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Abstract—Given the fact that WiFi-based sensing can be
realized through the reuse of WiFi communication facilities and
frequency bands, integrated sensing and communication (ISAC)
emerges as a pivotal direction for future WiFi standards, such as
IEEE 802.11bf. Traditional WiFi sensing systems extract channel
state information (CSI) from exclusive WiFi packets to quantify
the characteristics of the sensing target. This poses challenges
for existing WiFi systems originally designed for communica-
tion purposes, as it demands high-quality and sufficient CSI
measurements. In this paper, we propose SenCom as a step
towards forward-compatible ISAC solution. SenCom extracts
CSI from general WiFi packets, enabling CSI calibration across
different WiFi communication modes and delivering quality CSI
measurements for upper-layer sensing applications. A fitting-
resampling scheme and an incentive strategy are also developed.
The former one is to obtain evenly sampled CSI with consistent
dimensionality and the latter one is to guarantee sufficient CSI
measurements over time. We build a prototype of SenCom and
conduct extensive experiments involving 15 participants. The
results show that SenCom’s competence for a variety of sensing
tasks while making minimal compromises to WiFi communica-
tion performance.

Index Terms—Integrated sensing and communication, WiFi
sensing, channel state information, forward compatibility

I. INTRODUCTION

Recent studies [2]–[4] have demonstrated the feasibility
of non-intrusive sensing using a wide range of wireless ra-
dio frequency (RF) signals, with WiFi standing out due to
its widespread deployment [5]. Unfortunately, most existing
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WiFi sensing approaches are dependent on specific radio
configurations and specialized purposed probing packets for
detecting channel variations. This approach disrupts WiFi’s
primary function as a means of communication. In this paper,
we explore a system solution to such a problem - enabling
forward-compatible integrated sensing and communication
(ISAC) [6]–[8] in practice without compromising the state-
of-the-art communication capabilities of WiFi.

Rather than seeking additional spectrum usage or relying
on exclusive transmissions for sensing (Fig. 1(a)), our solution
maximizes the utilization of existing in-band WiFi communi-
cation traffic without introducing extra overhead. Such a goal
is hard to achieve as high-performance WiFi sensing demands
quality and sufficiency in channel state information (CSI), pre-
senting the following challenges. (i) Advanced WiFi standards
like 802.11n/ac/ax [9] supports multiple-input multiple-output
(MIMO) communications [10], alternating between diversity
and multiplexing modes. These two modes possess different
mapping matrices for different numbers of data streams. The
measured CSI cannot be directly translated to channel coef-
ficients for sensing the object dynamics without knowing the
specific MIMO setting. (ii) WiFi’s use of beamforming [11]
to enhance signals directed at communication clients may
weaken signals reflected from the sensing target, resulting in a
low sensing signal-to-noise ratio (SNR) that degrades sensing
performance. (iii) General WiFi transmissions are unevenly
distributed in time due to varying communication demands,
leading to insufficient packets to probe the channel at times,
disabling the sensing. As demonstrated by our experiments
in Section VI, directly using non-unified CSI measured from
communication packets (the first and second challenges) would
lead to 15% accuracy reduction for activity recognition, while
using communication packets only (the third challenge) is
often not enough for sensing at all, e.g., when the client is
running online games.

In this paper, we address the above challenges and propose
SenCom, to the best of our knowledge, the first practical
ISAC system that enables seamless WiFi sensing with general
communication traffic. As shown in Fig. 1(b), SenCom can
be implemented on one normal WiFi client and sniff the
ongoing WiFi transmissions between the WiFi AP and clients
(including the client with SenCom). SenCom measures the CSI
from all packets transmitted by the WiFi AP, making full
use of the existing communication packets, and derives the
environment dynamics for various sensing tasks based on that.
In such a way, there is no disruption to any of the ongoing
WiFi communication flows between the AP and clients.
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Fig. 1. Comparing traditional WiFi sensing with our ISAC solution-SenCom.

Specifically, we conduct a comprehensive analysis of vari-
ous MIMO transmission modes, culminating in the derivation
of a transformation formula. This formula can transform the
collected CSI data from different transmission modes into a
unified form. As a result, agnostic sensing applications become
achievable using this unified CSI without the knowledge of
the specific configurations of each WiFi transmission flow
(which is WiFi AP/client-specific and often unknown to the
sniffers). We also introduce a compensation formula that
enables the reconstruction of potential beamforming steering
matrices when considering two feedback types. Based on its
inverse, we can suppress the impact of beamforming. In order
to address the temporal irregularity of WiFi transmissions,
we introduce a fitting-resampling scheme. This scheme is
designed to obtain CSI samples with consistent dimensionality,
facilitating the mapping and model training of upper-layer
sensing applications. Furthermore, we delve into the trade-
off between the sensing and communication performance and
inject active probing packets (i.e., incentive packets) when
the normal WiFi traffic is inadequate, while ensuring minimal
disruption to communication.

We implement a prototype of SenCom with commercial off-
the-shelf (COTS) 802.11ac WiFi devices and conduct real-
world experiments involving 15 human participants across
three diverse test environments. The experimental results high-
light SenCom’s ability to effectively support various sensing
tasks with quality and sufficient CSI. Post-implementation
of SenCom, we observed only a modest ∼2% reduction in
throughput and delay of the communication system. Further-
more, reproducing four existing WiFi sensing applications
demonstrates 94.4% accuracy for activity recognition, an error
rate of 1.6% for step counting, 97.6% accuracy for person
identification, and a rate error lower than 2 beats per minute
for respiration monitoring when applying SenCom to support
ISAC. In summary, our contributions are as follows:

• We propose SenCom, the first practical WiFi ISAC system
designed for seamless integration into existing commu-
nication systems. SenCom can be implemented without
modifying any existing WiFi communication standards,
devices, or settings.

• SenCom incorporates a CSI calibration method, featuring
a transformation formula to unify CSI data and a compen-
sation formula to mitigate the effects of beamforming. To
supply sufficient CSI, SenCom adopts a fitting-resampling
scheme to support upper-layer sensing applications, as
well as an incentive strategy to elicit compensation prob-

TABLE I
COMPARING SenCom WITH WU ET AL. [12] AND HU ET AL. [13].

Solution Robustness
to MIMO

Robustness
to beamforming

Robustness to
CSI deficiency

Wu et al. [12] × ✓ ×
Hu et al. [13] × × ✓

SenCom ✓ ✓ ✓

ing packets where a closed-form incentive rate is derived
to balance sensing and communication performance.

• We build a prototype of SenCom and conduct real-world
experiments on it. Our empirical findings confirm that
SenCom significantly enhances both the quantity and
quality of CSI collected in a communication context, all
while having minimal impact on communication through-
put and latency. Through case studies on real-world sens-
ing applications, SenCom demonstrates its practicability
and reliability across a variety of sensing tasks.

The rest of the paper is organized as follows. Section II
summarizes the related work. Section III presents problem
statement and the system overview of SenCom. Section IV
details the key techniques in CSI calibration. In Section V,
we elaborate on the key techniques in CSI fitting, resampling,
and packet incentive. Section VI describes the experimental
evaluation results. This paper is concluded in Section VII.

II. RELATED WORK

ISAC: Existing ISAC research mainly focuses on devising a
special PHY design that is suitable for both communication
and sensing. Most existing works require amendments to
existing communication systems or protocols. There are two
leading solutions: orthogonal resource allocation [14], [15]
and unified waveform design [16]–[18]. Besides, there is a
future WiFi standard on sensing, namely 802.11bf, which
focuses on designing a new WLAN sensing procedure. The
above-mentioned designs require modifications to existing
communication systems and are not compatible with most
existing WiFi APs and devices. Recently, Wu et al. [12]
and Hu et al. [13] propose two forward-compatible ISAC
solutions. But, they use beamforming feedback packets for
sensing and address part of the impact of communication
configurations on sensing, i.e., limited beamforming feedback
and intermittent packets, respectively. In this work, we propose
SenCom to achieve fully forward-compatible ISAC scheme
that uses all communication packets for sensing and solves the
issues caused by the alternation of two modes, beamforming,
and intermittent traffic. To show the advantages of SenCom,
we compare it with the two most related works [12], [13]
in terms of the robustness against MIMO, beamforming, and
packet deficiency, as shown in Tab. I. One can clearly see that
SenCom can adapt to all kinds of communication settings and
achieve ISAC in existing WiFi systems.
WiFi-based sensing: WiFi has been exploited for various
sensing purposes. Existing WiFi-based sensing applications
fall into two categories according to the sensing goals: de-
tection/recognition and estimation [6]. Therein, detection and
recognition are binary and multi-class classification tasks,
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Fig. 2. Signal transmission procedure. ‘TS’ represents the training symbol vector.

respectively. The second category belongs to the measure-
ment task. Detection systems usually aim at achieving binary
sensing tasks, such as human presence detection [13], [19],
fall detection [20], and motion detection [21]–[23]. Recog-
nition systems are generally utilized to accomplish multi-
class prediction tasks, such as activity recognition [5], gesture
recognition [2], user identification [24], and so on. In an
estimation system, users can acquire quantitative feedback,
such as location [25] and breathing rate [26]. Although a lot
of previous works reuse WiFi frequency band and COTS WiFi
devices to implement the sensing systems, none of them can
directly work with normal WiFi 802.11ac/ax data traffic due
to the impact of communication-oriented designs like MIMO
and beamforming. In this paper, we design SenCom to enable
sensing with such WiFi communication context. Particularly,
the design of SenCom is independent of any specific sensing
task. It helps an arbitrary sensing application in acquiring
quality and sufficient CSI data with little impact on ongoing
normal WiFi communication.

III. CHALLENGE AND SYSTEM OVERVIEW

A. Problem and Challenge

In this part, we elucidate the challenges in achieving our
proposal, forward-compatible ISAC, in a practical communi-
cation context. We start by reviewing the data transmission
procedure of the 802.11ac Wave 1 standard [27], which is
widely prevalent in current WiFi systems. This procedure
utilizes the MIMO technique to enable simultaneous trans-
missions of multiple data streams (i.e., space-time streams
(STSs) [27]) between the WiFi AP and the client, as shown
in Fig. 2. To eliminate the unknown channel effect and ensure
correct decoding at the client, each data stream sent by the AP
has its own training symbol vector, which is instrumental for
measuring CSI. All training symbol vectors of NSTS STSs
form a training symbol matrix. CSI is passively measured
by a monitor, like SenCom, based on the sniffed training
symbol matrix. Specifically, before being transmitted by the
antennas, the training symbol matrix undergoes three essential
processes. (i) When beamforming and directional transmission
are needed, the training symbol matrix first passes the steering
matrix. (ii) The number of data streams may differ from that
of transmitting antennas. Thus, a mapping matrix is necessary
to map the NSTS data streams to NTX transmitting chains
for subsequent transmission. (iii) To avoid inter-code inter-
ference, orthogonal frequency division multiplexing (OFDM)

modulation [28] is employed, dividing wireless bandwidth
into K subcarriers for parallel transmission. Let Sk,NSTS

∈
CNSTS×NSTS be the training symbol matrix of NSTS STSs for
subcarrier k, with each row of Sk,NSTS

corresponding to the
training symbol vector for each data stream and C representing
the set of complex numbers. The final transmitted signal at the
WiFi AP for subcarrier k can be expressed by:

Xk,NSTS
= Qk,NSTS

V k,NSTS
Sk,NSTS

, (1)

where Qk,NSTS
∈ CNTX×NSTS and V k,NSTS

∈
CNSTS×NSTS are the mapping matrix and the steering matrix
for potential beamforming, respectively. When NSTS = 1,
the transmitter works in the diversity mode; otherwise, the
transmitter works in the multiplexing mode.

After undergoing the physical-world wireless channel, de-
noted by Hk ∈ CNRX×NTX for subcarrier k, and OFDM
demodulation, the signal measured at SenCom is:

Y k=HkXk,NSTS
+N0

= HkQk,NSTS
V k,NSTS

Sk,NSTS
+N0, (2)

where N0 ∈ CNRX×NSTS is the Gaussian white noise with
NRX being the number of the receiving antennas. As shown
in Fig. 2, CSI can be calculated from Y k at the monitor
with the public training symbol matrix. As the monitor lacks
awareness of the transmitting configurations at the AP side,
it perceives the received signal at each receiving antenna as
a superimposed signal, akin to a signal traversing a steered
wireless channel from a “virtual antenna”. The measured CSI
can be represented as follows:

Gk,NSTS
= HkQk,NSTS

V k,NSTS
. (3)

Gk,NSTS
characterizes the channel between the virtual an-

tennas and receiving antennas at the monitor. It is subject
to the influences of the MIMO and beamforming techniques,
which makes it distinct from the physical-world CSI Hk. The
latter characterizes the physical-world channel between the
transmitting antennas and receiving antennas.

Challenge 1-Qualified CSI. As the monitor passively sniffs
the WiFi traffic between the AP and clients, it operates without
knowledge of the MIMO and beamforming configurations
employed at the AP. This raises two problems. First, the
AP’s operation mode - diversity or multiplexing - depends
on the client’s demands, and this mode switching is unpre-
dictable for a passive monitor like SenCom. Consequently,
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Fig. 3. Architecture of SenCom.

the monitor lacks awareness of the operational mode of the
AP. Unfortunately, the CSI collected under different modes
differs even when the actual physical environment remains
unchanged (as indicated in Eq. 3). This divergence means that
a sensing model established under one mode cannot function
optimally under the other. Thus, the monitor remains agnostic
regarding which mode’s sensing model to use. Furthermore,
beamforming introduces directional transmission. This may
result in a weakened signal towards the sensing target and thus
impair the SNR of the collected CSI, hindering the derivation
of accurate sensing results. Our design has to compensate for
such an effect.
Challenge 2-Sufficient CSI. WiFi sensing relies on a suffi-
cient amount of CSI related to the sensing target. Traditional
WiFi sensing systems achieve this by configuring the AP to
send probing packets at regular and short time intervals [2]
(usually less than 20 ms). In the considered ISAC context,
however, the transmitter (e.g., AP) sends packets based only
on the communication requirements of the connected clients.
These clients may have sporadic downlink traffic needs, re-
sulting in unevenly distributed data transmissions that might
occasionally prove insufficient for sensing purposes. Our de-
sign has to adapt to practical WiFi systems, transform the
sampled CSI into the evenly-distributed one, and trigger extra
probing packets when necessary.

B. System Overview

As shown in Fig. 3, SenCom collects CSI of the wireless
channel from the AP by sniffing its transmissions to various
clients. SenCom’s operation unfolds in two main phases:
mapping establishment phase and sensing phase.

During mapping establishment phase, SenCom engages in
CSI pre-calibration and establishes a mapping relationship
between the CSI and the sensing objective. To accomplish
CSI calibration, SenCom must gather CSI data in two distinct
modes by accessing the AP. Subsequently, relying on the
collected CSI, SenCom derives a pivotal transformation matrix
that unifies the CSI. Following this, SenCom undertakes a
sequence of potential preprocessing steps, such as fitting-
resampling, on the calibrated CSI to facilitate upper-layer

applications. Applications can be realized by establishing
a mapping relationship (modeling-based, learning-based, or
hybrid [6]) connecting the CSI to the sensing objective.

In sensing phase, SenCom conducts sensing tasks using
the pre-established mapping relationship, while the incentive
strategy remains running to ensure an adequate CSI supply.
Specifically, SenCom first collects the CSI samples along with
feedback on beamforming from the clients. With the pre-
acquired transformation formula and a compensation formula
for suppressing the impact of beamforming, the collected CSI
samples can be calibrated into a unified form. The same
preprocessing techniques employed in the mapping estab-
lishment phase are then applied to the CSI samples. Given
that WiFi-based sensing can be either classification-driven or
measurement-driven, the pre-processed CSI data is fed into the
mapping relationship to perform classification or measurement
tasks.

IV. CSI CALIBRATION

This section shows a CSI calibration method for mitigating
the negative effects of particular communication designs, i.e.,
MIMO and beamforming, on the sensing performance.

A. CSI Transformation

Having multiple transmitting antennas allows the AP to use
either the diversity mode or multiplexing mode to achieve spe-
cific communication purposes. This presents the first challenge
outlined in Section I. In this part, we commence by revisiting
the experssion of CSI in Eq. 3 to better understand the origins
of this challenge. For the sake of clarity, we will take a two-
antenna AP as an example and consider that SenCom has one
receiving antenna. We will explore the disparities between the
CSI collected in the two modes and detail how to transform
the CSI from the multiplexing mode to that of the diversity
mode. Note that we do not take beamforming into account, as
that aspect will be addressed in the subsequent subsection.

1) CSI Discrepancy Between Two Modes: In the diversity
mode, there is only one data stream (NSTS = 1). It occurs
when the client has only one antenna or when stability is
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Fig. 4. CSI distribution under diversity mode is different from that under
multiplexing mode. Our calibration method can unify the CSI distribution.

prioritized over high throughput. Only one training symbol
sk is allocated to the data stream for subcarrier k, that is,
Sk,NSTS

in Fig. 2 becomes sk when NSTS = 1. Subsequently,
the training symbol is mapped into two transmitting chains
with a mapping matrix Qk,1 = [qk,1, qk,2]

T . The symbols
in these two transmitting chains are xk,1 = qk,1sk and
xk,2 = qk,2sk, respectively. After traversing the wireless
channel hk = [hk,1, hk,2] between the AP and SenCom, the
received signal at SenCom is yk. In this case, SenCom can only
‘see’ one virtual transmitting antenna rather than two real ones.
This limitation arises because the AP sends only one training
symbol, and the signals from the two real transmitting antennas
become superimposed. The measured CSI between the virtual
transmitting antenna and the receiving antenna is:

gk,1 = hkQk,1. (4)

In this mode, the physical-world CSI hk between the AP and
SenCom is transformed into gk,1.

In the multiplexing mode, the transmitting process is similar
to that in the diversity mode, with the key distinctions revolving
around the training symbol and mapping matrix. The multi-
plexing mode uses two training symbol vectors. Meanwhile,
the mapping matrix used in the multiplexing mode becomes:

Qk,2 =

[
qk,1,1 qk,1,2
qk,2,1 qk,2,2

]
.

Thus, in the multiplexing mode, after undergoing the wireless
channel, SenCom can ‘see’ two virtual transmitting antennas.
The measured CSI between the virtual transmitting antennas
and the receiving antenna is expressed as:

gk,2 = hkQk,2. (5)

Conclusion: As evidenced by Eq. 4 and 5, it is clear that
the CSI collected under different modes can exhibit variations
even when the environment remains constant. Notably, the
diversity mode yields one CSI stream, while the multiplexing
mode produces two streams. To visually illustrate such differ-
ences, we first collect two batches of CSI samples under these
two modes in a static environment. Then, we use the dimen-
sionality reduction algorithm t-SNE [29] to convert each CSI
sample into two-dimensional data. Fig. 4 depicts the resultant
CSI distributions, where the x-axis and y-axis correspond to
the two dimensions of the t-SNE results, respectively. It can
be seen that the CSI of the diversity mode is far from that
of the multiplexing mode. Meanwhile, the two CSI streams
of the multiplexing mode also scatter in different clusters.

These two modes demonstrate three distinct CSI distributions.
These differences present a challenge in establishing a single
mapping relationship that performs effectively in both modes.
A straightforward solution is to respectively establish three
different mapping relationships for the two modes, enabling
SenCom to choose the most suitable one based on the AP’s
operating mode. However, it would require direct communica-
tion and coordination between SenCom and the AP. Such direct
interaction would undermine our core objective of achieving
sensing without compromising communication performance.

2) CSI Transformation From Multiplexing to Diversity:
We seek to unify the CSI of the two modes into a single
distribution, such that only one mapping relationship is re-
quired for sensing. To accomplish this, there are two potential
ways: i) Extracting physical-world CSI from both the diversity
mode and the multiplexing mode. ii) Transforming the CSI
of the multiplexing mode into that of the diversity mode.
However, in the diversity mode, the physical world CSI hk

cannot be recovered from gk,1 via Eq. 4 due to infinite possible
combinations for hk. Consequently, the sole viable solution
is to transform the CSI from the multiplexing mode to the
diversity mode.

Such a transformation can be achieved in two steps: (i)
recovering the physical-world CSI from the multiplexing mode
by multiplying Q−1

k,2 in both sides of Eq. 5; (ii) transforming
the recovered CSI into the diversity mode using Eq. 4. We can
derive the transformation formula as:

gk,1 = gk,2P k, (6)

where P k ≜ Q−1
k,2Qk,1 serves as the transformation matrix

from the multiplexing mode to the diversity mode.
Now, the challenge shifts to how to obtain P k. In reality,

P k is unknown to SenCom and it cannot be derived through
straightforward theoretical calculations. To address this issue,
we heuristically take advantage of real CSI and propose an
optimization-based method for estimating P k. Specifically,
we first noticed that the CSI remains unchanged during the
coherence time [30]. Based on this property, as long as in
the coherence time, the CSI collected in the diversity mode
is consistent with that collected in the multiplexing mode.
This consistency presents an opportunity to estimate P k. In
particular, we place a two-antenna client (e.g., smartphone)
and SenCom near the AP to access and ‘ping’ the AP in
the coherence time, respectively. Since the AP works in the
multiplexing/diversity mode when communicating with the
client/SenCom, we can collect CSI samples of the two modes.
To enhance the accuracy of the estimated P k, we can collect
multiple sets of CSI samples in different environments. Let{
g
(i,1)
k,1 , g

(i,2)
k,2

}
and I represent the i-th CSI sample pair

and the total number of pairs, respectively. Since the CSI
is invariant within the coherence time, g

(i,2)
k,2 P k (from the

multiplexing mode) is theoretically equal to g
(i,1)
k,1 (from the

diversity mode). We can estimate P k by solving a least-

squares optimization problem: min
P k

∑
i

∣∣∣∣∣∣g(i,1)k,1 − g
(i,2)
k,2 P k

∣∣∣∣∣∣2.

Nonetheless, due to the phase error ∆γi introduced by
the receiver of SenCom and varied channel gain, g(i,1)k,1 , and
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g
(i,2)
k,2 P k are not perfectly identical. Based on the prior inves-

tigation [31], phase variation between two CSI samples during
the coherence time is caused by the uncertainty in packet
boundary detection and ∆γi follows a Gaussian distribution
with zero mean. Taking into account the phase error and varied
channel gain, we establish the following relationship between
the CSI samples from the two modes: αig

(i,1)
k,1 = g

(i,2)
k,2 P k,

where αi = |αi|ej∆γi and |αi| characterizes the variation of
channel gain with E

{
|αi|2

}
= 1. P k can be estimated by

min
αi,P k

∑
i

∣∣∣∣∣∣αig
(i,1)
k,1 − g

(i,2)
k,2 P k

∣∣∣∣∣∣2. However, directly solving

the problem will lead to αi = 0 and P k = 0. To avoid
this issue, we introduce a fractional form to prevent αi and
P k from being zero. Specifically, we introduce two auxiliary
variables P̂ k and α̂i, as

P̂ k = P k/P k(1, 1), (7)
α̂i = αi/P k(1, 1), (8)

where P k(1, 1) is the element located in the first row and
the first column of P k. Then, we have P̂ k(1, 1) = 1 and the
optimization problem can be reformulated as:

min
α̂i,

ˆP k

∑
i

∣∣∣∣∣∣α̂ig
(i,1)
k,1 − g

(i,2)
k,2 P̂ k

∣∣∣∣∣∣2 , (9a)

s.t. P̂ k(1, 1) = 1. (9b)

This problem is convex, as it is a quadratic optimization
problem, and can be solved using existing solvers such as
CVX [32]. Importantly, the optimal solution would not yield
zero since P̂ k(1, 1) is constrained to equal 1.

After obtaining the optimal solution to the problem in Eq. 9,
we need to obtain Pk(1, 1) for calculating P k. Recalling that
the channel gain variation follows E

{
|αi|2

}
= 1, and thus we

have
E
{∣∣∣α̂iP̂ k(1, 1)

∣∣∣2} = 1. (10)

Then, Pk(1, 1) can be estimated as:

Pk(1, 1) =

√
1

I

∑I
i=1 |α̂i|2e−j 1

I

∑I
i=1 ∠α̂i , (11)

where ∠α̂i represents the phase of α̂i. Ultimately, the trans-
formation matrix P k can be estimated by P k = Pk(1, 1)P̂ k.
In this way, all the collected CSI can be unified into one
mode/distribution using estimated P k. As shown in Fig. 4,
the CSI transformed from the multiplexing mode and that of
the diversity mode lies in the same cluster. This demonstrates
that they have the same distribution and our transformation is
very effective. Note that, since Qk,1 and Qk,2 are independent
of the wireless channel and only related to the AP, the trans-
formation matrix P k only depends on the AP also. Therefore,
P k can be permanently used across time and environments
once it was estimated.

B. Compensation for Beamforming

Principle of beamforming. This part focuses on beamform-
ing, which is employed in WiFi 802.11ac/ax to enhance
communication throughput. In the transmission procedure with
beamforming, the AP first sends a null data packet (NDP) to

the client before data transmission. Then, the client measures
the CSI, denoted by Hc

k for subcarrier k, and provides
feedback to the AP. The AP uses this feedback to generate a
steering matrix V k,NSTS

to enable the directional transmission
towards the client. However, when viewed from the perspective
of SenCom, the signal’s strength passing through the sensing
area may become much weaker compared to other regions,
resulting in a decrease in the SNR of the CSI. Thus, we need
to mitigate the impact of beamforming, as described below.
Suppressing the impact of beamforming. According to
Eq. 3, we need to eliminate the steering matrix V k,NSTS

in
the collected CSI by the following compensation formula:

Gk,NSTS
V −1

k,NSTS
= HkQk,NSTS

. (12)

We cannot directly apply this formula because the steering
matrix V k,NSTS

is unknown to a passive monitor like SenCom.
Fortunately, SenCom can listen to the feedback of NDP as
it is used for creating V k,NSTS

. Here are two feedback
types: uncompressed beamforming feedback and compressed
beamforming feedback. Note that We can distinguish these
feedback types based on the control field of the feedback.

Under uncompressed beamforming feedback, the measured
CSI at the client (i.e., Hc

k) is directly fed back to the AP.
Here, we mainly consider the case where the sniffed packets
are from the clients without implementing SenCom, as the
obtained Hc

k does not describe the real channel between the
AP and SenCom. If the sniffed packets are from the client
that SenCom is implemented on, the obtained Hc

k can be
directly used for sensing and there is no need to listen to
the feedback of NDP. Without loss of generality, for the
cases where the sniffed packets are from the clients without
implementing SenCom, V k,NSTS

can be derived from Hc
k

suppose that we know the structuring method of the adopted
beamforming scheme. Here, we assume that the AP adopts
zero-forcing (ZF) beamforming [33], as it is one of the most
popular ones [34]. Then, after sniffing the CSI measured by
the client (i.e., Hc

k), the steering matrix can be calculated
at SenCom by: V k,NSTS

= ((Hc
k)

HHc
k)

−1(Hc
k)

H , where
(·)H represents the operation of conjugate transpose. Under the
premise that SenCom has the knowledge of the beamforming
strategy employed by the AP, the above compensation method
can be easily extended to other beamforming schemes by
simply replacing the steering matrix. For example, for the
singular value decomposition (SVD) beamforming [28], the
steering matrix can be given by V k with the SVD of the CSI
measured by the client (i.e., Hc

k) being Hc
k = UkΣkV k. This

approach provides SenCom with a mechanism to estimate the
steering matrix even when the feedback comes in the form of
uncompressed beamforming feedback.

Under compressed beamforming feedback, the client first
performs SVD as Hc

k = UkΣkV k after measuring the CSI,
and then feeds V k back to the AP. The AP directly utilizes
V k as the steering matrix V k,NSTS

to achieve beamforming,
which means V k,NSTS

= V k. Therefore, the sniffed feedback
can be directly used to recover V k,NSTS

.
After obtaining V k,NSTS

under two feedback types, Sen-
Com can effectively suppress the impact of beamforming with
the compensation formula (Eq. 12).
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(b) Fitted CSI amplitude/phase curves
of two subcarriers.

Fig. 5. Cubic spline fitting results.

V. UNIFYING CSI SAMPLING

In traditional WiFi sensing, packets are transmitted con-
sistently at evenly-spaced intervals. This practice ensures a
consistent dimensionality of sampled CSI, which is crucial
for upper-layer sensing applications. However, maintaining
such uniformity is challenging due to variable downlink data
demands in communication traffic. To address this issue, we
devise a fitting-resampling scheme aimed at preserving the
uniformity of CSI scatters in the time domain. In cases the
normal communication packets are insufficient, we propose an
incentive strategy to encourage the AP to send compensation
packets. In its design, we model the trade-off between the sens-
ing and communication performance, ensuring that SenCom
can acquire adequate packets without causing a significant
degradation in the communication.

A. Fitting and Resampling

When clients require high communication demands, Sen-
Com can successfully acquire sufficient packets for sensing.
Nevertheless, the distribution of communication packets over
time is not uniform, leading to variability in the number of
packets collected within a fixed-length time interval. This
fluctuation poses a challenge in ensuring that the input CSI
samples maintain consistent dimensionality, a critical require-
ment for many sensing systems’ upper-layer applications,
especially those employing learning models. For instance,
consider the WiFi-based sign language recognition system,
SignFi [35], which utilizes CSI amplitude with a default fixed
dimensionality of (3, 30, 200). Here, the 3×30 dimension cor-
responds to the number of subcarriers, and the last dimension
represents the collection of 200 packets evenly for each CSI
sample. To address this issue, we propose to fit the variation
trace of each subcarrier in the CSI sample, and subsequently
resample the fitted function at an equal interval. Specifically,
we opt to perform cubic spline fitting, because we observed
that the variation trace of each subcarrier is akin to the splicing
of multiple cubic functions in the time domain (i.e., cubic
function in each small time window). The fitting results of two
subcarriers are shown in Fig. 5. It can be observed that the fit-
ted curves (Fig. 5(b)) closely resemble the real variation traces
of the subcarriers (Fig. 5(a)). Therefore, cubic spline curves
can precisely fit the sensing information recorded by CSI.
Subsequently, we sample these spline functions at uniform

Fig. 6. Neural network-based traffic predictor.

intervals, allowing SenCom to maintain a consistent sampling
rate and provide dimensionality-consistent CSI samples for
upper-layer applications.

B. Incentive Strategy

In scenarios where clients exhibit no communication de-
mands, there is no ongoing packet for SenCom to sample the
CSI. To tackle this issue, we develop an incentive strategy
based on queuing theory [36]. This strategy enables SenCom
to transition between two states in order to acquire sufficient
incentive packets (i.e., probing packets) while minimizing any
substantial impact on communication performance.
State definition. We assume that the arrival process of com-
munication packets at the AP follows the Poisson process [37]
with a rate λc[t] (in packets/s) at time index t. Let F re (in
packets/s) be the required sensing frequency, i.e., the required
CSI sampling rate. By comparing F re with λc[t], we have
the following two states within the incentive strategy. (i)
Silent state: it refers to the state when λc[t] ≥ F re. In this
state, the AP does not need to transmit incentive packets and
SenCom solely measures CSI from communication packets.
(ii) Incentive state: it refers to the state when λc[t] < F re.
In this state, SenCom encourages the AP to transmit incentive
packets with an incentive rate λi[t] by ‘pinging’ the AP and
collects CSI simultaneously.
Traffic prediction. To conduct state transition at the most
appropriate time point, we can opt to predict the upcoming
network traffic based on historical traffic information [38].
Specifically, we can use supervised learning technique to train
a neural network-based traffic predictor. As shown in Fig. 6,
the predictor is composed of a convolutional layer, a long
short-term memory (LSTM) component, and a fully-connected
(FC) layer. The convolutional layer performs one-dimensional
convolution along the historical traffic sequence to extract local
temporal features. The LSTM component has two hidden lay-
ers. It can capture the long-term dependence in the sequence
to further improve the prediction ability. The FC layer is
responsible for mapping the extracted features to future traffic
information. An input traffic sequence can be denoted as:
{xt1 , xt2 , xti , · · · , xtm}. xti is the number of packets trans-
mitted within [ti−1, ti] and is given by xti = λc[ti](ti− ti−1).
Each traffic sequence is annotated/labeled by the so-called
future packet number, i.e., the number of packets transmitted
within [tm, tm+1]. After training, the neural network is able
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to predict the unknown upcoming traffic information (i.e.,
xtm+1 ) based on the real previous traffic measurements. The
parameters in the predictor can be optimized by minimizing
the root mean-square logarithmic error (RMSLE) [39]:

RMSLE =

√√√√ 1

n

n∑
i=1

(log(yi′ + 1)− (log(yi + 1))2, (13)

where n is the number of training traffic sequences, yi
′ is

the predicted packet number, and yi is the ground truth. We
can use Adam optimizer to update parameters. To collect
training data, users can implement SenCom in the target
environment for a period of time to monitor the traffic at
first. Empirically, 8600 pieces of data are sufficient for traffic
predictor training [38]. To make the traffic predictor adapt to
a new environment without introducing huge data collection
overhead, SenCom can optimize it with a small training set
collected in the new environment with transfer learning [40],
where only the last fully-connected layer needs to be fine-
tuned.

Incorporating communication loss. Moving forward, our
primary concern lies in evaluating the performance during the
incentive state, as transmitting incentive packets can poten-
tially impact communication performance. We aim to ensure
that ongoing communication traffic remains unaffected when
we inject additional probing packets in the incentive state. As
demonstrated by prior studies [14], [41], [42], the sensing
performance is positively related to the CSI sampling rate
since a higher sampling rate provides more information about
the sensing target, thereby improving the sensing performance.
Meanwhile, CSI is measured from the packets transmitted by
the WiFi AP, and there are two types of packets, i.e., the
communication packet with the arrival rate being λc[t] and the
incentive packets with the arrival rate being λi[t]. Thus, the
total number of packets transmitted by the AP per unit time is
λi[t] + λc[t], and the number of CSI samples measured from
these packets per unit time (i.e., CSI sampling rate) at the
SenCom is also λi[t] + λc[t]. Consequently, the sensing per-
formance can be represented by λc[t] + λi[t]. Meanwhile, the
communication performance can be analyzed using queueing
theory. As we assume that the arrival of packets is Markovian
(modeled as a Poisson process), the transmission latency (i.e.,
service time) has a General distribution, the packet queue at
one Wi-Fi AP can be regarded as a M/G/1 queue [36]. The
communication latency without incentive packets is given by:

τ c[t] =
λc[t]E

{
W 2
}

2 (1− λc[t]E {W})
+ E {W} . (14)

Here, W represents the transmission latency and E {·} denotes
the expectation operation. With λc[t]E {W} < 1, every packet
is successfully delivered, and the corresponding throughput is
the product of the rate λc[t] and the data size per packet. In
contrast, when incentive packets are introduced, the commu-
nication latency becomes:

τ c,i[t] =

(
λc[t] + λi[t]

)
E
{
W 2
}

2 (1− (λc[t] + λi[t])E {W})
+ E {W} . (15)

Silent	state
Incentive
state

Initialization

①

②

③

④

Fig. 7. Incentive strategy.

Furthermore, when
(
λc[t] + λi[t]

)
E {W} < 1, the throughput

remains unchanged. Therefore, our primary focus lies on the
latency loss, as ∆τ [t] = τ c,i[t]− τ c[t].
Balancing sensing and communication. To enable efficient
sensing without compromising communication, we formulate
the following optimization problem:

max
λi[t]

β
(
λc[t] + λi[t]

)
− (1− β)∆τ [t], (16a)

s.t.
(
λc[t] + λi[t]

)
E {W} ≤ 1− ϵ, (16b)

λi[t] ≥ 0, (16c)

where β denotes the weight and ϵ > 0 denotes the tolerance.
The objective function in Eq. 16a describes the trade-off
between sensing performance and communication latency.
The constraint in Eq. 16b ensures that the communication
throughput remains unaffected by the presence of incentive
packets. It is easy to prove the convexity of the above problem
and the corresponding optimal solution is given by:

λi,⋆[t]=

[
1

E {W}

(
1−

√
1−β

2β
E {W 2}

)
−λc[t]

] 1−ϵ
E{W}−λc[t]

0

,

(17)
where [x]BA = min{B,max{x,A}}. The additional details can
be found in Appendix A. From Eq. 17, it is evident that the
incentive rate λi[t] is influenced by β. If we prefer better
sensing performance than less communication loss, we can
empirically set a high β to get a large incentive rate.
Overall view. The optimal incentive rate in the incentive state
is now clear. As shown in Fig. 7, the incentive strategy contains
two states, and the transition conditions between the two states
are determined by the arrival rate of communication packets
λc[t] and the required sensing frequency F re. If λc[t] ≥ F re,
the subsequent state is the silent state; otherwise, the next state
is the incentive state. In the silent state, SenCom acquires CSI
by passively monitoring communication packets and driving
the AP to transmit incentive packets with rate λi[t] given in
Eq. 17. This design effectively addresses the issue of CSI
insufficiency while keeping communication loss very low.

VI. EVALUATION

This section presents the real-world implementation and
details the performance of SenCom in terms of sensing and
communication.

A. Implementation

As shown in Fig. 8, we implement SenCom on a standalone
sensing client comprising a CSI monitor, a packet monitor,
and an intelligent unit. Not using an off-the-shelf client to
embark SenCom is indeed an engineering compromise. Even
though most existing WiFi network interface cards (NICs)
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Fig. 8. Prototype of SenCom.

AP Target SenCom Laptop Phone Desktop computer

(a) Lab (b) Home (c) Office

Fig. 9. Three environments for SenCom evaluation.

on the clients are able to sniff packets and measure the
CSI, the NIC manufacturers do not provide corresponding
permissions as these abilities are useless for upper-layer non-
sensing applications. Nonetheless, it is noteworthy that NICs
are technically capable of performing all the functions required
by SenCom, and it is technically trivial to modify SenCom to
work with a single WiFi NIC should the CSI information is
internally accessible from the NIC. We believe that our work
will encourage manufacturers to open the interfaces for these
abilities. In SenCom prototype, the CSI monitor measures CSI
from received packets, while the packet monitor is responsible
for receiving the feedback of beamforming. The intelligent
unit wirelessly connects to an AP and performs incentive
strategy, CSI calibration, fitting, resampling, and finally gets
the sensing result. More specifically, we implement SenCom
on a Raspberry Pi 4B connected to a TP-LINK WDN5200H
(a Wireless USB WiFi Adapter) and an ASUS RT-AC86U
Router. The Raspberry Pi 4B works as the intelligent unit,
and the TP-LINK WDN5200H is configured in the monitor
mode working as the packet monitor. The ASUS RT-AC86U
Router installed with the Nexmon CSI tool [43] is used as the
CSI monitor. Note that we have modified Nexmon CSI tool
so that it can distinguish whether beamforming is utilized in
the packet while logging CSI from the received packet.

We conduct experiments in three different environments (a
lab, a home, and an office) as shown in Fig. 9. To mimic a real
communication scenario, a Mi Router Mini and three clients
are included. The router works as an AP with a bandwidth of
20 MHz. The clients include a laptop with a one-antenna wire-
less adapter (TP-LINK WDN5200H), a phone (Google Pixel
4) with two antennas, and a desktop computer with a three-
antenna network interface card (TP-LINK TL-WDN7280). In
default communication context, the Google Pixel 4 phone
is connected to the AP and plays online videos. Moreover,
to show the performance of SenCom, we adopt a baseline,
i.e., traditional Active sensing systems. In the experiments of
Active sensing, we also use the WiFi AP as the transmitter
and the client equipped with SenCom as the receiver but there
is no other client. The WiFi AP transmits packets to the client
without beamforming and communication mode alternation
under a fixed sensing packet rate, so that there is no influence
on sensing performance from communication settings.

We focus on the standard of 802.11ac Wave 1 since it is
one of the most pervasive WiFi standards in existing WiFi
devices. In this standard, OFDM, MIMO, packet aggregation,
beamforming, and other techniques are adopted to enhance
channel efficiency. Our work can also be easily extended to
the subsequent WiFi standards (i.e., 802.11ac Wave 2 and

802.11ax) and 4G/5G standard, where orthogonal frequency
division multiple access (OFDMA) and multi-user multiple-
input multiple-output (MU-MIMO) are adopted for high com-
munication performance. With the OFDMA, the AP can al-
locate different subcarriers to different users for simultaneous
transmission. OFDMA does not affect sensing performance
as it does not influence the collected CSI at SenCom. As for
the MU-MIMO, it is an extended version of the beamforming
mentioned above and the steering matrix is constructed for
multi-user simultaneous transmission by sniffing the feedback
of NDP. Therefore, the proposed CSI calibration method for
beamforming can be easily extended to deal with the impact
brought by MU-MIMO as well. Besides, it is well known
that WiFi signals are environment-dependent. The sensing
model trained over the data collected in one environment
may perform inadequately in another. Fortunately, previous
studies [5], [44] have proposed lots of solutions that can be
directly integrated into the upper-layer applications of Sen-
Com. Taking environment-independent activity recognition as
an example, users can first collect WiFi signals from multiple
environments via SenCom. Then, an adversarial neural net-
work can be trained over these signals to extract environment-
independent activity features. Any classifier trained with such
features will possess the ability of cross-environment activity
recognition [5]. In addition, users can also directly extract
Doppler frequency shift (DFS) from the WiFi signals collected
by SenCom. As DFS is only activity-specific, it can be lever-
aged to train an environment-independent activity recognition
model [44].

B. Sensing Performance
In this part, we measure the sensing performance of Sen-

Com. We conduct two types of experiments to verify the
effectiveness of the CSI calibration and incentive strategy,
respectively. These experiments inspect both the quality and
quantity of the CSI collected at SenCom.

1) Experiment Setup and Metric: Experiment setup: To
test the performance of the CSI calibration, we collect the CSI
samples during the coherence time and compare the calibrated
CSI of NSTS ≥ 2 with the collected CSI of NSTS = 1.
To test the performance of the incentive strategy, we expose
SenCom to the real WiFi communication environment and
perform the incentive strategy. We adopt two baseline schemes
for comparison: traditional WiFi sensing (Active), and passive
CSI collection without calibration and incentive (Passive). In
theory, Active sensing can achieve the best sensing perfor-
mance. Over 20,000 CSI samples are collected during the
experimental evaluation.
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Metrics: For the CSI calibration, we adopt dynamic time
warping (DTW) [45] to measure the CSI difference between
the calibrated CSI of NSTS ≥ 2 and the collected CSI of
NSTS = 1. It seeks the temporal alignment that minimizes
Euclidean distance between aligned series and the CSI differ-
ence is defined as the minimal Euclidean distance. A lower CSI
difference indicates lower deviations between the measured
CSI from different modes, i.e., better performance of CSI
calibration. All CSI samples are normalized to eliminate the
effect of variation of channel gain. For the incentive strategy,
we adopt fill rate to quantify its performance, which is defined
as the probability of meeting the required CSI sampling rate.
It is calculated as the ratio of the number of tests that meet
the such requirement to the number of all tests. The time
window of each test is set to 0.3 s. Although the expected
CSI sampling rate is 100 packets/s, the sensing requirement
is set as 95 packets/s since there would be a loss of packets
even in active sensing.

2) Results: Effectiveness of CSI calibration: The cumu-
lative distribution function (CDF) of the CSI difference for
the three schemes is shown in Fig. 10. It can be seen that the
CSI difference of Passive sensing is much higher than that of
Active sensing, which indicates the low CSI quality issue due
to the alternation of WiFi communication modes. By using
the proposed CSI calibration method, the CSI difference of
SenCom is greatly reduced to the level of Active sensing,
without the need for active communication or coordination
with the AP. Further, we show the median of the CSI difference
with different client’s antenna numbers in Fig. 11. The CSI
difference of SenCom reaches that of Active sensing, which
demonstrates that the CSI calibration can improve the quality
of CSI. Besides, the CSI differences of the three schemes
are almost the same when the antenna number is 1 because
all packets are in the same communication mode. We also
show the median of the CSI difference in three environments
in Fig. 12. It can be found that the performance of the CSI

calibration is not affected by the environment.

Effectiveness of incentive strategy: The CDF of CSI
sampling rate is shown in Fig. 13. It can be found that the
CSI sampling rate of Active sensing is stable, that is, about
100 packets/s all the time. On the contrary, when the client is
playing an online video, the probability that the CSI sampling
rate is higher than 100 packets/s is around 30% and the CSI
sampling rate is less than 40 packets/s in most cases, which
cannot satisfy the sensing requirement at all times and may
lead to the missing of key sensing information. It can be ob-
served that the CSI sampling rate tends to exceed 100 packets/s
with our proposed incentive strategy. In practical daily life,
however, people may perform a variety of tasks on the Internet,
such as visiting websites and playing online games. The fill
rate for four communication tasks (namely video streaming,
webpage surfing, online gaming, and download) are shown in
Fig. 14. SenCom gives almost the same performance as that
of Active sensing under different communication tasks, which
demonstrates its effectiveness. The fill rate approaches 100%
for the task of download as its communication demands are
frequent and stable. Meanwhile, the medians of CSI sampling
rate for the four communication tasks are 20.0 packets/s, 13.3
packets/s, 30.0 packets/s, and 503.3 packets/s, respectively.
The corresponding intervals are 50.0 ms, 75.0 ms, 33.3 ms,
and 2.0 ms, respectively. After applying the incentive strategy,
the medians of CSI sampling rate for the four communication
tasks are all higher than the sensing requirement. In addition,
we also test the incentive strategy in three environments, as
shown in Fig. 15. It can be seen that the fill rates are similar
and near 100%. This indicates that the sensing requirement for
sufficient CSI can be satisfied in different environments with
our incentive strategy.

3) Time Consumption: To assess the real-time performance
of SenCom, we calculate the time spent on CSI calibration
and fitting-resampling. The experiment results indicate that
SenCom can unify a CSI sample in 0.86 ms and homogenize
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TABLE II
COMMUNICATION PERFORMANCE WITH DIFFERENT COMMUNICATION TASKS.

Task Video Webpage Game Download
Metric Dropped rate Loading time Latency Loss rate Data rate

Without SenCom 1597/40477 614 ms 17 ms 0 % 88.68 Mbps
With SenCom 1613/40477 615 ms 17 ms 0 % 87.12 Mbps

TABLE III
COMMUNICATION LATENCY WITH DIFFERENT ERRORS OF TRAFFIC

PREDICTION.

Error (packets per 100 ms) 0 1 2 3
Latency (ms) 2.84 2.94 3.03 3.14

the sampling points in 1.76 ms. The entire time consumption
is only 2.62 ms, less than the required interval of the CSI
sample, i.e., 10 ms. Thus, SenCom can provide quality and
sufficient CSI to upper-layer applications in real time.

C. Communication Performance

In this part, we measure the impact of SenCom on the
normal WiFi communication performance.

1) Experiment Setup and Metric: Experiment setup: We
test the communication performance in two ways. One is to
directly measure the communication performance with the
help of iperf between the AP and client. The other is to
measure the quality of experience (QoE) of the four aforemen-
tioned communication tasks. The communication performance
is tested in a week randomly and the total time is more than
10 hours. Average results are shown in this part.
Metrics: For the direct measurement, we adopt two metrics,
i.e., latency and throughput, to quantify the communication
performance. Latency describes the end-to-end delay between
the AP and the client. Throughput is measured by the rate of
successfully delivered data between the client and AP, which
can be calculated as throughput = ηλcV , where η is the
successful delivery rate, λc is the packet arrival rate, and V is
the data size per packet. For the task of webpage surfing, we
utilize the loading time of the website to measure the QoE.
For video streaming, its QoE is represented by the fluency of
the video, i.e., dropped rate that is the number of dropped
frames to the total number of frames. As for online gaming,
we can use latency between the client and the game server
and loss rate of operations. For the download task, its QoE
is described by the data size delivered successfully per unit
time, i.e., data rate.

2) Results: We evaluate the latency and throughput with
different communication packet arrival rates. As shown in
Fig. 16, the communication latency with SenCom is almost
the same as that without SenCom. Especially, when the com-
munication packet arrival rate is no less than the required CSI
sampling rate, i.e., λc ≥ 100 packets/s, there is no need to
transmit incentive packets, and the latency thus is not affected
at all. When λc < 100 packets/s, the loss can be reduced to a
negligible level, i.e., less than 2%, by choosing a proper weight
(i.e., β = 0.1). Moreover, we evaluate the latency when Active
sensing and the communication systems simultaneously work
on the same frequency bandwidth. One can clearly observe that

the latency is higher than that without sensing, demonstrating
the influence of active sensing on communication. Meanwhile,
according to the experiment results, the successful delivery rate
without SenCom and with SenCom is 100%, indicating that
SenCom does not affect the throughput. Moreover, Fig. 17
shows the average CSI sampling rate. With the incentive
strategy, the CSI sampling rate is maintained constantly higher
than required. By contrast, without the incentive strategy, the
CSI sampling rate may fall short when the communication
packet rate is low. Additionally, we also evaluate the effect
of the traffic prediction error on the communication latency
when the communication packet arrival rate is 50 packets/s.
As shown in Tab. III, the error is represented by the difference
between the real packet number and predicted one per 100 ms
and we focus on the case that the predicted number is larger
than the actual one since the communication latency would be
increased in this case. From Tab. III, it can be seen that the
impact of the error on delay is small, as the communication
traffic is not congested and few extra incentive packets would
not bring significant impact. When the communication traffic
is congested, i.e., the number being more than 100 packets/s,
the error would not affect the latency because there is no need
to transmit incentive packets.

The QoE of the four communication tasks is shown in
Tab. II. It can be observed that SenCom almost has no
influence on the QoE of the communication tasks. Even for
the download task that requires a very high data rate, the
communication traffic is hardly impacted by the incentive
strategy. Recalling that the required CSI sampling rate can
be guaranteed according to the results in Fig. 14. Hence, with
SenCom implemented in the communication system, sufficient
CSI can be obtained for sensing without influencing ongoing
communication traffic too much.

D. Case Study

We invite 22 volunteers (13 males and 9 females) aged
from 19 to 29 to take part in the following four WiFi
sensing applications: fall detection (WiFall [46]), step counting
(WiStep [21]), respiration monitoring (WiBreath [47]), and
person identification (WiPIN [24]). WiFall and WiPIN are
classification applications, while WiStep and WiBreath are
measurement applications. The required CSI sampling rate is
set to 100 packets/s. We collect over 35,000 CSI samples for
case studies. All experiments are conducted by adhering to the
approval of our university’s Institutional Review Board.

1) Fall Detection: WiFall is a learning-based fall detection
system, which utilizes a random forest classifier to recognize
four activities including ‘walking’, ‘sitting down’, ‘standing
up’, and ‘falling’. We use accuracy [46] to quantify the
classification performance.
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Fig. 21. Effect of client activity on
accuracy of fall detection.
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Fig. 22. Effect of training set size on
accuracy of fall detection.
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Fig. 23. Effect of traffic prediction’s
error on accuracy of fall detection.
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Fig. 24. Error rates of step counting
in three environments.
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Fig. 25. Effect of client’s antenna
number on error rate of step counting.
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Fig. 26. Effect of client number on
error rate of step counting.
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Fig. 27. Effect of client activity on
error rate of step counting.

Overall performance. We first derive the activity recognition
accuracy when supporting WiFall in three environments. We
compare SenCom with two schemes: simply collecting CSI
without fitting-resampling, and Active sensing. The average
accuracy of five persons in each environment is recorded. The
accuracy of the three environments is shown in Fig. 18. It
can be found that the accuracy of SenCom is higher than
that without fitting-resampling. Thus, our fitting-resampling
method can improve the activity recognition accuracy. The
accuracy of SenCom is comparable to that of Active sensing,
indicating that SenCom is qualified for classification tasks.
Meanwhile, the accuracy of SenCom in lab, home, and office
is 94.37%, 92.33%, and 91.93%, respectively. The accuracy
is high and similar, demonstrating that SenCom performs
well in different environments. The small accuracy differences
are likely to be induced by random environmental noise.
The results suggest that SenCom can achieve outstanding
performance in classification tasks.
Effect of client’s antenna number: In this part, we use
three clients equipped with one, two, and three antennas to
explore the effect of the client’s antenna number. To show
the effectiveness of our CSI calibration method, we compare
SenCom with an alternative: without CSI calibration. The
experimental results of activity recognition are shown in
Fig. 19. It can be seen that the performance when using one
antenna is better than that of using two or three antennas. This

is reasonable because SenCom does not need to execute CSI
calibration when the client has only one receiving antenna. The
CSI collected in this case is of higher quality. Meanwhile, the
performance of SenCom is better than that of the alternative,
which means that our CSI calibration method is very effective
in improving the quality of CSI.

Effect of client number: In practice, multiple client devices
may co-exist in the same WiFi domain. In this case, the
transmitter is connected with multiple clients and transmits
packets to different clients across time. To explore the effect
of the client number, we conduct four experiments with four
conditions. The experimental results of activity recognition are
displayed in Fig. 20, where ‘1+ 2’ means that the transmitter
is connected with a one-antenna client and a two-antenna
client, and so forth. It can be observed that the performance
of SenCom with different conditions is good and very similar
to each other. This demonstrates the effectiveness of the CSI
calibration, and as a result, the varied number of clients hardly
affects the classification performance.

Effect of client activity: We also consider other communica-
tion traffic, i.e., online video, online gaming, webpage surfing,
and download. Fig. 21 depicts the activity recognition results
when SenCom works with the above different communication
traffic. As during download, the client has high communication
demands, we disable the signal incentive. In Fig. 21, it can be
found that online gaming can achieve the highest average accu-
racy. The number of communication packets under the online
gaming task is few and even approaches zero as indicated by
Fig. 14 and most CSI is extracted from incentive packets that
do not need to be calibrated, rendering better performance.
But it is noteworthy that SenCom still performs well (93.53%
accuracy) under the worst conditions (i.e., download) where
all the packets are from the communication traffic. This further
demonstrates the effectiveness of our CSI calibration method.

Effect of training set size: Since WiFall adopts a learning-
based method to achieve activity recognition, the size (i.e.,
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Fig. 28. Rate errors of respiration
monitoring in three environments.
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Fig. 29. Effect of antenna number on
rate error of respiration monitoring.

1+2 1+3 2+3 1+2+3

Client number

0

1

2

3

4

R
a

te
 e

rr
o

r 
(b

p
m

)

Fig. 30. Effect of client number on rate
error of respiration monitoring.
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Fig. 31. Effect of client activity on rate
error of respiration monitoring.
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Active sensing.
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the number of CSI samples) of the training set directly affects
the activity recognition result. To explore if SenCom can still
work well when the training set is small, we vary the number
of the training CSI samples of each class from 10 to 40 and
calculate the accuracy. Meanwhile, we compare SenCom with
an alternative: without fitting-resampling. It can be observed
from Fig. 22 that SenCom outperforms the alternative and
the accuracy of two schemes increases with the number of
the training CSI samples. When the number of CSI samples
of each activity is 40, the accuracy reaches the highest.
Nevertheless, the accuracy is still high (85%+) when only
10 CSI samples are collected for each class, which indicates
that SenCom is insensitive to the training data size.
Effect of traffic prediction’s error: We propose a traffic
predictor to predict the upcoming network traffic for incentive
strategy and the error of the traffic predictor may affect the
CSI sampling rate and sensing performance. Fig. 23 presents
the effect of traffic prediction error on accuracy. The error is
represented by the difference between the real packet number
and predicted one per 100 ms and we consider the case that
the predicted number is smaller than the actual one as the
deficiency of packets would reduce the sensing performance.
One can observe that the accuracy reduces with the error and
the average accuracy is still around 90% when the prediction
error is 3 packets per 100 ms (70% prediction accuracy). This
means that the prediction error indeed impacts the sensing
performance, yet SenCom is robust to the prediction deviation
thanks to our fitting-resampling method.

2) Step Counting: WiStep is a modeling-based step count-
ing system that can measure the number of steps with CSI
samples. We use error rate [21] to qualify the measurement
performance, which is the relative error between the esti-
mated step count Re and the ground truth value Rg , i.e.,
error rate = |Re −Rg|/Rg .
Overall performance. For step counting, we conduct com-
parison experiments similar to the activity recognition. The
experimental results shown in Fig. 24 indicate that SenCom’s

average error rates in lab, home, and office are 1.8%, 1.6%,
and 2.0%, respectively. Meanwhile, it can be observed that
our fitting-resampling method is also effective in measurement
tasks. More importantly, the error rate of SenCom is compara-
ble to that of Active sensing. The results prove that SenCom
can effectively support measurement tasks.
Effect of client’s antenna number: This experiment inves-
tigates the effect of antenna number of the communication
client. Similar to the experiment setting of activity recognition,
we also compare SenCom with an alternative, i.e., directly
sensing without CSI calibration. Fig. 25 shows the measure-
ment results. We can see that senCom can achieve the best
performance when the client only has one antenna. Such a
conclusion is consistent with that drawn from the activity
recognition experiment. Moreover, SenCom outperforms the
alternative, demonstrating the efficacy of the CSI calibration.
Effect of client number: To understand the effect of client
number on measurement, we perform experiments with dif-
ferent client combinations. The results in Fig. 26 suggest that
SenCom can accurately measure the step with different client
numbers, demonstrating the effectiveness of the proposed
methods.
Effect of client activity: We also explore the effect of client
activity on measurement performance. The experiment results
are shown in Fig. 27. It can be seen that SenCom demonstrates
a very low error rate (less than 1.65%) under all activities.

3) Respiration Monitoring: WiBreath utilizes short-time
Fourier transform (STFT) to get the respiration frequency of
the monitored user from CSI. We use rate error to quantify
the performance, which is defined as the difference between
the estimated respiration rate Re and the ground truth value
Rg , i.e., rate error = |Re −Rg|.
Overall performance: Fig. 28 shows the rate errors of res-
piration monitoring in the three environments. It can be seen
that the rate error of SenCom is comparable to that of Active
sensing. Meanwhile, the rate error will increase obviously if
the fitting-resampling is not adopted. Besides, the environment
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changes do not significantly impact the respiration monitoring
performance.
Effect of client’s antenna number: To understand how the
respiration monitoring rate error would be impacted by the
number of the client’s antennas, we experiment over three
clients with different antennas. As shown in Fig. 29, the rate
error seems to not vary evidently with the number of antennas.
SenCom can monitor user’s respiration accurately under dif-
ferent clients. Meanwhile, it can be found that calibrating the
CSI can greatly improve the respiration monitoring precision.
Effect of client number: In this experiment, we assess
SenCom’s performance under different numbers of clients.
The results in Fig. 30 indicate that SenCom performs fairly
in different settings. Even over three clients equipped with
different antenna numbers, SenCom still demonstrates low rate
error. Thus, SenCom can adapt to different client combinations.
Effect of client activity: We also evaluate the rate error when
the client runs different applications. One can observe from
Fig. 31 that the applications like playing video hardly affect the
respiration monitoring performance of SenCom. Downloading
will trigger a large number of communication packets, but
this does not reduce the rate error. Hence, our CSI calibration
method is very effective.

4) Person Identification: WiPIN collects CSI when the user
is standing still between the transmitter and receiver. It extracts
several statistical features as biometrics and uses the support
vector machine (SVM) to identify users. Its performance is
also qualified by accuracy. In this experiment, WiPIN needs to
identify seven persons, including three males and four females.
Overall performance: To illustrate the person identification
performance, we plot the confusion matrices of Active sensing
and SenCom in Figs. 32 and 33, respectively. ‘A’ to ‘G’
represent seven different persons. It can be seen that the
accuracy of Active sensing and SenCom is 98.80% and 97.62%
respectively. Active sensing slightly outperforms SenCom, but
the accuracy difference is very small. Thus, SenCom demon-
strates outstanding person identification performance.
Effectiveness of fitting-resampling: To validate that fitting-
resampling can improve the person identification accuracy, we
recalculate the confusion matrix when the fitting-resampling
method is not used. The results in Fig. 34 indicate that the ac-
curacy is only 95.24%, suggesting that our fitting-resampling
measure is effective in enhancing the sensing performance.
Effectiveness of CSI calibration: We also assess the iden-
tification accuracy when the CSI is not calibrated. The cor-
responding confusion matrix is shown in Fig. 35. It can be
observed that the accuracy drops to 71.4% when we do not
perform calibration. This means that our calibration approach
can greatly improve the CSI quality to support accurate
sensing.

VII. CONCLUSION

In this paper, we propose SenCom, which enables WiFi
sensing while maintaining communication capabilities. Sen-
Com reuses the communication facilities and packets for
sensing. In its design, we propose a CSI calibration method to
obtain quality and unified CSI. Additionally, we introduce a

fitting-resampling scheme to support upper-layer sensing ap-
plications with dimensionality-consistent CSI, and an incentive
strategy that guarantees the sufficiency of CSI. The real-world
experimental results demonstrate that SenCom is capable of
supporting a variety of sensing applications, while retaining
good communication performance.

APPENDIX A
DETAILS FOR SOLVING PROBLEM 16

The partial Lagrangian function of problem 16 is given by:

L =β
(
λc[t] + λi[t]

)
− (1− β)∆τ [t]

+ µ
((
λc[t] + λi[t]

)
E {W} − 1 + ϵ

)
, (18)

where µ ≥ 0 is the Lagrange multiplier associated
with the constraint in Eq. 16b. Then, based on the
Karush–Kuhn–Tucker conditions, the necessary and sufficient
conditions of the optimal solution can be expressed as:

∂L
∂λi[t]

=β −
(1− β)E

{
W 2
}

2 (1− (λc[t] + λi[t])E {W})2

+ µE {W} =

{
= 0, λi[t] > 0,
≥ 0, λi[t] = 0,

(19)

µ
((
λc[t] + λi[t]

)
E {W} − 1 + ϵ

)
= 0. (20)

Therefore, there are two cases. (i) When λi[t] is low and the
‘=’ in Eq. 16b cannot be achieved, we have µ = 0 and λi[t]
can be calculated via Eq. 19, as:

λi[t]=max

(
1

E {W}

(
1−

√
1−β

2β
E {W 2}

)
− λc[t], 0

)
.(21)

(ii) When λi[t] is high and the constraint in Eq. 16b limits
λi[t], we have µ > 0 and λi[t] can be calculated via Eq. 20,
as:

λi[t] =
1− ϵ

E {W}
− λc[t]. (22)

Combining these two cases, we can derive the optimal solution
to problem 16, as shown in Eq. 17.
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