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Abstract—Respiration rate monitoring is beneficial for the
diagnosis of a variety of diseases, such as heart failure and
sleep disorders. Radio Frequency (RF) based respiration rate
monitoring systems, namely ultra-wideband radar and COTS
device, have been proposed without requiring any direct contact
with the detected person. However, existing RF based systems
either require expensive UWB radio (radar based) or work only
in stationary environments (COTS device based). To address the
limitations of both radar based and COTS device based systems,
in this paper, we propose RespiRadio, a system that can detect a
person’s respiration rate in dynamic ambient environments via a
single TX-RX pair of WiFi cards. The key novelty of RespiRadio
is that it overcomes the limit of existing COTS device based
respiration rate systems by synthesizing a wider-bandwidth WiFi
radio. With the synthesized WiFi radio, we can identify the path
reflected by the breathing person and then analyze the periodicity
of the signal power measurements only from this path to infer
the respiration rate. We experimentally evaluate the performance
of RespiRadio in non-static indoor environments and the results
demonstrate that the overall estimation error is 0.152 breaths
per minute (bpm).

I. INTRODUCTION

Respiration rate is a vital sign that contains valuable in-
formation for the diagnosis of diseases such as pulmonary
disease [8], heart failure [14], anxiety disorders [37], and
sleep disorders [10]. Some chronic diseases, such as obstruc-
tive sleep apnea syndrome (OSAS) and chronic obstructive
pulmonary disease (COPD), require continuous monitoring
of patient’s respiration rate. Traditional approaches to the
continuous monitoring in home settings use belts or garment
instrumented with capacitive sensors [20], smart cushion with
air pressure sensors [22], or camera based solutions [39].
Wearable device based systems have two key limitations.
First, they are expensive to deploy as they require customized
hardware. Second, they are inconvenient to use as they require
patients to wear sensors all the time. Camera based systems
have three key limitations. First, they cause privacy concerns.
Second, they cannot work in dark. Third, they cannot work
when the target patient is out of the sight.

To address these limitations, recently, Radio Frequency
(RF) based respiration rate monitoring approaches have been
proposed [6], [15], [17], [23]–[25], [32]. Such RF based ap-
proaches fall into two categories: ultra-wideband (UWB) radar
based and narrowband commodity Off-The-Shelf (COTS)
device based. UWB radar based monitoring systems infer
the respiration rate of a human subject based on the signal

variations in the propagation path reflected by the respiration
person. COTS device based monitoring systems use either
802.15.4 transceivers or WiFi devices. Patwari et al. used tens
of 802.15.4 transceivers for achieving non-contact respiration
rate monitoring [23], and Kaltiokallio et al. further reduced
the number of transceivers to two [15]. Moreover, Liu et al.
analyzed the average peak interval of WiFi CSI measurements
to detect the respiration rate of a human subject [17].

For UWB radar based respiration rate monitoring systems,
the advantage is that they can achieve high precision in the
presence of ambient environmental noise, but the limitation is
that they require dedicated RF frontend, which is expensive
[6], [24], [25], [31]. In contrast, for COTS RF device based
respiration rate monitoring systems, the advantage is that
they are cheap and easy to deploy, but the limitation is that
the surrounding environment needs to be stationary so that
respiration is the sole source of motion, because of the narrow
bandwidth of COTS RF devices. We now explain why the
narrow bandwidth limits existing COTS RF device based
solutions to stationary environments. Given the multipath
effect, the spatial resolution of two distinct propagation paths
is determined by the bandwidth of the radio frequency f ,
which is equal to 1

f ·cm (c is the speed of light). Consider the
scenario, where the radio is reflected by two subjects, namely
human subject 1 and 2, with a distance of ∆d. If we utilize
a TX-RX pair of RF radio nodes with a bandwidth ∆f that
is smaller than c

∆d Hz, the received signals reflected by the
two subjects are superimposed. Assume that we are interested
in monitoring the respiration rate of human Subject 1, the
dynamic disturbance of human subject 2, such as walking or
continuously posture changes, poses a much larger variation
on the superimposed received signals, resulting in the failure
of inferring the respiration rate of human subject 1.

In this paper, we present RespiRadio, a COTS WiFi based
respiration rate monitoring system that works in dynamic
environments. The insight is that WiFi devices can work on
multiple frequency bands, so that we can span a much wider
spectrum bandwidth than that of a single channel simply
using COTS WiFi cards. Based on this insight, our idea
is to transmit packets on multiple WiFi bands and exploit
the aggregated CSI measurements from these different WiFi
channels to synthesize a much wider-band WiFi radio. For
instance, with our scheme, we can synthesize a 100 MHz
WiFi radio by hopping on to five distinct WiFi channels with



a bandwidth of 20 MHz to collect channel state information
(CSI) measurements. Therefore, such synthesized wideband
WiFi CSI measurements can break the existing bandwidth
limit of COTS WiFi interfaces while preserving the low cost
compared with Radar based systems, which require expensive
customized wideband RF hardware. With the synthesized
much wider-bandwidth WiFi radio signals, we isolate the
signal path reflected by breathing human from other paths
impacted by other obstacles and then analyze the periodicity
of the signal power measurements only from the breathing-
affected path to estimate the respiration rate. Therefore, com-
pared with existing COTS based systems, RespiRadio can
estimate respiration rate of a human subject more accurately
in dynamic indoor environments.

In this paper, we address the following four challenges: fast
channel switching, respiration person isolation, non-respiration
variation removal and respiration rate estimation.

Fast Channel Switching: We need to collect CSI measure-
ments from multiple WiFi channels to synthesize a wider-
band WiFi radio within the coherence time, as they are else
uncorrelated, and hence invalid for channel synthesization.
Default channel switching mechanism in 802.11 protocol
consumes at least several seconds, which is far beyond the
system requirement. Also, our system runs on existing WiFi
APs so that channel switching requires not to interfere with
normal 802.11 client-AP association and normal networking
services. To address the challenges, we modify re-association
method in 802.11 protocol to leverage regular 802.11 beacon
frames for synchronous, protocol compliant channel switching,
achieving a low latency of 15 ms.

Respiration Person Isolation: As respiration monitoring
relies upon the reflection path of the testee to detect their
respiration rate; however, the distance between the testee and
the TX-RX WiFi pair is unknown, that means that the correct
signal path reflected from the testee must be identified. We
propose to detect the periodicity of the amplitude fluctuation
on the path conditioned on the repeated expanding and con-
traction of the testee’s chest cavity.

Non-respiration Variation Removal: Even after identify-
ing the signal path, it is still challenging to remove non-
respiration related channel variations, as erratic motions like
posture change or limb swing also induce variations to the
signal path that represents the respiration-related fluctuation.
Such motions often dominate the path variations, which leads
to significant changes to the signal measurements and thus
reduces the recognition accuracy. We propose a two-state
hidden Markov model (HMM) to differentiate motions due
to respiration from other motion.

Respiration Rate Estimation: As we aim to monitor respi-
ration rate continuously, it is of vital importance to design an
estimation algorithm which is both fast and adaptive to time-
varying respiration change. For this purpose, Instead of relying
on computationally expensive estimation schemes, such as
power spectral density (PSD) maximal estimation [23] or
peak detection [17], our system applies an extended Kalman
filtering (EKF) to directly estimate the signal parameters
including the signal frequency from RF measurements.

We implement RespiRadio with a pair of laptops equipped

with COTS WiFi network interface cards (NIC). We conducted
extensive side-by-side experiments to compare RespiRadio
with two state-of-the-art COTS device based systems, namely
WiFi COTS based system (WiFiBre) [17] and 802.15.4 system
(sensorBre) [23]. RespiRadio estimates the respiration rate
with an overall error of 0.152 breaths per minute (bpm) in
dynamic environments, where there exist one or two moving
persons. This significantly reduces the detection error com-
pared to WiFiBre (2.014 bpm) [17] and sensorBre (2.421 bpm)
[23]. Further, in comparison to the WiFiBre and sensorBre
systems, our EKF estimator reduces both the estimation time
and adaptation time.

II. RELATED WORK

In recent years, RF radios have widely been used in a
substantial number of ubiquitous sensing applications, rang-
ing from indoor localization [28], activity recognition [34],
privacy leakage [18] to respiration rate monitoring [23], [32].
Existing work on RF based non-contact human respiration rate
monitoring systems can be divided into two categories: radar
based and COTS device based.

Radar Based: High-capability radar based systems (e.g.
Doppler Radar [16], [36], UWB radar [6], [24], [25]) ana-
lyze the wireless signals directly affected by movement of
the chest cavity to infer the respiration rate. In particular,
Doppler radar systems [16], [36] can detect periodic Doppler
frequency/phase shift that indicates the respiration rate. UWB
radar [6], [24], [25] is leveraged to isolate the signal-path
component corresponding to the respiration person. Given that
the signals in the respiration-induced path change periodically
with a rate identical to the respiration pace, UWB radar based
systems infer the respiration rate by analysis of the period of
isolated signals on this path accurately and non-intrusively.
However, the expensive hardware required for high-capability
radar prevents ubiquitous deployment in home settings.

COTS Device Based: Seminal work of COTS based respi-
ration rate monitoring is proposed in [23], where a wireless
network composed of 20 IEEE 802.15.4 sensor nodes is
deployed to monitor the respiration of a person. Subsequently,
the authors improve their monitoring system by implementing
novel schemes of channel diversity and oversampling, so
that the RSS measurements from a pair of IEEE 802.15.4
TX-RX nodes suffice for respiration monitoring. A COTS
RFID based respiration rate monitoring system is proposed in
[12], where the RFID tags are requried to attached to users’
clothes. With the modified firmware of the Intel 5300 NIC
interface, CSI measurements can be acquired, which can be
considered as the link quality indicators for 30 independent
narrowband subchannels [11]. Hence, as a counterpart to the
IEEE 802.15.4 based solution [15], a pair of WiFi devices
operated on this modified firmware capable of monitoring
a respiration person is demonstrated in [17]. Similar results
using Intel 5300 WiFi NIC devices are also introduced in
[32], considering different circumstances. Most COTS based
respiration monitoring systems are inherently limited by the
used RF bandwidth. Therefore, the respiration induced signal
path cannot be separately estimated. As a result, those systems
may work with stationary environments but perform poorly



in dynamic environments that involve other motions. Besides
RF radio signals, Acoustic Signals are also leveraged for
respiration detection using the speaker and microphone [33].

III. SYSTEM DESIGN

RespiRadio has four components, namely power delay pro-
file generation, respiration-induced path isolation, respiration
motion detection and respiration rate estimation.

A. Power Delay Profile Generation
Electromagnetic waves propagate roughly in all radial di-

rections. When a radio wave encounters any obstacle, the
wave is reflected, resulting in multiple copies of the wave that
arrive with a different delay and attenuation at the receiver.
This is called the multipath effect. The power levels of these
multipath signals with increasing delays can be captured by a
Power Delay Profile (PDP). Let f be the bandwidth of the
radio frequency. We define a bin in a power delay profile
as a range of delays. The temporal resolution of a bin for
two distinct propagation paths, denoted as t, is determined
by the bandwidth of the radio frequency f as t = 1

f s. The
spatial resolution between two distinguishable objects is c ·tm
, where c is the speed of light. Intuitively, assume that 4
copies of a signal traverse on different paths from TX to
RX with propagation delays of 6.2 ns, 18.3 ns, 23.7 ns,
and 32.1 ns, respectively, as shown in Figure 1(a). Due
to the 20MHz bandwidth limitation, the channel amplitude
measurements of the 1st bin of the power delay profile are
the signal superimpositions of Path 1, 2, 3 and 4, respectively,
as shown in Figure 1(b). In contrast, Figure 1(c) illustrates that
all four paths are resolvable when the bandwidth increases to
100 MHz.

For respiration monitoring, only signals on a path reflected
from the respiration motion contains relevant information,
whereas signal components from all the other paths reflected
by other obstacles contaminate the received RF-signals. To
verify the importance of RF bandwidth to resilience to mo-
tion in a versatile environment, we conduct an experiment,
where we ask a subject to randomly walking, while the other
stationary subject is concurrently in the region of interest.
We capture CSI channel amplitude measurements from the
three channels (center frequencies of the three bands are
5.18 GHz, 5.20 GHz and 5.22 GHz respectively, as well
each channel band occupies 20 MHz). Figure 2a depict the
denoised CSI channel amplitude measurements from three
subchannels of the three different channels with 312.5 kHz
bandwidth each. We further calculate the respiration rate
with the CSI measurements in each subchannel using EKF
scheme and achieve an average error of 4.87 bpm. We also
generate amplitude of the respiration-person path component
from power delay profiles of the synthesized wider-bandwidth
WiFi radio using the identical CSI measurements from the
three channels shown in Figure 2b. In contrast to the signals
in Figure 2a, the amplitude of the signal exhibits better
periodicity, which is beneficial for inferring the respiration
rate. With these measurements and EKF scheme, the error
of respiration rate of the person is reduced to 0.34 bpm,
indicating that a wider bandwidth is beneficial to eliminate
the impact of the dynamic environments.

Given the limitation of the 88 MHz WLAN clock [19],
commercial WiFi cards only support a bandwidth of 20MHz
or 40MHz tuned to a specific center channel, covering a
non-resolvable temporal delay range of 25 ns or 50 ns (or
equivalently, spatial distance range of 7 m or 15 m) in each
power delay profile bin. According to the IEEE 802.11 spec-
ifications, multiple channels with varying central frequencies
are allowed to hop onto, providing an alternative opportunity
to acquire a finer-grained power delay profile from a wider
bandwidth which has been shown feasible in Splicer [1], [40]
and Chronos [30]. However, to synthesize a wider-band radio
by synthesizing multiple channels, CSI measurements from
these channels must be captured within the coherence time,
as they are else uncorrelated, and hence invalid for channel
synthesis.

For respiration monitoring, the sample rate must be at least
2 times larger than the possible maximal respiration rate due
to the Nyquist Theorem. Since a person’s typical respiration
rate is less than 1Hz [21], our system uses a sampling rate
of 2Hz, indicating that the time we utilize to aggregate the
CSI measurements for channel synthesis in our system is not
allowed to be larger than T s = 1

2Hz = 0.5 s. Therefore, to
synthesize an RF radio with a spectral bandwidth N times
larger than that of a single WiFi channel, the system hops
onto N distinct channels to sweep sufficient RF measurements
within the 0.5 s.

However, in IEEE 802.11 specifications [2], the reception
of a beacon frame by the client (the RX in our system) is used
as the indicator that the client is associated with an AP (the
TX in our system). Thus, if the AP changes the transmission
channel, it loses connection to the client, which is sniffing
on the previous channel. In the default IEEE 802.11 protocol
[9], the client then re-scans all available channels and then re-
associates with the AP after several beacon time intervals. We
experimentally verified that this re-association process lasts at
least 3 seconds, in which RF-monitoring would be rendered
impossible.

To achieve channel-synthesizing within the coherence time,
we modify the IEEE 802.11 re-association. Operating on the
previous channel, we have the AP broadcast a channel switch
announcement (CSA) in a specific beacon frame to inform
the associated clients that it will switch to a new channel
to transmit the next beacon frame, and then automatically
switch to the new channel. Once receiving this beacon frame,
the client promptly shifts to this channel as well. At the
new channel, beacon frames are periodically broadcast by
the AP and received by the associated clients; concurrently,
data frames are sent to the AP we utilize for respiration
monitoring, from which we aggregate the CSI measurements.
In this way, channel hopping delay is reduced to 15ms,
the theoretical minimum possible in conformance with IEEE
802.11 specifications [2]. Although Chronos [30] boasts 2~3
ms channel switching delay when the AP informs the client
with a data frame, this works only in monitor mode where
clients do not need to associate with an AP to receive its data
frames. Monitor mode is, however, not supported by some NIC
manufacturers [3], and, more importantly, in general 802.11
networks, most clients are associated with the AP in managed
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Fig. 1: An example of multipath propa-
gation and corresponding PDPs
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Fig. 2: Amplitude of CSI in different sub-
channels collected in moving environment
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mode. Our solution, on the other hand, ensures that all clients
associated with the AP switch to the allocated new channel
and maintain connection in conformance with IEEE 802.11.

Once our system captures CSI measurements from N bands
within T = 0.5 s, we transform frequency-domain measure-
ments to a time-domain power delay profile [40]. Figure
3 illustrates an exemplary diagram of time-varying power
delay profiles, which we termed h(t, τ). Note that h(t, τ)
is a function of two time related variables, t and τ . The
variable t presents the large-scale power delay profile time, t ∈
(mT, (m+ 1)T ], (m = 0, 1, 2, ...;T = 1

2Hz = 0.5 s). Within
each interval of duration t, we translate the CSI measurements
from multiple channels to obtain a power delay profile, as
denoted by PDPm (cf. Figure 3). In contrast, the variable τ
denotes small-scale time variation in the range of T s which
represents delays of multipaths for a fixed value t. One may
think of τ as being a vernier adjustment of time t in each power
delay profile. As the blue and black bars of Figure 3 show,
we utilize the notations hb(τ − τb(t)) and

∑
i hi(τ − τi(t))

to represent the channel amplitude measurements in the delay
bin of time-varying power delay profiles corresponding to a
respiration person and the power measurements of all other
power delay profile bins at any time t respectively. The mul-
tipath power delay profiles can be mathematically expressed
as h(t, τ) = hb(τ − τb(t)) +

∑
i hi(τ − τi(t)).

B. Respiration-induced Path Isolation

For respiratory rate estimation, we propose to isolate the
power delay profile bin of hb(τ−τb(t)) from h(t, τ) via signal
periodicity. Specifically, other objects are either stationary,
causing mostly invariant channel amplitude of these power
delay profile bins, or else channel amplitude of the power delay
profile bins changes abruptly and randomly due to sudden
variations. In both cases, the captured power delay profile
bins hi(τ − τi(t)) from every path not affected by respiration
motion does not change periodically with time. Hence, we
postulate that only hb(τ−τb(t)) exhibits periodicity related to
the respiratory rate. To reduce the processing overhead of the
periodicity detection, one of the first five power delay profile
bins is considered as the delay bin of the respiration person.
This is a plausible assumption since more than 70% of the
energy is transferred via the first Fresnel zone [13]. If the
distance between TX, RX and the person is too large, the
variation of received power affected by the person’s inhaling
and exhaling is too weak to recognize over quantization and
Gaussian white noise [32].

Our system identifies whether the measurements of any
power delay profile bin are periodic or not by comparing

the maximal power of measurements in this bin with that
of the permutation of these measurements. Let ϕ denote
the sequential channel amplitude measurements of any power
delay profile bin. In order to examine the periodicity of ϕ,
which can indicate whether ϕ is hb(τ − τb(t)) or not, we
first conduct a “scrambling” process on the measurements
to obtain a random permutation of ϕ, termed ϕ̃. After this
process, the measurements ϕ̃ are random and will not retain
the property of periodicity even if the original measurements
ϕ are cyclic. Then, we calculate the maximum power of ϕ̃
at a frequency band by pmax = arg maxf |Φ̃(f)|2, where
Φ̃(f) = FFT (ϕ̃). Given the randomness and disorder of ϕ̃,
the power |Φ̃(f)|2 in every frequency band f tends to be evenly
distributed. If ϕ are periodic (in our case, ϕ = hb(τ − τb(t))),
the power of ϕ is concentrated at its cyclic frequency, fj so
that the power|Φ(fj)|2 should be much larger than pmax. In the
other case, once ϕ are originated from the other multipaths
(in our case, ϕ = hi(τ − τi(t)), i 6= b), at any frequency
bin, fj , the power |Φ(fj)|2 should be similar with pmax,
as both sequences are non-periodic. Hence, we leverage a
power threshold pthre to identify the periodicity of ϕ (we
set pthre = 3pmax), that is, if there exists a frequency, fj ,
whose power |Φ(fj)|2is larger than the threshold pthre, the
corresponding power delay profile bin will be considered as
the delay bin reflected by the respiration person. Otherwise,
we will examine the the periodicity of (i+ 1)-th power delay
profile bin.

C. Respiration Motion Detection

1) Two State Classification with HMM: Since the move-
ments of the respiration person are not directly observable, we
propose to leverage a two-state HMM to predict the motion
performed. The states of the HMM represent respiration-
induced chest movement, e.g. respiration motion (State S1)
and non-respiration motions, e.g. erratic motion (State S2). For
a given time window within the k-th time interval, containing
w power level measurements ζn(k), n = 1, 2, ...w in the
respiration-path PDP bin, the HMM estimates the probabil-
ity of being in motion state Si. Given conditional density
functions of the observable feature vector fo|Si

(ok), i =
1, 2, and the initial state probability αj(o0), we derive the
probability to be in state i at the k-th time interval as
αi(ok) =

[∑2
j=1 αj(ok−1) · aj,i

]
· fo|Si

(ok). Here, ok is
the observable symbol extracted from ζn(k), n = 1, 2, ...w,
aj,i. The predicted motion at the k-th time interval is then
Ŝ(k) = arg maxi αi(ok). We obtained state transition prob-
abilities based on the experimental results as A = {ai,j} =



[
0.92 0.08
0.9 0.1

]
. In addition, we assume the non-respiration

indicative state (α1(o0) = 1, α2(o0) = 0).
2) Modeling the Conditional Density Distributions: To

build an effective two-state HMM, for any time instant k, our
monitoring system should further determine the conditional
probability density distributions fo|Si

(ok) with the observable
symbol ok extracted from ζn(k), n = 1, 2, ...w. The blocking
or damping of signal components by other objects impacts the
amplitude of the received RF-signals, and enables recognizing
activities, from both time and frequency domain [29], [35],
[38].

a) Distribution of Time-domain Feature: In the context
of the two-state motions involved in our system, we observe
that the signal variation is more significant in the case of erratic
motion. Thus, we utilize deviation of the signal amplitude to
the mean amplitude within a time interval as a time-domain
feature, which can quantitatively characterize the intensity of
signal variations. For a given time window within the k-th
time interval which contains w power level measurements in
the respiration-path PDP bin, this feature can be calculated
as βk =

∑w
n=1(ζn(k)−µk)

w , where ζn(k) is the n-th power
level measurements in the respiration-path PDP bin and µk =∑w

n=1 ζn(k)

w is the mean amplitude of all the measurements for
the k-th time interval.

Under S1, due to the inhaling or exhaling, the power level
measurements should fluctuate around the mean value µk
evenly (a.k.a, ζn(k) is either smaller or larger than µk with the
same probability). Additionally, these measurements can also
be affected by noise (e.g., internal thermal Gaussian White
noise and quantization bias from wireless device hardware).
Thereby, we presumably approximate the distribution of βk
under State S1 as a Gaussian distribution with mean value 0

and variance σ1, so that fβ|S1
(βk; 0, σ1) = 1√

2πσ2
1

exp(− β2
k

2σ2
1
).

In State S2, given that the respiration-path PDP measure-
ments are expected to fluctuate randomly, we model the
density function of βk to satisfy the Gaussian distribution
with mean value 0 and variance σ2, so that fβ|S2

(βk; 0, σ2) =
1√

2πσ2
2

exp(− β2
k

2σ2
2
).

To choose the parameters for σ1 and σ2, we note that σ1 is
environment-independent, which indicates that only a one-time
calibration is necessary. As for σ2, though it is environment-
dependent (e.g. if the respiration person is close to the TX
or RX, the fluctuation is larger than that achieved when the
person is far away from the devices.), it is certainly much
larger than σ1 in our monitoring system. Rather than training
an accurate σ2 for every environment, we only set the value
of σ2 to 5 times larger than that of σ1. In this way, our
monitoring system does not require a dedicated training phase
for each experimental deployment. We conduct experiments
with different deployment configurations with the same setting
of parameters as described above. The results demonstrate that
it is not necessary to adjust σ1 and σ2 of the distributions
for the different scenarios to improve the performance of the
HMM (see Section IV-B4 and Figure 13 for details).

b) Distribution of Frequency-domain Feature: Further-
more, we note that the spectrum energy of respiration motion

is concentrated between 0.1 Hz to 1 Hz in frequency domain,
whereas erratic motion usually generates energy components
in the frequency band over 1 Hz. Motivated by this observa-
tion, we utilize spectral energy summation at frequency bands
of over 1 Hz as frequency-domain feature, denoted as ξ. To
calculate ξ, we adopt 6 levels of discrete wavelet transform
(DWT), which calculates a frequency range for different levels
with an exponentially reducing granularity. Specifically, if
Level 1 DWT represents a frequency range from 64 Hz to
32 Hz, Level 2 DWT corresponds to 32Hz~16Hz .

under S1, spectral power out of the frequency range of
respiration motion only derives from noise, so its value should
be close to 0 and gradually decrease with the increment of
frequency. On this basis, we assume the conditional density
distribution of ξk under S1 to follow exponential distribution
fξ|S1

(ξk; 0, ν1) = ν1exp(−ν1ξk), where ν1 is the rate param-
eter.

Correspondingly, under S2, though almost all erratic mo-
tions can cause the power in the spectrum band larger than
1 Hz, total energy profiles corresponding to varying erratic
activities are drastically different. For example, the spectral
energy induced by torso movement is much larger than that
caused by arm swing. Due to this issue, we fail to directly
model the distribution of total energy ξk to satisfy any well-
known distribution. Therefore, we model ξk to follow the
kernel density-based distribution, benefit of which is that it
can estimate the density from data without any assumption
of the theoretical distribution. In particular, we model the
distribution of ξk via the Epanechnikov quadratic kernel given

by fξ|S2
(ξk; 0, ν2) = 3

4

(
1−

(
ξk

ξk+ξb

)2
)
, where ξb is the

power of the respiration frequency band in 0 ∼ 1 Hz and
ξk + ξb is the total power. In this way, whatever the erratic
motion is, fξ|S2

(ξk; 0, ν2) is always close to 1, whereas, for
respiration motion, it is close to 0, indicating that the two
states are distinguishable.

To integrate both the time-domain feature and frequency-
domain feature into a unified density distribution for probabil-
ity estimation under State S1 and S2, since the two features are
non-correlated, with each other, we model the density function
of the feature vector ok as fo|Si

(ok) = 1
2fβ|Si

(βk; 0, σi) +
1
2fξ|Si

(ξk; 0, νi), i = 1, 2.

3) Motion State Detection: In order to validate whether the
hypothesis of theoretical conditional density distribution for
each observable feature is consistent with the corresponding
empirical distribution. To this end, we utilize 500 samples
for constructing empirical distributions of each observable
feature. Further, the empirical distributions are tested against
the Gaussian distribution hypothesis using the Kolmogorov-
Smirnov test [7], and the returned P-values are 32%, 41% and
28% for density distributions of β|S1, β|S2 and ξ|S1 respec-
tively, which, as a result, demonstrate that our assumed density
distribution passes the Gaussian hypothesis test. Regarding
the distribution hypothesis of ξ|S2, we also test its empirical
distribution against the theoretical Gaussian distribution as
well as other well-known distributions. Based on the tested
results, no empirical distribution can fit its assumed theoretical
distribution, so that, as mentioned in Section III-C2, the



density function of ξ|S2 cannot be modeled with any well-
known distribution.

D. Respiration Rate Estimation

We infer the breath rate with the above extracted time
periods of power delay profile data.

1) RF Measurements Denoising: As visible from the blue
line in Figure 5, the extracted stream of the channel amplitude
measurements, ζn(k), n = 1, ..., w ; k = 1, 2..., are still noisy,
which is mainly due to internal hardware errors of the TX
or RX WiFi NIC, such as quantization error and white noise.
These errors are introduced when we stitch CSI measurements
from multiple bands, and might also originate from signal
paths that are mixed in the same delay bin since they have
similar delays. Since the typical respiration rate is lower than
1 Hz, a lowpass filter is designed with a stopband frequency at
1 Hz. Particularly, our system leverages finite impulse response
(FIR) filter with passband ripple of 0.05 dB and an attenuation
of 40 dB at frequencies that exceed the stopband. Let ζ̃m be
the filtered channel amplitude measurements of the respiration-
induced power delay profile bin, where m = w · (k − 1) + n
(cf. Figure 5). We observe that the denoised measurements
ζ̃m, represented by the red line, are less volatile than ζn(k).

2) Bayesian Filtering for respiration Estimation: We pro-
pose to apply Bayesian filtering to estimate the respiration rate
using ζ̃m. Compared to a PSD based scheme, where a history
of N previous time-domain measurements are transformed to
frequency-domain coefficients via FFT with a computational
complexity of N logN , the Bayesian filtering in each step
predicts and updates its estimation from a single new mea-
surement only so that the computation overhead is a constant.
Our approach is therefore attractive for real-time respiration
rate monitoring.

As we all know, Bayesian filtering requires to model a two-
space processes ζ̃m = h(xm)+vm and xm = f(xm−1)+um,
where xm is the state vector involved in the unknown pa-
rameters, h(·) is the measurement function and vm is the
measurement noise, f(·) is the state dynamics function, ωm
is the process noise. In our system, as the displacement of
a person’s chest cavity resembles a sinusoidal function of
time, we define the state vector is x at time instant m · Ts
as xm =(θm, ωm, Am, dm)T , where θm is the parameter for
the sinusoidal function, ωm is the phase velocity, Am is the
amplitude and dm is the DC offset. Hence, the measurement
function for our system can be written in the form of a state
vector as ζ̃m = Am sin(θm) + dm + vm.

To model the state dynamics function, we let θm+1 =
θm + ωm·Ts, and the other parameters w, A and d be
constant with time. We further assume that the values of
w, A and d are perturbed with one dimensional zero-mean
white noise processes, which are described with variables
qw, qA and qd. Therefore, the dynamics function for our
system can be described in the form of xm as [27], xm = 0 Ts 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 · xm−1 + qm−1, where the distribution

of discrete Gaussian white noise process qm−1 is referred as

qm−1 ∼ N (0, Qm−1) with the covariance matrix Qm−1 given

by [26] Qm−1 =


1
3qwT

3
s

1
2qwT

2
s 0 0

1
2qwT

2
s qwTs 0 0

0 0 qATs 0
0 0 0 qdTs

 .

Since the measurement function is non-linear, we linearize
the measurement function by applying a first-order extended
Kalman filtering (EKF) and acquire the Jacobian Matrix by
Hm = ∂h(xm)

∂xm
= (Am cos(θm), 0, sin(θm), 1).

After modeling the two state-space processes and calculat-
ing the Jacobians of the nonlinear measurement function, The
EFK equations are applied for recursively estimating the state
space xm [27].

Eventually, from the predicted sinusoidal parameter θ̂ in
state vector x̂ at each iteration, we estimate the respiratory
rate of the person by fb =

θ̂m+k|m+k−1−θ̂m|m−1

k , denoting
the average respiration frequency during the time period
t ∈ (mTs, (m+ k)Ts].

IV. EXPERIMENTS

A. Experimental Setup

Our experiments are designed to verify the performance of
our respiration monitoring system in a typical domestic home
environment as illustrated in Figure 6. We place a TX-RX pair
of COTS WiFi cards with a distance of 2 m in between. The
pair of WiFi devices we utilize are two Intel Mini PC NUC
Kits integrated with the Atheros AR9462 Mini PCI-e WiFi
Chipset. Both of the NUC Kits run the Ubuntu 12.04 OS and
the modified Ath9k driver, one of which works in AP mode via
the revised Hostapd and provides non-disruptive WiFi services
to other WiFi clients at the same time.

By running the IEEE 802.11n protocol in our experimental
setting, each received packet includes a CSI reading which
represents the link quality for each subchannel. In order to
obtain the largest possible synthesized-bandwidth, our system
operates at 5 GHz where the spectral band is larger than at 2.4
GHz. Due to regulation constraints for channel allocation [4],
there exist a maximum of 5 successive adjacent channels,
composing a maximum joint bandwidth of 100 MHz. Our
system sends a beacon frame to implicitly notify the hopping
procedure between TX and RX. A latency of 15 ms is required
for channel switch when no packets can be received. To sweep
the CSI measurements from all these 5 channels within the
sampling period of 0.5 s, we use a timer to ensure the TX
to send a beacon frame every 100 ms and another timer of
15 ms to start sending data frames. Our system is designed to
transmit 4000 frames per second using UDP sockets. Although
UDP cannot ensure the reception of every packet, given the
higher frame rate compared to that required by our synthesis
algorithm, a power delay profile can always be generated.

During the experiments, a person is sitting in the chair and
continuously respiration with a pace controlled with the help
of an iPhone metronome App [5]. To confirm the reliability
of our monitoring system, various experiments are conducted
with different respiratory rate and, for each experiment with
a specific respiration frequency. Three individuals are advised
to perform respiration with different orientation.
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Fig. 6: Floor plan and device deployment of our experimental environ-
ment

We evaluate our system with respect to its 1) accuracy to
isolate the power delay profile delay bin of the respiration
person with the synthesized-band RF radio, 2) precision to
distinguish two different motion-states, 3) detection accuracy,
time-efficiency and adaptivity to estimate the respiratory rate in
comparison with the conventional PSD scheme and 4) impact
of TX-RX distance on the respiration detection accuracy. In
addition, we compare the performance of our system against
two state-of-the-art COTS device based respiration estimation
systems, sensorBre [15] and WiFiBre [17] respectively.

B. Experimental Results

1) Accuracy of Path Isolation: In each deployment sce-
nario, in addition to the person being tested, we advise another
person to occasionally enter the test area. The second person
is kept at least 3 m apart from the respiration person. Differing
from almost all previously proposed COTS device based
monitoring systems which are limited by the bandwidth, a
key feature of our system is that it is capable of isolating the
respiration-induced path component of a power delay profile
derived from the synthesized wideband RF signals. Our system
does not require the Time-of-Fight (ToF) information in the
power delay profile. Instead, our system isolates the signals
from the power delay profile delay bin corresponding to the
respiration-affected path. We first build a set of groundtruth
baselines of respiration-affected paths in the following way.
We spatially arrange the chest cavity of the monitored person
and the TX-RX pair into a straight line and the first bin of the
power delay profile is thus the ground truth of the path from
the respiration person. Then, we change the locations of both
TX and RX 1.5 m away from the person’s chest cavity and the
next bin in the power delay profile becomes the ground truth
of the respiration-affected path. These distances are chosen
since the synthesized-bandwidth of 100 MHz provides a delay
resolution of 10 ns, or equivalently, a spatial resolution of 3 m.
We repeat the tests until we obtain CSI measurements where
the 5-th bin of power delay profile is the ground truth.

A varied number of power delay profile measurements are
utilized to identify the respiration-affected path. Hence, we
investigate the required number of measurements to correctly
identify the path. If the periodicity of the respiration path is
confirmed and the isolated path is the same as the baseline
path, we say it is correctly isolated. The results are shown
in Figure 7. The proposed scheme always correctly identifies
the power delay profile delay bin of the respiration-affected
path with more than 80 power delay profiles. Also, the results
indicate that a higher accuracy is possible with a shorter
distance between the respiration person and the TX-RX pair.

This is because the larger variation of signals induced by the
respiration person can increase the accuracy of detection.

2) Motion State Detection : The motion state of the person
being tested is estimated with a HMM as introduced in
Section III-C1. We investigate the motion detection accuracy
vs. the setting of window duration time and present the results
in Figure 8. The results indicate that the two distinct motions
are classified with 100% accuracy using a window time of
over 3 s.

Additionally, as introduced in Section III-C1, the estimated
state transition matrix A = {αi,j} should adaptively change
in line with periods when the person performs erratic motion
during the monitoring process. We calculate the transition
probability αi,j by counting the number of Si and Sj estimated
by the HMM respectively and then dividing the number of Sj
by the number of Si and update the state transition matrix A
immediately once the latest motion state is estimated with the
HMM.

3) EKF vs PSD: Recall that the motivation for our system
to estimate respiration rate with EKF has two-fold benefit: 1)
it is more time-efficient than PSD and 2) it allows adapting to
changes more quickly. Therefore, we compare the performance
of EKF with that of PSD in terms of both computation time
and time lag. Firstly, we conduct tests to compare the accuracy
as well as computation time for rate estimation with a window
length of N = 10 s, 20 s, 30 s, 40 s, 50 s, 60 s and with a fixed
baseline respiration rate at 12, 16 and 20 bpm, respectively.
As seen from Figure 10 and Figure 11, compared to PSD
based respiration detection, the EKF based solution drastically
reduces the computation time for respiration estimation while
achieving comparative estimation accuracy. The mean absolute
error is always less than 1 bpm, which is usually the granularity
of the respiration monitoring instrumentation [23]. Even better,
with a small window length (e.g., N = 10 s, 20 s), the
mean absolute error achieved by the EKF based scheme is
much lower than that of PSD, experimentally supporting the
conclusion that a larger FFT window length is required for
increasing the estimation accuracy.

Since under realistic conditions, a person may change
respiration rate, an estimation scheme which can quickly adapt
to the change is required. In order to evaluate whether the
performance of EKF is better under varying respiration rates,
we conduct further tests in which the person increases the
respiration rate by 2 bpm each minute from 12 bpm to 20 bpm.
We calculate the time latency between the true timing when
the person changes respiration rate and the timing when the
estimated rate gets close to the ground-truth rate (< 0.5 bpm).
The results are depicted in Figure 12. The results validate that
PSD is inferior to EKF in adapting to the time-varying change
of respiration rate. From the results of Figure 10, 11 and 12, we
see that compared with PSD, EKF can strike a better balance in
the performance tradeoff in terms of accuracy, time-efficiency
as well as adaptability.

4) TX-RX Distance: The detection error achieved at various
distances with different fixed respiration rates from 12 bpm
to 20 bpm is shown in Figure 9. Additionally, based on
experimental results with different respiration rates, our system
works effectively up to a range of 9 m. In such a distance, the
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overall error is still less than 1 bpm.
We conduct another test to validate the statement in Section

III-C2 that accurate estimation of the environment-dependent
parameter σ2 is not required to construct the HMM in a
varying environment. In several TX-RX distances ranging
from 2m to 8m, we first conduct erratic motion to calculate
the accurate value of σ2, termed as σtrue. Then, at the same TX-
RX distance, we conduct both respiration motion and erratic
motion and then distinguish the two motions using the HMM
with the parameters of σ2 = σtrue and σ2 = 5σ1, which is the
default parameter of σ2 in our system, respectively. Shown
in Figure 13, the classification results of the two motions
demonstrate that, with both σtrue or 5σ1, the two-state HMM
can effectively identify the periods when the respiration person
performs erratic motion.

5) Performance comparison: TX-RX COTS based respi-
ration detection systems using WiFi [17] and 802.15.4 [23]
have been proposed earlier. We implement both and compare
their performance with our system. All three schemes run
simultaneously to capture raw RF measurements. As shown
in Figure 6, the MEMSIC TelosB ZigBee sensors are placed
alongside the NUC toolkit to obtain RSS measurements.
With respect to the CSI measurements utilized in the WiFi
based system [17], we directly use the same measurements
as those obtained for our system. To compare the accuracy
of respiration rate detection leveraging the three systems, we
conduct two experiments under two different environmental
scenarios. Both tests are conducted with different respiration
rates at 12, 14, 16, 18 and 20 bpm respectively.

a) Stationary Environment: The first experiment is de-
signed to compare the accuracy of the systems in a stationary
ambient environment, which is the presumed condition of the
other two systems. It is worth noting that the test allows
the respiration person to occasionally change the posture or
swing arms/legs since all three systems have demonstrated
distinct solutions to detect erratic motion. In the stationary
environment, as shown in Figure 14, the accuracy of our
system is comparable with the other two system.

b) Disturbed Environment: Commonly, the assumption
of stationary environment does not hold. To validate the
capability of our system to detect respiration rate in a disturbed
environment, the second set of experiments is conducted
in more realistic scenarios where the ambient surrounding
is continuously changing. In particular, we mimic several
practical cases in the monitoring area: 1) a moving person
is walking around; 2) two occupants are concurrently present;
3) we repeatedly open or close a door at irregular intervals;
4) a fan works in the monitoring area. From all cases, we
conduct experiments with a varying distance between the
moving objects and the respiration person ranging from 3

m to 6 m. Figure 14 shows the results of the four tests
with the respiration rate ranging from 12 to 20 bpm. In the
previous three cases, the mean detection error achieved by
our system is significantly lower than that of the other two
systems. These results support the assertion that our system is
more robust due to its resilience to the dynamics of ambient
environment. We also observe that the performance of the
other two compared systems deteriorates when the distance
between extraneous clutter(s) and respiration person shrinks.
This finding can be explained through Fresnel zones. The
smaller the Fresnel radius, the smaller the overall attenuation
of any movement. Therefore, the disturbed signal component
has a larger amplitude when the distance to the respiration
person is reduced. Furthermore, as shown in Figure 15d, sim-
ilar to WiFiBre and SensorBre, RespiRadio is not influenced
by a fan as well, since the periodicity of a fan is much higher
than that of an individual which is eliminated by the lowpass
filter utilized in our system.

V. CONCLUSION

In this paper, our key technical contribution is three fold.
First, we propose a scheme to synthesize a much wider-
bandwidth RF radio with a pair of WiFi devices. Second,
with such a synthesized wider-bandwidth RF radio, we in-
troduce several novel schemes, including the breath-induced
path isolation, HMM based breathing motion detection and
EKF based respiration rate estimation to infer the breathing
rate of the monitored person accurately and efficiently in
the presence of ambient dynamics. Third, we implemented
RespiRadio using two COTS WiFi devices and evaluated it
in several different scenarios. The experimental results show
that RespiRadio outperforms two state-of-the-art monitoring
systems using COTS devices in terms of time-efficiency,
adaptability and robustness to changing environments.
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