Wire-
less Networks," in Proceedings of ACM SenSys, 2006.

[18] I. Stojmenovic, A. Nayak, and J. Kuruvila, "Design Guidelines for
Routing Protocols in Ad Hoc and Sensor Networks with a Realistic
Physical Layer," IEEE Communications Magazine, vol. 43, pp. 101
- 106, 2005.

[19] Y. Wang, J. Gao, and J. S. B. Mitchell, "Boundary Recognition in
Sensor Networks by Topological Methods," in Proceedings of ACM
MobiCom, 2006.

[20] Z. Yang and Y. Liu, "Quality of Trilateration: Confidence based
Iterative Localization," IEEE Transactions on Parallel and Distrib-
uted Systems, vol. 21, pp. 631-640, 2010.

145

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

