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Abstract—In spite of the remarkable efforts the community
put to build the sensor systems, an essential question still remains
unclear at the system level, motivating us to explore the answer
from a point of real-world deployment view. Does the wireless
sensor network really scale? We present findings from a large
scale operating sensor network system, GreenOrbs, with up
to 330 nodes deployed in the forest. We instrument such an
operating network throughout the protocol stack and present
observations across layers in the network. Based on our findings
from the system measurement, we propose and make initial
efforts to validate three conjectures that give potential guidelines
for future designs of large scale sensor networks. (1) A small
portion of nodes bottlenecks the entire network, and most of the
existing network indicators may not accurately capture them. (2)
The network dynamics mainly come from the inherent concur-
rency of network operations instead of environment changes. (3)
The environment, although the dynamics are not as significant as
we assumed, has an unpredictable impact on the sensor network.
We suggest that an event-based routing structure can be trained
optimal and thus better adapt to the wild environment when
building a large scale sensor network.

I. Introduction

Recent advances in low-power wireless technologies have
enabled us to make use of wireless sensor networks, a new
class of networked systems. Researchers have envisioned a
wide variety of applications, from environment monitoring [1],
scientific observation [2], to emergency detection [3], field
surveillance [4], structure monitoring [5], and etc. In those
applications, hundreds or even thousands of sensor nodes
are assumed to be deployed in the target field. Beside many
algorithmic studies that focus on designing efficient schemes
or protocols to coordinate the large scale sensor network, there
are also systematic studies that make efforts in optimizing
sensor network behaviors in practice, which are usually tested
on lab-scale testbeds or small scale deployments. An essential
question, however, remains unclear at the system level, mo-
tivating us to explore from a point of real world deployment
view:

Does the wireless sensor network really scale to contain
hundreds or even thousands of nodes that cooperatively work
without depleting the limited physical resources, just as it
was expected?

There have been several large-scale sensor network de-
ployments reported during the past years, including Vigil-
Net for field surveillance [4], Motelab that provides an
indoor testbed [6], SensorScope for weather monitoring in
the wild [7], and Trio which enables a large-scale solar-
powered sensor network [8]. Those deployments, however, are

often highly optimized for specific application needs and not
fully leveraged as platforms for consistently observing general
network behaviors.

In this work, we conduct a measurement study on
GreenOrbs, which is a consistently operating sensor net-work
system deployed for the aim of forest monitoring. With up to
330 nodes deployed in the wild, GreenOrbs provides us an
excellent platform for observing sensor network behaviors at
scale. Figure 1 plots the real topology of the sensor network.
The sink is deployed at the upper left corner. Each sensor
node is depicted according to its 2-D geographical location.
We plot all the communicational links through which data
packets are delivered. Although such lined links together with
the dotted nodes compose a network-wide topology which
traditional algorithm or protocol designers used to play with,
we highlight a subgraph within the network and exhibit that the
concept of "topology" does vary according to the perspective
we look at it. Figure 1(a) exhibits a much denser topology if
we take all reachable pairs of nodes into account. Figure 1(b)
exhibits the topology with which the network delivers data
back. Figure 1(c) exhibits a topology if we select all good
links that have RSSI (Received Signal Strength Index) [9]
beyond a threshold. Figure 1(d) exhibits a topology if we select
those good links with high LQI (Link Quality Indicator) [10]
when data packets are transmitted. If we consider different
conditions or calibrating criterion, there will be more different
types of “topologies”, and such “topologies” vary from time to
time. Indeed, like many large-scale distributed systems have
exhibited, in sensor networks, there grow numerous dynamic
behaviors with the concurrent and interactive operations inside
the system. Such dynamic behaviors can hardly be fully
considered before the system is deployed in the field brimming
of unpredictable and unexpected operating conditions.

In this work, we conduct the measurement study on the
operating sensor network system deployed in the wild, trying
to summarize the critical factors that limit the system scale
out of the dynamics on the surface. We instrument such an
operating network throughout the protocol stack. We vary
the system settings, e.g., the network scale, traffic generation,
transmission power level, and test the system behaviors under
a variety of conditions.

We present findings across different layers that the system
works on. At the physical layer, we present measurements
on radio signal strength impacted by wild environment. At
the link layer, we measure packet drop/reception, link quality,
transmitting rate over the entire network and how they are
affected by a variety of system settings. At upper layers, we
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Fig. 1: An overlook on the sensor network deployment and the real topology. (a) The topology of reachable links; (b) The topology of data
delivery link chosen by the upper layer routing protocol; (c) The topology of good quality links with RSSI thresholding; (d) The topology
of good quality links with LQI thresholding when transmitting data packets.

present observations on routing dynamic, traffic distribution,
end-to-end delivery, topological features, and etc.

Our study reveals that traditional opinions on the “hot area”
around sink and the instability of links may not be the major
concern for large-scale sensor network systems. The physical
resources in such networks may have been underestimated and
severely underutilized. There is an urgent need to improve
current methods in company with those emerging critical
factors when the network scales. Our experimental results also
suggest us several guidelines that we should carefully consider
in designing future protocols for large-scale sensor networks.
In particular, the designers should take special care of the phe-
nomena raised from the inherent contention and concurrency
of numerous nodes when the sensor network scales, which
might be underestimated in existing design concept continued
from traditional Wi-LAN or MANET protocol design.

The rest of the paper is organized as follows. In Section II,
we describe related work in sensor network deployment and
measurement experiences, as well as existing work towards
making sensor networks scalable. In Section III, we introduce
the background of GreenOrbs, some details of the system im-

plementation, and the measurement methodology. We present
our major observations in Section IV. In Section V, we give a
comprehensive discussion on how the network is bottlenecked
and give guidelines in mitigating such effect. We conclude this
work in Section VI.

II. Related Work

In this section we summarize the efforts of research commu-
nity in building large-scale sensor networks and corresponding
measurement studies.

A number of practical network deployments have been
reported during the last decade [1], [2], [7], [11]. Although
the findings from the above deployments are important, the
measurements at this scale, usually tens of sensors, can hardly
reveal some network behaviors, such as routing dynamics and
topology evolution, which exist only in large-scale networks.
Researchers have designed and developed indoor medium-
scale testbed such as MoteLab [6] and Kansei [12]. Those
indoor testbeds, however, do not fully capture the nuances in
realistic environments.



Deploying sensor networks at scale is important because
each order of magnitude increase in network size ushers in a
new set of unforeseen challenges. VigilNet [4] is designed
to support long-term military surveillance using a sensor
network consisting of 200 nodes. ExScal [13] is an attempt
to deploy a sensor network at “extreme” scale. The system
consists of about 1000 sensor nodes and 200 backbone nodes,
covering 1300*300 square meters. Dutta et al. [8] report a
network deployment “Trio” of 557 solar-powered motes for
multi-target tracking. SenseScope [7], [14] is a real-world
deployment that took place on a rock glacier, consisting of
about 100 sensor nodes.

Most of above mentioned systems are not clearly proper for
network measurement due to the following two reasons. First,
those systems are organized hierarchically. Such hierarchical
architecture inherently alleviates the negative impact induced
by large-scales, thus hardly reflecting the performance of
general and homogeneous ad-hoc sensor networks. Second,
no single system has integrated large-scale (e.g., hundreds of
nodes) and long-lifetime (e.g., one year) into a cohesive whole.
In other words, those deployments have achieved either scale
or lifetime, but usually not both.

In the context of wireless sensor networks, a number of em-
pirical studies present network measurement results in many
aspects, with emphasis on understanding the complex and non-
ideal behavior of low power wireless communications. Link
quality is one of the most important indicators for wireless
communication and thus attracts many research efforts [15]–
[20]. Srinivasan et al. [9] conclude from measurements on
MicaZ motes with CC2420 radios that RSSI is a good estimate
of link quality. The authors in [21] study the transition region
and quantify its influence. Studies such as [22], [23] emphasize
the temporal performance dynamics of wireless links and
provide important findings about such phenomenon. The study
of beta-factor [24] presents a comprehensive study to quantify
and characterize link burstiness. The authors in [25]–[28]
investigate radio interference and point out the inaccuracy of
range-based interference model [25].

The results presented in those empirical studies are basically
obtained from single-purpose and short-lived testbeds of tens
of sensors. In contrast, the measurements of GreenOrbs are
fairly comprehensive, from low-level radio signal strength and
link quality to high-level routing and data traffic issues.

III. GreenOrbs Overview

A. System and Applications

GreenOrbs aims at all-year-round ecological surveillance
in the forest, collecting various sensory data, such as tem-
perature, humidity, illumination, and content of carbon di-
oxide. The collected information can be utilized to support
various forestry applications, detailed as follows.

Canopy closure estimates. Canopy closure is defined as
the percentage of ground area vertically shaded by overhead
foliage. It is a widely-used significant forestry indicator but the
traditional measurement techniques have either poor accuracy
or prohibitive cost. Based on the readings of illuminance
sensors and Monte Carlo Theory, GreenOrbs realizes accurate
and efficient canopy closure estimates of vast forest. Using
the similar method, another forestry indicator called Leaf
Area Index can also be measured by GreenOrbs with sensors
deployed in the three-dimensional space.
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Fig. 2: The diagram of software modules.

Research on biodiversity. The sensor readings of temper-
ature, humidity, illuminance, and carbon dioxide, precisely
characterize the forest microclimate. Those data, which quan-
tify the biological activity and multispecies competition, can
be utilized to support research on biodiversity.

Carbon sequestration. To maximize the utility of forest
carbon sequestration, the capacity of carbon sequestration of
different tree species need to be accurately measured. This
can be realized with carbon dioxide sensors in the three-
dimensional forest space. By comparing the sensor readings at
different heights, the amount of carbon dioxide a tree canopy
absorbs can be continuously monitored.

Fire risk prediction. Using the sensor data in the forest,
namely temperature and humidity, GreenOrbs continuously
monitors the environmental, supporting fine-grained real-time
fire risk prediction.

GreenOrbs employs the TelosB mote with a MSP430
processor and CC2420 transceiver. The manufactory cost of a
GreenOrbs node is 50 US dollars.

The software on the GreenOrbs nodes is developed on the
basis of TinyOS 2.1. Figure 2 depicts the design diagram of
the software modules. The system mainly carries bi-directional
data streams. The mainstream is multi-hop data collection from
the ordinary nodes to the sink. The Data Collector component
based on CTP [29] is employed for this purpose. The rest
transmissions are the configuration packets sent from the sink
to the ordinary nodes. Hence Configurator component based
on DRIP [30] is devised to achieve efficient data dissemina-
tions. Meanwhile, the FTSP protocol [31] plays the functions
of network-wide synchronization, so as to enable the globally
synchronized duty cycles. The Logger component is in charge
of data access (read and write) to the measurement serial flash.
The Status Viewer component merges and encapsulates the
data from the sensors, network, and flash, according to the
preconfigured message formats. Such encapsulated messages
are transmitted via the serial communication port.

The first GreenOrbs deployment was carried out in July
2008. Ever since then, GreenOrbs has experienced a num-ber
of deployments at different places, with different scales, and
for different durations.

B. Data Set

The data set used for analysis, evaluation, and experiments
in this paper mainly comes from the operational period of



TABLE I: Configurations Used in the Data Set
Trace
No.

Network
Scale

Power
level

Data Rate
(pkts/hour)

Duration
(hour)

Duty
cycle

1 100 15 3 60 No
2 200 15 3 25 No
3 330 15 3 300 No
4 330 15 12 24 No
5 330 15 18 100 No
6 330 15 27 30 No
7 330 15 54 3 No
8 330 15 108 3 No
9 330 31 12 1 No
10 330 21 12 1 No
11 330 15 12 1 No
12 330 8 12 1 No
13 330 15 3 150 8%
14 330 15 60 12 8%

GreenOrbs in December 2009. It contains data of 29 con-
secutive days, counts 2,540,000 data packets. In order to
conduct comprehensive observation on the large-scale sensor
network system, during the abovementioned period we have
regulated the nodes with different combinations of operational
parameters. The detailed configurations of the data set are
shown in Table I.

Back End Data Set. The back end data set refers to the
entire data set collected at the sink via multi-hop routing,
denoted by Dsink. Dsink is made up of three categories of
traces as follows. (1) Routing trace, denoted by Trouting and
encapsulated as packet of type 41. It mainly records the routing
path of a packet, namely the sequence of relaying nodes
between the source and the sink. The sensor readings, such
as temperature, humidity, illuminance and carbon dioxide, are
included in Trouting as well. (2) Link trace, denoted by Tlink
and encapsulated as packet of type 42. It includes the list of
neighbor node IDs. For each neighbor node, the RSSI, LQI,
and ETX (Estimated Transmission Counts) [32] are included
in Tlink as well. (3) Node statistics trace, denoted by Tstats
and encapsulated as packet of type 45. Tstats is a large set of
statistical information on each node, including the cumulative
time of radio power on, the cumulative number of transmitted
and received packets, the cumulative number of packet drops
(due to receive pool overflow, d transmit queue overflow, and
transmit timeout), the cumulative number of transmissions that
are not ACKed, retransmissions, received duplicate packets,
and the parent changes with the CTP.

Due to the packet losses and various failures in wireless
sensor networks, the back end data set is far from sufficient
for characterizing the GreenOrbs system at a full scale. Thus
we introduce three out-band measurement techniques, namely
overhearing, beaconing, and local logging.

Overhearing. We deploy multiple sniffers in the network
to overhear the network traffic. A sniffer is a TelosB mote,
which passively listens without sending out any packets. In our
early attempt we let the sniffers store all the overheard data in
their serial flash. The 1Mbytes flash on TelosB mote was soon
found too limited for durative overhearing, so we connect the
sniffers to stable and powerful devices, e.g. a laptop, to record
all the overheard data. The locations of sniffers are carefully
selected so that the combined communication ranges of the
sniffers cover the entire network. The data from sniffers are
denoted by Dsniffer.

Beaconing. In many scenarios, we find a number of nodes
never successfully report data to the sink, making us fail to
find out the cause by using Dsink only. Therefore, in some of
the experiments, we let each node actively broadcast beacons
periodically. The content of the beacon is similar to that in
Tstats (packet type 45). The broadcast beacons are overheard
by the nearby sniffers and stored in Dsniffer. The neighbor nodes
heard the beacon from a node can also use it to update Tlink.

Local logging. Other than the networking information, the
fine-grained local events on the nodes are equally important
for us to understand their behavior and interactions. As a
necessary complement, every node locally logs events such
as transmissions, retransmissions, ACKs of packet receptions.
Each event is recorded with six bytes, where two bytes denote
the event type and the other four bytes denote the timestamp
of an event. The data set of local logging is denoted by Dlog.
Since the deployment is still in operation, we do not collect
all the nodes back to read their logs. Dlog is currently used as
a backup data set for diagnosis on some faulty nodes.

C. Measures and Derivations

Yield. We use yield [2] to measure the quantity of the
collected data. The network yield measures the quantity of
the entire network while node yield measures the quantity of
an individual node. Specifically, the node yield is calculated
by

Yieldi =
# of data pkts received by the sink from i during w

# of data pkts sent by i during w

where i is the node ID, and w is a measurement period. The
network yield is calculated by

Yield =
# of data pkts received by the sink during w

# of data pkts sent by all nodes during w

Packet Reception Ratio / Loss Ratio. We use packet recep-
tion ratio (PRR) to measure the quality of a link. Throughout
this paper, we use two-way link PRR, i.e., we consider a
successful transmission only if the sender receives an ACK.

PRR =
# of ACKed data pkts

# of sent data pkts

The packet loss ratio is PLR = 1−PRR.
Packet Delivery Ratio (PDR). PDR is defined as the ratio

of the amount of packets received by the destination to those
sent by the source. Since the transmissions are reinforced with
retransmissions, PDR can be higher than link PRR in practice.

End-to-end delay. The end-to-end delay of a packet is the
time difference between the sending time at the source node
and the reception time at the sink. We stamp each data packets
when it is first transmitted from the source node and when it
is received at the sink. The FTSP protocol is used to ensure
time synchronization.

Correlation Coefficient. Correlation coefficient is a statisti-
cal measure of association between two variables, e.g. the ETX
value and the packet delivery ratio. The range of correlation
coefficient is [-1, 1]. The sign denotes whether two variables
are positively or negatively related and the absolute value
corresponds to their correlation strength. For example, the
correlation coefficient equals to 1 when two variables are
in positive linear relationship, -1 in the case of a negative
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Fig. 3: Network yield and PRR v.s. (a) different network scales, and
(b) different traffic loads.

linear relationship, and 0 when two variables are completely
independent.

IV. Basic Observations

In this section, we present a set of basic observations on the
operation of the system. Our observations range from the high
level system performance down to the detailed behaviors at the
link level. From those basic observations, we summarize the
network characteristics and explore the reasons that bottleneck
the performance when the network scales.

A. Network Characteristics

The network yield, the ratio of packets successfully received
at the sink side to the total number of packets generated by
all the nodes, is a primary metric that evaluates the system
performance. It provides us a global indication on how com-
plete the network-wide data are collected. Another metric is
link PRR that estimates the percentage of successfully ACKed
packets over all the transmissions plus retransmissions, giving
us a microscopic indication on how the transmissions perform
on the links.

Figure 3(a) exhibits the system performance when the
network scales from 100 nodes to 200 nodes, and then to
330 nodes. During the measurement, the data generation rate
at each node is three packets per hour. There is not apparent
trend of changes on the network yield, partially because the
traffic inserted into the network is relatively low. On the other
hand, the average link PRR across all the links does not exhibit
apparent difference when the network scales.

We then measure the same metrics while exerting different
traffic load over the network, keeping the network scale as 330.
Letting each node generate three packets per cycle, we increase
the traffic load in a stepwise manner by shortening the cycle
lengths, namely 3600, 400, and 200 seconds. As Figure 3(b)
shows, the increasing traffic load severely degrades the system
performance. As depicted in Figure 3(b), the network yield
rapidly drops from over 60% to less than 10%.

A natural question raised from the above observation is:
whether the degradation in terms of network yield is due to the
throughput bottleneck around the sink? Indeed, the “hot area”
around the sink has recently been widely reported in a number
of literatures. The research communities also propose a variety
of protocols to mitigate such a problem [33], [34]. However,
if we carefully analyze the data provided by Figure 3(b), we
notice that the highest network throughput occurs when the
cycle length is set at 400 seconds. The average packet size in
GreenOrbs is 100 bytes. The goodput of data reception from
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the network can be calculated by: 3×330packets×100bytes×
8× 31%/400s = 0.61Kbps. Such a goodput is far less than
250Kbps (the upper bound data rate of TelosB mote) that the
sink can provide as a gateway of the networked nodes. This
huge gap clearly suggests that the network is far from being
bottlenecked before the sink bandwidth is used up. Hence,
the follow-up question is: Now that the area around the sink
receives relatively high traffic load and severe transmission
contentions, is it the place where a large portion of the packet
losses occur?

In Figure 4, we present a close look at the system behaviors,
using Trace No. 6. We categorize the sensor nodes in the
network according to their hop counts to the sink. Note that
a node sometimes switches its parent, resulting in dynamic
routing paths to the sink of different hop counts. In the
statistics, we use a precise granularity to categorize the nodes
with such behavior. The packets sent from the same node
with different hop counts are separately counted into different
categories. Figure 4(a) depicts the packet reception ratio from
the nodes of different hop distances to the sink. There is a
clear trend that the nodes farther from the sink have a lower
PDR to the sink. Nevertheless, Figure 4(b) depicts the link
PRR according to links’ hop distances to the sink. There
are apparent differences among all the links. This is direct
evidence, which reveals that the area around the sink is not the
rendezvous of packet losses. Otherwise, the packet reception
ratios of different categories of nodes should not deviate in the
manner of Figure 4(a). All the packets are likely to be equally
dropped around the sink, due to the contention or congestion.

To investigate the cause of packet losses, we further classify
the packet losses into three categories:
• Transmit_Timeout: the packet is (re)transmitted 30 times

and dropped due to not receiving the ACK signal. Such
packet drops are mainly due to the poor quality of the
wireless channels or severe collisions during wireless
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Fig. 6: Node performance of different categories.

transmission.
• Receive_Pool_Overflow: the packet is successfully re-

ceived at the receiver end but immediately dropped due to
the forwarding queue overflow. This type of packet drop
is mainly caused by the excessively heavy data congestion
at the receiver.

• Send_Queue_Overflow: the packet fails to be inserted
into the forwarding queue, mainly due to the mismatch
between sensor processing capability and the high rate of
packet arrival.

We examine all packet losses in Trace No. 5. Among all
packet losses, Transmit_Timeout accounts for 61.08% and
Receive_Pool_Overflow accounts for the rest 38.92%. No
Send_Queue_Overflow is detected.

We further investigate the distribution of packet drop oc-
currences among the nodes, as shown in Figure 5. The packet
drops due to Transmit_Timeout are evenly distributed across
different intensities. Nearly 90% nodes have less than 20 times
of Transmit_Timeout and no node has more than 50 times
of Transmit_Timeout. Surprisingly, we find that over 95%
nodes do not have any Receive_Pool_Overflow drop. All the
Receive_Pool_Overflow drops (38.92% of all packet drops)
occur on less than 5% nodes. Such a finding implies that
there exist a very small portion of nodes in the network which
play critical roles, taking excessively high traffic load, and
responsible for the major portion of packet losses.

B. Investigating Critical Nodes/Links

We take a deep look into the network and investigate the
node level behavior. Figure 6 exhibits the individual node
performance according to their hop distances to the sink. An
intuitive impression is that the nodes near the sink take more
traffic load and hence have apparently poorer performance.
However, we still cannot conclude that the critical nodes
mainly lie near the sink, as Figure 6 only gives us the
aggregated performance of many nodes.

Those critical nodes need to be individually identified within
the network. For this purpose, Figure 7 plots all the 330 nodes.
In total, eight snapshots of eight consecutive operational
periods are included. Each node is colored according to the
traffic load it takes. A deeper color indicates higher incoming
traffic load at a node. The figure sequence clearly shows that
there exist a very small portion of nodes that take excessive
traffic. It is worth noticing that they are distributed across the
entire deployment area instead of concentrated near the sink
(the black node in the figures). Further we index the nodes
according to their traffic load and find that less than 10%
critical nodes commit 80% traffic load and thus 61.06% of
the packet loss. They act as bottlenecks of the system and
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Fig. 8: The traffic and PRR on two typical links.

further suggest that such a set of critical nodes are relatively
stable.

C. Looking into the Links

As our network-wide statistics suggest, there exist a small
portion of critical nodes that bottleneck the performance of
the entire network. According to our statistics on different
categories of the packet drops, both Transmit_Timeout and
Receive_Pool_Overflow contribute a large portion, implying
that both congestion and link losses are possible causes that
degrade the network performance. We are interested in the
reason behind such a phenomenon. A question yet we want to
answer is whether the existence of such critical nodes is mainly
due to the poor quality of wireless communication, severe
congestion or contention accompanied with the unbalanced
traffic overhead. To answer this question, we further take a
look into the link behavior.

Figure 8 shows the observation on two typical links. We find
that the link loss rate fluctuates with time and it seems indepen-
dent from the traffic load. An immediate guess is that such link
dynamics may come from the environmental dynamics. Recall
that our system is indeed deployed in the wild. To further
explore the link loss fluctuation, we adjust the transmission
power of the nodes. Intuitively, as the transmission power is
increased, the received signal strength will be strengthened
and the link PRR will be improved. The level of transmission
power is respectively set at 8, 15, 21 and 31 (Traces No. 9–12).
In CC2420, they correspond to the sending power of slightly
above −15dBm, −7dBm, around −4dBm, and near 0dBm.

The observational results, however, still exhibit consistent
fluctuations on many links. The system performance under
different settings of transmission power is shown in Figure 9.
As the transmission power is regulated, the network yield
does not change much, remaining at 35%–50%. A higher
transmission power does not help to stabilize the link quality,
nor does it result in a better network yield.

Similar results also hold for the impact of power on end
to end delay. We also find that the highest power does not
necessary mean the shortest delay.

With such observations we have to carefully reconsider the
way we used to view the wireless links in sensor networks. Are
they inherently unpredictable with fluctuating quality? If so,
are the link fluctuations due to the unpredictable environmental
dynamics? Otherwise, assuming the wireless links as indeed
good medium for data communications, do the current designs
and protocols simply fail to make the best use of them?

V. Who Moved Our Cheese?

As we have experienced from our basic observations, the
network cannot unlimitedly scale due to the physical resource



Fig. 7: The traffic distribution over the network.
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Fig. 9: The system performance under different settings of transmis-
sion power.

constraint. In this section, we summarize from our basic
observations and try to explore the major factors that limit
the system scale. What is the dominant resource that is at
the first depleted when the network workload scales? Is such
resource appropriately used? Where are the places of resource
depletion that bottleneck the entire network? How should
existing protocols be improved to adapt to large-scale sensor
network characteristics? Bearing those questions in mind, we
proactively look into our data traces and conduct a new set of
experiments.

A. The Last Straw that Breaks the Camel’s Back

As previously shown in Section IV, when the size of
the network scales and the traffic load increases, the overall
system performance drops, especially after the scale exceeds
a limit.

Differing from previous studies, our measurement results
suggest that the “hot area” problem around the sink does
not play a major role in degrading the system performance.
Instead, we observe a set of critical nodes that are distributed
across the network. Those critical nodes receive excessive
incoming traffic, with fluctuating link loss rates and account
for a large portion of packet drops. Current data collection
protocols, like CTP with ETX as the routing metric, however,
do not seem to successfully handle those cases in time. The
routing structure often overreacts to the ETX increases, leading
the network traffic concentrated from one area to another,
creating “hot” spots from time to time.

In Figure 10, we post a 60 hour statistics on the data for-
warding behaviors of a particular node (node 225). In the first
half, it exhibits satisfactory performance, forwarding almost
all of the incoming packets successfully. Starting some inter-
mediate time point around the 30th hour, this node happens
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Fig. 10: The packet reception, forwarding, and drop at node 225
within 60 hours.

to drop all the incoming data packets while still successfully
sending its own data packet. This abnormal behavior is likely
related to a software bug that leads to locked memory of the
forwarding queue in CTP with special concurrent operations.
The real problem is that, even when such a node drops all
the incoming packets it receives, it is still selected as the
parent in the routing tables of many nodes for the rest of
time. Such a phenomenon is largely due to the fact that the
ETX indicator does not capture packet drops on a forwarding
node. The ETX measured at node 225 is always good and
broadcasted to its neighboring nodes, consistently absorbing
the traffic and dropping them. Against such a problem, an
aggregated indicator is urged, which should reflect both link
quality and node’s forwarding quality.

Thus our first conjecture is that: the bottlenecks in a large-
scale sensor network does not necessarily lie in the “hot area”
around the sink. It is likely that some of the intermediate nodes
bottleneck the entire network while the existing widely used
indicators may not accurately capture them.

B. How Dynamic Is the Environment?

According to our observations, the No_ACK_drop con-
tributes the largest portion of packet drops. In fact, many
existing works have reported the possibility of environmental
dynamics that affect link quality. To validate our guess, we
conduct an independent set of experiments. We place two
sensor nodes in the same environment where GreenOrbs is
deployed and measure the link quality between them under
different settings. The two nodes are placed 20m and 50m
apart, respectively. We let one node send data packets and the
other receive. Each packet contains 100 bytes payload. The
sending rate is set at 1Hz and then 20Hz. We measure the
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(a) 1Hz and 20m
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(b) 20Hz and 20m
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(c) 1Hz and 50m
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(d) 20Hz and 50m

Fig. 11: The RSSI and link loss rate measured at an independent pair of nodes.

RSSI and link loss rate at the receiver. Each set of experiment
is conducted three rounds at different time of a day, and each
round lasts for 1000 seconds.

As Figure 11 suggests, the RSSI, which is a major indicator
that measures the quality of propagated signal is relatively
stable through most of the time and settings. The fluctuation
of RSSI is mostly composed of a series of sparkling burrs. That
is quite possible from the interference from nearby 802.11b
AP signals, as reported in [23]. Only in the experiment of
50m distance and 20Hz sending rate, the RSSI varies around
−90dBm, and there appear some observable link losses. This
is mainly because the CC2420 transceiver has a receiving
sensitivity at around −93dBm to −87dBm [10].

The above measurement results indicate that the signal
propagation in the wild is not as dynamic as we imagined.
Recall that in our observations on the link performance, the
link loss rate fluctuates far more intensively (see Figure 8)
and there is not an apparent correlation between the link
loss rate and the traffic overhead on that link. However, as
our network-wide statistics suggest, the high link loss usually
occur at those nodes within or near high traffic regions.
Such observations suggest that the fluctuating link loss is
due to the collisions of concurrently transmitted packets in
those regions. Such contentions are not effectively detected
by the CSMA mechanism, resulting in improper concurrency.
Considering the dense deployment of sensor networks, the
traditional wireless “hidden terminal” problem might be far
more popular than else where like 802.11 AP network or
MANET where the network is usually of a small density.

Thus our second conjecture is that: most of the wireless
links used in sensor networks are physically stable. The
dynamics of sensor networks do not mainly come from the
external environment but the internal network operations. The
inherent concurrency of operations among different nodes
should be further investigated and considered in designing
scalable network protocols.

C. Adaptive Routing Design

While our measurement results reflect that the environment
introduces very limited dynamics to the network, the impact
from the deployment environment itself is non-negligible.

A general manner of sensor nodes deployment is to place
them uniformly across the field, aiming to provide a uniform
networking infrastructure. As explicitly shown in Figure 1,
however, the resulting networking infrastructure of GreenOrbs
does not match the expectation. Some nodes have excessive
neighbors and forward much more data than others. Some of
them become critical nodes later, bottlenecking the network
performance. We fail to achieve logical uniformity from
geological uniformity, largely due to the inherent irregularity

of the deployment environment. The bumpy floor in the wild,
woods standing in between, slope of the hill, and etc., all en-
vironment factors make the signal propagation irregular. Only
after the networking characteristics are thoroughly studied
after deployment, we are able to provide customized schedule
in the routing layer that optimizes the system performance.

While current dynamic routing approaches aim to be adap-
tive to the network dynamics, they usually lack tailored opti-
mization in adapting to the surrounding environment. Besides,
according to our observations, the environment impacts are
relatively stable, providing us adequate room in designing
comparatively stable while highly optimized routing protocols.

Figure 12 exhibits our preliminary attempt in support our
argument. During the system operation, we let the network
first run with CTP routing for 120 minutes. Then we fix
the routing tables for another 120 minutes, letting each node
forward packets to a fixed parent node. We do not observe
apparent difference between the performance of network yield
in the two working periods.

We believe, with careful consideration on the actual network
structure under the practical environment and an intelligent
learning process, it is very possible that a highly optimized
static routing structure outperforms existing dynamic routing
approaches in a large-scale sensor network. Moreover, a static
routing structure can be made adaptive to the environment
changes on an event-triggered basis. The routing structure will
only be reconstructed when sharp events happen like intensive
weather changes, large relief variations, a broad area of sensor
damages, and etc, and after adequate knowledge about the new
environment is learnt.

Thus our third conjecture is that: the environment, while
with less dynamics than we expected, has an unpredictable
impact on the sensor network system running under it. Current
dynamic routing approaches usually lack adaption to the sur-
rounding environment without adequately learning its unique
characteristics. We suggest that an event-based static routing
structure may have better performance in operating a large-
scale sensor network in the wild environment.

VI. Conclusions

In this work we conduct a measurement study on a large-
scale operating sensor network system, GreenOrbs, with up to
330 nodes deployed in the wild. We aim to comprehensively
understand how the sensor network performs when it scales to
contain hundreds or even thousands of nodes. We instrument
such an operating network throughout the protocol stack. The
contribution of this work is twofold.

First, to the best of our knowledge, we are the first to
conduct a long term and large-scale measurement study on an
operating sensor network in the wild. We present observations
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Fig. 12: The performance comparison between original CTP routing
and that when the routing table is fixed.

across a variety of layers in the network that provide research
community empirical experiences on how practical problems
affect when the sensor network scales.

Second, based on our basic findings from the system mea-
surement, we further propose and initially attempt to validate
three conjectures that provide guidelines for future algorithm
and protocol designs with larger scale sensor networks. In
summary, (1) we think it might be very possible that some
of the intermediate nodes bottleneck the entire network, and
most of currently used indicators may not accurately capture
them; (2) most of the wireless links in large scale sensor
networks are physically stable. The dynamics mainly come
from the inherent concurrency of network operations which
should be further investigated and considered in designing
scalable network protocols; (3) the environment, while with
insignificant dynamics, has an unpredictable impact on the
sensor network under it. We suggest that an event based
routing structure can be trained optimized and thus better adapt
to the wild environment when building a large-scale sensor
network.

Acknowledgments

This work is supported in part by NSFC/RGC Joint Re-
search Scheme N_HKUST602/08, National Basic Research
Program of China (973 Program) under Grants 2010CB328000
and No. 2011CB302705, COE_SUG/RSS_20 Aug2010_13/14
in Nanyang Technological University of Singapore, the NSFC
under Grant No. 60803152, NSF CNS-0832120, NSF CNS-
1035894, National Natural Science Foundation of China under
Grant No. 60828003, program for Zhejiang Provincial Key In-
novative Research Team, and program for Zhejiang Provincial
Overseas High-Level Talents (One-hundred Talents Program).

References
[1] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,

S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong, “A
Macroscope in the Redwoods,” in Proc. of ACM SenSys, 2005.

[2] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh,
“Fidelity and Yield in a Volcano Monitoring Sensor Network,” in Proc.
of OSDI, 2006.

[3] M. Li and Y. Liu, “Underground Coal Mine Monitoring with Wireless
Sensor Networks,” TOSN, vol. 5, no. 2, pp. 1–29, 2009.

[4] T. He, P. Vicaire, T. Yan, Q. Cao, G. Zhou, L. Gu, L. Luo, R. Stoleru,
J. A. Stankovic, and T. F. Abdelzaher, “Achieving Long-Term Surveil-
lance in VigilNet,” TOSN, vol. 5, no. 1, pp. 1–39, 2009.

[5] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin, “A Wireless Sensor Network For Structural
Monitoring,” in Proc. of ACM SenSys, 2004.

[6] G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: A Wireless
Sensor Network Testbed,” in Proc. of ACM/IEEE IPSN, 2005.

[7] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and
M. Parlange, “SensorScope: Out-of-the-Box Environmental Monitor-
ing,” in Proc. of ACM/IEEE IPSN, 2008.

[8] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle,
K. Whitehouse, and D. Culler, “Trio: Enabling Sustainable and Scal-
able Outdoor Wireless Sensor Network Deployments,” in Proc. of
ACM/IEEE IPSN, 2006.

[9] K. Srinivasan and P. Levis, “RSSI is Under Appreciated,” in Proc. of
EmNets, 2006.

[10] CC2420 data sheet: http://focus.ti.com/lit/ds/symlink/cc2420.pdf.
[11] T. He, P. Vicaire, T. Yan, Q. Cao, G. Zhou, L. Gu, L. Luo, R. Stoleru,

J. A. Stankovic, and T. F. Abdelzaher, “Achieving Long-Term Surveil-
lance in VigilNet,” in Proc. of IEEE INFOCOM, 2006.

[12] E. Ertin, A. Arora, R. Ramnath, M. Nesterenko, V. Naik, S. Bapat,
V. Kulathumani, M. Sridharan, H. Zhang, and H. Cao, “Kansei: A
Testbed for Sensing at Scale,” in Proc. of ACM/IEEE IPSN, 2006.

[13] A. Arora, R. Ramnath, E. Ertin, and et al., “ExScal: Elements of an
Extreme Scale Wireless Sensor Network,” in Proc. of IEEE RTCSA,
2005.

[14] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “The Hitch-
hiker’s Guide to Successful Wireless Sensor Network Deployments,” in
Proc. of ACM SenSys, 2008.

[15] A. Woo, T. Tong, and D. Culler, “Taming the Underlying Challenges
of Reliable Multihop Routing in Sensor Networks,” in Proc. of ACM
SenSys, 2003.

[16] J. Zhao and R. Govindan, “Understanding Packet Delivery Performance
in Dense Wireless Sensor Networks,” in Proc. of ACM SenSys, 2003.

[17] D. Ganesan, D. Estrin, A. Woo, and D. Culler, “Complex Behavior
at Scale: An Experimental Study of Low-Power Wireless Sensor Net-
works,” UCLA and UC Berkeley, Tech. Rep., 2002.

[18] S. Lin, G. Zhou, K. Whitehouse, Y. Wu, J. A. Stankovic, and T. He,
“Towards Stable Network Performance in Wireless Sensor Networks,”
in Proc. of IEEE RTSS, 2009.

[19] T. Liu, A. Kamthe, L. Jiang, and A. Cerpa, “Performance Evaluation
of Link Quality Estimation Metrics for Static Multihop Wireless Sensor
Networks,” in Proc. of IEEE SECON, 2009.

[20] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level
Measurements from an 802.11b Mesh Network,” in Proc. of ACM
SIGCOMM, 2004.

[21] M. Zuniga and B. Krishnamachari, “Analyzing the Transitional Region
in Low Power Wireless Links,” in Proc. of IEEE SECON, 2004.

[22] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin, “Temporal Proper-
ties of Low-Power Wireless Links: Modeling and Implications on Multi-
Hop Routing,” in Proc. of ACM MobiHoc, 2005.

[23] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “Understanding the
Causes of Packet Delivery Success and Failure in Dense Wireless Sensor
Networks,” Stanford University and UC Berkeley, Tech. Rep., 2006.

[24] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis, “The Beta
Factor: Measuring Wireless Link Burstiness,” in Proc. of ACM SenSys,
2008.

[25] G. Zhou, T. He, J. A. Stankovic, and T. Abdelzaher, “RID: Radio
Interference Detection in Wireless Sensor Networks,” in Proc. of IEEE
INFOCOM, 2005.

[26] R. Maheshwari, S. Jain, and S. R. Das, “A Measurement Study of Inter-
ference Modeling and Scheduling in Low-power Wireless Networks,”
in Proc. of ACM SenSys, 2008.

[27] R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan, “Understand-
ing and Mitigating the Impact of RF Interference on 802.11Networks,”
in Proc. of ACM SIGCOMM, 2007.

[28] L. Qiu, Y. Zhang, F. Wang, M. K. Han, and R. Mahajan, “A General
Model of Wireless Interference,” in Proc. of ACM MobiCom, 2007.

[29] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collec-
tion Tree Protocol,” in Proc. of ACM SenSys, 2009.

[30] G. Tolle and D. Culler, “Design of an Application-Cooperative Man-
agement System for Wireless Sensor Networks,” in Proc. of EWSN,
2005.

[31] M. Maróti, B. Kusy, G. Simon, and Ákos Lédeczi, “FTSP: The Flooding
Time Synchronization Protocol,” in Proc. of ACM SenSys, 2004.

[32] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-
throughput Path Metric for Multi-hop Wireless Routing,” in Proc. of
ACM MobiCom, 2003.

[33] S. Olariu and I. Stojmenovic, “Design Guidelines for Maximizing
Lifetime and Avoiding Energy Holes in Sensor Networks with Uniform
Distribution and Uniform Reporting,” in Proc. of IEEE INFOCOM,
2006.

[34] X. Wu, G. Chen, and S. K. Das, “Avoiding Energy Holes in Wireless
Sensor Networks with Nonuniform Node Distribution,” TPDS, vol. 19,
no. 5, pp. 710–720, 2008.


