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Abstract—Wormhole attack is a severe threat to wireless ad
hoc and sensor networks. Most existing countermeasures either
require specialized hardware devices or make strong assumptions
on the network in order to capture the specific (partial) symptom
induced by wormholes. Those requirements and assumptions
limit the applicability of previous approaches. In this work, we
present our attempt to understand the impact and inevitable
symptom of wormholes and develop distributed detection meth-
ods by making as few restrictions and assumptions as possible.
We fundamentally analyze the wormhole problem using a topol-
ogy methodology, and propose an effective distributed approach,
which relies solely on network connectivity information, without
any requirements on special hardware devices or any rigorous
assumptions on network properties. We rigorously prove the
correctness of this design in continuous geometric domains and
extend it into discrete domains. We evaluate its performance
through extensive simulations.

I. INTRODUCTION

Wireless ad hoc and sensor networks are emerging as

promising techniques for ubiquitous data exchange and infor-

mation sharing. A particularly severe attack against wireless

ad hoc and sensor networks is wormhole attack, which has

been independently introduced in previous works [14] [9]

[17]. In wormhole attacks, the attackers tunnel the packets

between distant locations in the network through a high-

speed out-of-band channel. The wormhole tunnel gives two

distant nodes the illusion that they are close to each other. By

building these wormhole tunnels, the attackers attract a large

amount of network traffic and thus, are able to launch a vari-

ety of attacks, e.g., the attackers can selectively drop specified

packets, forward packets out of order, modify packets, etc.

More importantly, by collecting packets for analyzing traffic

or compromising cryptographies, adversaries are able to use

the wormhole attack as a stepping stone for many other more

aggressive and severe attacks, such as network hijacking,

man-in-the-middle attacks, and cipher breaking, significantly

imperiling routing, localization, topology control, as well

as many other network protocols [9]. Since the wormhole

attack can be launched without compromising any legitimate

node or cryptographic mechanisms [9], most generic security

mechanisms are vulnerable to such attacks.
The wormhole attack problem has received considerable at-

tentions recently. Many countermeasures have been proposed

to detect wormholes in wireless ad hoc and sensor networks.

Those solutions typically catch the attacks by detecting

partial symptoms induced by wormhole. Generally, existing

symptom-based methods either depend on specialized hard-

ware devices or make relatively strong assumptions on the

networks. For example, some approaches employ specialized

hardware devices, such as GPS [9] [20], directional antennas

[8], or special radio transceiver modules [2], which introduce

significant amounts of extra hardware costs for the systems.

Other types of approaches are based on strict assumptions,

such as global tight clock synchronization [9], special guard

nodes [12], attack-free environments [10], or unit disk com-

munication models [13]. These rigorous requirements and

assumptions largely restrict their applicability in networks

composed of a large number of low-cost resource-constrained

nodes.

To fully address wormhole attack in ad hoc and sensor

network, we need to answer the following two questions:

(1) what symptoms feature the most essential characteristics

caused by wormhole attacks and (2) how to gracefully

design the countermeasures without critical requirements or

assumptions. Our design goal is to rely solely on network

connectivity information to detect and locate the wormholes.

We focus our study on a fundamental view on the multihop

wireless network topologies, aiming at catching the topolog-

ical impact introduced by the wormhole.

More concretely, we explore the fact that a legitimate

multihop wireless network deployed on the surface of a

geometric terrain (possibly with irregular boundaries, inner

obstacles, or even on a non-2D plain) can be classified as a 2-

manifold surface of genus 0, while the wormholes in the net-

work inevitably introduce singularities or higher genus into

the network topology. We classify wormholes into different

categories based on their impacts on topology. We then design

a topological approach, which captures fundamental topology

deviations and thus, locates the wormholes by tracing the

sources leading to such exceptions. Our approach solely

explores the topology of the network connectivity. We do not

require any special hardware devices, yet have no additional

assumptions on the networks, such as awareness of node

locations, network synchronization, unit disk communication

model, or special guard nodes. The detection algorithm is

carried out in a distributed manner across the network to

avoid dependence on a small portion of the network, which

could become the target of the adversaries.



The rest of this paper is organized as follows. We first

discuss those existing studies in Section II, and then formally

define the wormhole problem and its detection methods in

Section III. In Section IV, we characterize the wormhole

in topologies and describe theoretical principles of a funda-

mental detection method. Section V extends this design into

discrete networks and shows the details of the detection pro-

tocol. We evaluate this design through extensive simulations

in Section VI, and conclude the work in Section VII.

II. RELATED WORK

Existing countermeasures largely rely on observing the

derivative symptoms induced by wormholes residing in the

network. All of these approaches have their respective advan-

tages and drawbacks. Applicability of approaches is largely

dependent on specific system configurations and applications.

Some approaches observe the symptom of Euclidean dis-

tance mismatch in the network. Hu et al. [9] introduce

geographic packet leash. By appending the location infor-

mation of the sending nodes in each packet, they verify

whether the hop-by-hop transmission is physically possible

and accordingly detect the wormholes. Wang et al. [20]

instead verify the end-to-end distance bounds between the

source and the destination nodes. Zhang et al. [22] propose

location-based neighborhood authentication scheme to locate

the wormholes. Such approaches require the pre-knowledge

of network locations to capture the distance mismatch.

Some approaches observe the symptom of time mismatch

in packet forwarding. Hu et al. [9] introduce temporal packet

leash, which assumes tight global clock synchronization and

detects wormholes from exceptions in packet transmission

latency. Capkun et al. [2] propose SECTOR which measures

the round-trip travel time (RTT) of packet delivery and de-

tects extraordinary wormhole channels. SECTOR eliminates

the necessity of clock synchronization, but assumes special

hardware equipped by each node that enables fast sending

of one-bit challenge messages without CPU involvement.

TrueLink proposed by Eriksson et al. [5] is another RTT

based approach. It relies on the exchange of vast verifiable

nonces between neighboring nodes. They modify the standard

IEEE 802.11 protocols for the implementation. It remains

unclear how effective such an approach is for the resource

constraint ad hoc or sensor network hardware.

Some approaches observe the symptom of neighborhood

mismatch that leads to physical infeasibility. Hu et al. [8]

adopt directional antennas and find infeasible communicating

links by utilizing the directionality of antenna communica-

tion. Khalil et al. [10] propose LiteWorp, which assumes the

existence of an attack-free environment before the wormhole

attacks are launched. During the deployment phase, each

node collects its 2-hop neighbors and LiteWorp then selects

guard nodes to detect wormhole channel by overhearing the

infeasible transmissions among non-neighboring nodes. They

further propose MobiWorp [11] to complement LiteWorp

with the assistance of some location-aware mobile node.

Some approaches observe the symptom of graph mismatch

under special assumptions of network graph models. Pooven-

dran et al. [12] [16] present a graph based framework to

tackle wormholes. Their approach assumes the existence of

guard nodes with extraordinary communication range. The

direct communication links between guard nodes and regular

nodes implicitly form a geometric graph and the wormholes

will break the constraints. Wang et al. [19] graphically visual-

ize the presence of wormholes. They reconstruct the layout of

the networks by multi-dimensional scaling (MDS). Through

the distance measurements between neighboring nodes, a

central controller calculates the network layout and captures

the wrap introduced by wormholes. Recently, authors in [13]

propose a completely localized approach to detect wormholes

with only network connectivity. By exploiting the forbidden

packing number in the Unit Disk Graph (UDG) embedding

of network graphs, the approach is able to detect wormholes

with high accuracy. As a clear and elegant approach, however,

it has its own limitations due to the assumption of UDG graph

model and its basis on the symptom of packing number. It

may fail when a wormhole does not cause an increase of

packing number. It is thus inaccurate under non-UDG graphs.

Some approaches observe the symptom of traffic flow

mismatch based on statistic analysis on the network traffic.

Song et al. [18] observe the fact that the wormhole links

are selected for routing with abnormally high frequency and

by comparing with normal statistics they can identify the

wormhole links. Another statistical approach proposed by

Buttyan et al. [1] captures the abnormal increase of the

neighbor number and the decrease of the shortest path lengths

due to wormholes. The base station then centrally detects

wormholes using hypothesis testing based on pre-statistics of

normal networks.

To sum up, existing approaches heavily rely on specialized

hardware or rigorous assumptions to capture the wormhole

symptoms. Indeed, there are still no perfect symptoms found

to establish an all-round method in the resource-limited ad

hoc and sensor networks. Our design, based on topological

observation, is orthogonal to existing approaches and takes a

step towards relaxing these assumptions and expanding the

applicability of methods.

III. PROBLEM FORMULATION

Poovendran et al. gave a formal definition of the wormhole

problem based on the UDG communication graph model in

Euclidean space [16]. According to their definition, a com-

munication link is a wormhole link if the distance between

its two endpoints exceeds the regular communication range.

This concise definition, however, also has its own limitations.

First, the definition is given under the constraints of the UDG

communication graph model, which has been proven far from

practical in many analytical and experimental works. Second,

the distance-based definition in Euclidean space naturally

binds the wormhole features with external geometric envi-

ronments, and thus neglects the inherent topological impacts



introduced by wormholes. We hereby present a more general

and fundamental definition of the wormhole attack based

only on network topologies and aim to present the inherent

characteristics of wormholes.

Definition 1: (Generalized Wormhole Attacks) Let G be

a communication graph of a network, and w be an attack

on the network. Let Gw be the perceived communication

graph after the attack w. Let L(u, v) and Lw(u, v) denote

the lengths of the shortest paths between an arbitrary pair

of nodes u, v ∈ V (G) ∩ V (Gw) on G and Gw respectively.

If Lw(u, v) < L(u, v), we say that Gw is under wormhole

attacks (or w launches a wormhole attack). λuv = L(u, v)−
Lw(u, v) quantifies the shortened path length of w between

u and v. The intensity of the wormhole attack w is defined

as λ = max{λuv|u, v ∈ V (G) ∩ V (Gw)}.

Definition 1 formalizes the wormhole attack based only on

the network topologies. The wormholes defined by Pooven-

dran et al. are indeed all included by our definition. The attack

intensity λ describes the intensity of the topological distor-

tion brought by the wormhole attack. Intuitively, a larger

λ corresponds to a more intensive distortion on network

topologies. We then present our definition on generalized

wormhole detection method.

Definition 2: (Generalized Wormhole Detection Methods)

Let GL ⊆ G denote the set of legitimate network commu-

nication graphs, where G is the set of arbitrary communica-

tion graphs. Let K denote the pre-knowledge on legitimate

network communication graphs. Let P denote the set of

network properties, including graph or topological invariants.

MK : G → P is a mapping from the set of communication

graphs to the set of network properties. If for any G ∈ GL,

MK(G) ⊆ MK(GL), MK provides a detection method,

which does not cause false positive results. If for any graph

G /∈ GL, MK(G) � MK(GL), MK is a detection method

without false negative. MK is a perfect method if it produces

neither false negative nor false positive results.

Essentially, Definition 2 covers all possible methods that

rely on network topologies for detecting wormholes. Differ-

ent specific methods differ on assuming what pre-knowledge

on the legitimate network and exploring what properties of

the network topologies. For example, we explain this by

an instance of wormhole detection methods which has been

recently introduced by Maheshwari et al. [13]. Their method

assumes a pre-knowledge K that the legitimate network

communication graph is UDG, and mainly relies on the

property P ∈ P that the lune packing number in an UDG

embedding of the legitimate network communication graph

is 2.

IV. CHARACTERIZING WORMHOLES

In this section, we model and characterize wormhole

attacks on network topologies, and then propose the detection

approach accordingly. Aiming at a distributed algorithm

based on minimum assumptions on the pre-knowledge of a

network, we intend to detect wormholes by solely depending
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Fig. 1: Four different types of wormholes on the surface.

on local cooperation and estimations. Nevertheless, the topo-

logical impact of wormholes is global, so how to characterize

the global properties of wormholes from local information

becomes a major challenge.

We address the above problem through algebraic topology,

by using homology and homotopy in general topological

space. We introduce concepts, develop principles and present

related theorems in continuous domain. We first introduce

topological preliminaries. We then characterize the topo-

logical features of wormholes and classify the wormholes.

Finally, we present the principles for the wormhole detection

and prove theoretical guarantees. We extend our discussion

to practical discrete networks in the next section.

A. Preliminaries

We use concepts and terminologies in combinatorial and

computational topology. We first give a brief overview on

the concepts and theories involved in our later discussions.

Not all definitions are necessarily standard. For detailed

explanations, see the books by Hatcher [7].

Given a topological space T , a path is a continuous

function p : [0, 1] → T ; a path whose endpoints coincide is

called a loop. A homotopy between two paths p and q with the

same endpoints is a continuous function h : [0, 1][0, 1] → T ,

such that h(0, t) = p(t) and h(1, t) = q(t) for all t, and

h(s, 0) = p(0) = q(0) and h(s, 1) = p(1) = q(1) for all s.

Two paths are homotopic if there is a homotopy from one to

the other. A loop is contractible if it is homotopic to a point.

In our work, we consider network deployment region as

connected, compact and orientable (two-sided) 2-manifold

surfaces that are topological Hausdorff spaces, where each

point has a neighborhood homeomorphic either to the plane

or to the closed half plane. This definition contains almost

all ordinary surfaces observable in our daily life. In the rest

of the paper, all surfaces mean such surfaces unless we

explicitly state otherwise. When topological space T is a

given surface S, a curve is a path and a closed curve is

a loop. A simple closed curve is an injective closed curve

that does not intersect itself. Two curves with the same

endpoints on S are homotopic to each other if and only if one

can be smoothly deformed to the other without leaving the

surface. A closed curve is contractible if it is homotopic to a

point, otherwise it is non-contractible. A closed curve is non-
separating if the surface keeps connected after its removal.

A closed curve is separating if it splits the surface into

two or more components. The genus of a surface represents

the maximum number of simple closed curves that can be

removed without disconnecting the manifold. For example,



a sphere and a disc have genus 0, while a torus has genus

1. Homotopy is actually an equivalence relation on the set

of closed curves on S with any fixed basepoint. It classifies

the set of cycles on a given surface into a set of homotopy

classes, where cycles in each class are transformable to one

another while cycles in different classes are not.

B. Characterizing Wormholes

Normally, a wireless multihop network is deployed on

the surface of a geometric environment, such as a plane

or a rough terrain. In this section, we develop principles

in continuous domain, assuming continuous deployment of

nodes over the geometric surface with one-to-one mapping

to the points on the surface. In the continuous setting, a

legitimate network is a 2-manifold surface without singular

points and of genus 0, which is homotopic to the plane area

with a certain number of boundaries (holes). We refer to

the surface of the legitimate network as original surface. A

wormhole link is a continuous line segment with extremely

short length that connects two points on the surface.

A new topology space is formed after the wormhole is

glued on the original surface. We subsequently analyze how

the different topology spaces are generated after gluing dif-

ferent types of wormholes. We classify wormholes into four

categories, according to their topological impacts. Figure 1

shows the four types of wormholes. For Class I wormhole,

both of its two endpoints locate inside the surface. Class II

wormhole has one endpoint inside the surface and the other

on the boundary of the surface. Class III wormhole has its

endpoints on two different boundaries. Class IV wormhole

has both of its endpoints on the same boundary. The four

types of wormholes have different topological impacts on

the original surface, and the complex wormhole attack can

be considered as a finite combination of them.

1) Single wormhole impact:
We first consider the impact of a single wormhole. We

then analyze the impact of the combination of multiple

wormholes.

a) Class I and II wormholes. Figure 2 shows an example

of how a spherical surface X is affected by a wormhole link

AB, which represents a Class I or II wormhole. Figure 2 (a)

shows the new topology quotient space X\AB [7], with

link AB glued on the spherical surface X . Figure 2 (b)

shows a homotopy equivalent topology with Figure 2 (a),

which contracts the line AB into a single point O. The

new topology space can be considered as collapsed from

a torus Y , as shown in Figure 2 (c). By contracting a

longitudinal cycle around the torus, Y collapses into X\AB.

Clearly, such a collapse is not a homotopy equivalence from

Y to X\AB. In this sense, we say that X\AB contains

degenerated genus 1. Strictly speaking, the new topology

space after the injection of Class I or II wormhole is no longer

a surface, as the neighborhood of the wormhole endpoint

is not homeomorphic with a plane or closed half plane.

Informally, we call it as a surface with singularities.

A

B

(a)

o

(b) (c)

Fig. 2: (a) Link AB glued on a spherical surface X; (b) Link AB
is contracted to a single point O; (c) Torus Y , which may collapse
into X\AB by contracting a longitudinal cycle into one point.

b) Class III wormholes. When the surface is of multiple

boundaries (the network containing physical holes), Class

III wormhole might appear as shown in Figure 3 (a). The

topology space of Figure 3 (a) is homotopy equivalent to

that in Figure 3 (b), which contracts the wormhole link into

a point. We focus on the two non-contractible cycles α and

β in Figure 3 (b). Cycle α goes through the wormhole, and

cycle β wraps the inner boundary. Figure 3 (b) can be seen

as the deformation retract of Figure 3 (c), where the cycles α
and β in Figure 3 (c) correspond to α and β in Figure 3 (b)

respectively. Indeed, Figure 3 (a-c) are homotopy equivalent

to each other. Typically, a Class III wormhole concatenates

two different boundaries and increases the genus by 1.

An interesting phenomenon happens under Class III worm-

hole. The twisted cycle α and cycle β are actually symmet-

rical to each other in the sense of topology. Imaging that if

we overturn the surface in Figure 3 (c), the meridional circle

α becomes a longitudinal circle, while the longitudinal circle

β becomes a meridional circle. Without the knowledge that

β is homotopic to a physical boundary beforehand, we are

not able to differentiate α and β in Figure 3 (b) through only

topologies.

c) Class IV wormholes. A Class IV wormhole connects two

points on the same boundary. Thus Class IV wormhole adds

a bridge to the original surface and separates the boundary

into two. In summary of above discussions, we obtain the

Theorem 1.

Theorem 1: After inserting one wormhole into the original

surface, Class I or II wormhole adds one degenerated genus,

Class III wormhole adds one genus and reduces a boundary,

and the Class IV wormhole adds a boundary.

2) Combination of multiple wormholes:
When two or more wormholes exist on the surface, Class

I or II wormholes still introduce independent impacts, each

leading to the increase of degenerated genus by 1. Mul-

tiple Class III and Class IV wormholes, however, might

introduce interchangeable effects. As the example shown in

Figure 3 (d), two Class IV wormholes w1 and w2 are injected

on the surface crossing each other. A single wormhole w1 or

w2 adds a boundary to the surface, but the combination of

them adds genus by 1. As a matter of fact, Figure 3 (d) is

homotopy equivalent to Figure 3 (a-c). The example above

can be explained as follows. After the first Class IV wormhole

w1 or w2 is glued on the surface, the boundary of the original

surface is split into two. When we add the second Class
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w1
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(d)
Fig. 3: The impact of wormholes. (a) A single Class III wormhole; (b) The homotopic surface when contracting the wormhole link in (a);
(c) The homotopic surface to (a) and (b); (d) Two Class IV wormholes crossing each other.

IV wormhole, its two endpoints are then on two different

boundaries, so the wormhole is slid to a Class III wormhole

to the new surface. The consequence is a combination of a

Class IV wormhole and a Class III wormhole, leading to the

increase of genus.
When multiple wormholes are injected to the original

surface, we can consider them as being sequentially glued

to the surface. The type of each wormhole is determined

according to the instant surface when it is glued. Class I

and II wormholes will not be affected by previous injected

wormholes, while Class III and IV wormholes might inter-

change their types according to the boundary separation or

concatenation. The sequence in gluing the wormholes does

not affect the final topological impact. We look into the final

impact of multiple wormholes and characterize the topology

surface with genus g, degenerated genus d and b boundaries

as τ(g, d, b), where g, d and b are non-negative integers. We

can obtain the Theorem 2, which can be proved by following

Theorem 1 and induction on the number of wormholes.
Theorem 2: Given the original surface τ0 = τ(g0, d0, b0)

and the final surface τ(g, d, b) after N wormholes are in-

jected, there is N = 2(g − g0) + (d − d0) + b − b0. Among

the N wormholes, there are d − d0 Class I or II wormholes

and 2(g − g0) + b − b0 Class III or IV wormholes.
According to our per-knowledge on the legitimate network

graph, the original surface has genus 0 and degenerated genus

0, so the original surface can be characterized as τ(0, 0, b0)
where b0 is the number of boundaries (which is equal to the

number of inner holes + 1). According to Theorem 2, we can

calculate the number of different types of wormholes if we

can characterize the final topology space.

C. Tracing Wormholes
We hereby present the principle of tracing wormholes

in continuous topology surface. For the convenience of

presentation, we take a macroscopic view on the global

network. In real implementation, the algorithm does not

depend on centralization throughout the network. A node

makes decisions solely based on its local information.
The proposed algorithm aims to trace wormholes through

detecting the genus and degenerated genus. The main idea of

the algorithm is to find the non-separating cycles associated

with wormholes. Figure 4 (a) shows an example of a surface

with wormholes where the two circular lines indicate tow

potential non-separating cycles.
1) Finding cut locus and candidate loops:
Given the wormhole infected surface S, we first select an

arbitrary point in S as the root and run a continuous Dijkstra

shortest path algorithm [4], as shown in Figure 4 (b). Each

point is thereafter aware of its shortest geodesic paths to

the root. We call the set of points that have more than one

shortest path to the root the cut locus [4], denoted by CS .

After discovering the Dijkstra shortest paths to the root, we

find a cut locus forms there. If we cut the surface along

the cut locus, the surface becomes a topological disk. The

paths marked by bold dashed lines are part of the cut locus.

The point in cut locus which has at least three shortest paths

to the root is called a branch vertex of the cut locus, like

point v in Figure 4 (b). The branch vertices separate the cut

locus into cut paths, like path p1, p2 and p3 in Figure 4 (b).

Each cut path has two endpoints. The endpoint of a cut path

can be a branch vertex or not. We call the endpoint leaf
vertex, if it is not a branch vertex. The leaf vertex can be

on the boundary or in the interior of the surface. We further

distinguish them as boundary leaf vertex and interior leaf
vertex. We can transform the cut locus CS into its subgraph

reduced cut locus through repeatedly removing all interior

leaf vertices [4]. We denote the obtained reduced cut locus

as C(P, V ), where P is the set of cut paths and V is the set

of branch and boundary leaf vertices.

Let p ∈ P be a cut path in the reduced cut locus and

a ∈ p be an arbitrary point on p. There are at least two non-

homotopic shortest paths from a to the root. By concatenating

the two non-homotopic paths, we obtain a loop la and it

is clear that loop la is non-contractible. We say that a is

the witness of la. For any two points a, b ∈ p, if la and

lb are the loops witnessed by a and b respectively, la and

lb are homotopy equivalent [4]. For each cut path p∈P , we

arbitrarily select a loop witnessed by one point p and denote

it as lp. Thus we obtain a set of loops L = {lp| p ∈ P}, which

we call the candidate loop set. Figure 4 (c) displays the three

candidate loops l1, l2 and l3, corresponding to the three cut

paths p1, p2 and p3 in Figure 4 (b) respectively. Following

Lemma 4.2 in [3], there are at most 4(g +d)+2b−2 branch

vertices, and 6(g + d) + 3b− 3 cut paths. Hence, the number

of candidate loops |L| < 6(g+d)+3b−3. For each candidate

loop l ∈ L, we do the following steps to clarify the situations

of wormholes.

2) Locating Class I or II wormholes:
To begin with, for checking whether or not the loop passes

through a degenerated genus (Class I or II wormholes), we

consider a small closed ε-neighborhood N(l) of l. N(l) =
{ε(x)|x ∈ l}, where ε(x) denotes the ε-neighborhood of

point x on the surface. As shown in Figure 4 (d), the bold

line denotes the candidate loop l, which passes through a
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Fig. 4: Tracing wormholes by topologies.

Class I wormhole with its two endpoints labeled as e1 and

e2. If there exists a sufficiently small simple closed curve l′

in N(l) that crosses l odd times (two curves are not crossed if

they touch [7]), l can be marked as a loop through Class I or

II wormhole. We call l an independent non-separating loop.

We can further contract the cycle l′ in the figure as much as

possible while keeping it crossing l odd times. The cycle l′

eventually contracts to one endpoint of the wormhole, i.e.,

node e1 in Figure 4 (d). By this means, we can detect the

endpoints of all Class I and II wormholes.
3) Detecting Class III or IV wormholes:
The case of Class III and IV wormhole is different. As

both endpoints of such wormholes are on the boundaries of

a surface, we cannot find such a small cycle enclosing each

endpoint of a wormhole. Instead, we directly detect the genus

by checking whether the candidate loop l is a separating or

non-separating loop. There is an essential difference between

the two types of loops. The separating loop is two-sided but

the non-separating loop is one-sided. Figure 4 (e) displays a

separating loop that is formed due to the plain holes on the

surface. It is two-sided in the sense that if we flood from the

loop with different colors, e.g., red and blue to its two sides,

the two colors never meet. The loop shown in Figure 4 (f),

however, is a non-separating loop formed by genus. If we

flood red and blue to its two sides, as shown in Figure 4 (g),

the two colors ultimately meet with each other because the

loop is one-sided. By detecting the non-separating loop l,
we detect the genus introduced by Class III or Class IV

wormholes. Let t be a point on the cut between red and blue

areas. Let s ∈ l be an arbitrary point on l. There is a pair

of non-homotopic paths from s to t, one across the red area

and the other one across the blue area. The two paths form

a loop, which we denote in Figure 4 (g) as l′. Apparently, l′

crosses l at a single point s. As we will later see in Lemma 4,

both l and l′ are non-separating loops. We call l a dependent
non-separating loop and l′ the partner loop of l. Further, we

call the two non-separating loops that cross each other knit
non-separating loop pair. We can conclude that there must

be at least one Class III or IV wormhole in the knit non-

separating loop pair. Yet as we mention in Figure 3 (c), the

two loops are topologically indistinguishable and we cannot

conclude which loop passes through the wormhole.

To summarize, for each candidate loop l ∈ L, we classify

it into one of the three types: separating loop, independent

non-separating loop, or dependent non-separating loop. We

detect and locate Class I and II wormholes from independent

non-separating loops. We detect Class III and IV wormholes

from dependent non-separating loops.

D. Correctness and Optimality

We prove that our method is able to detect all the detectable

wormholes correctly. We first discuss the correctness and

capability of this method, and then analyze the theoretical

bound in topologically detecting wormholes.

Theorem 3: Let L be the set of candidate loops, all worm-

holes reside within L.

Proof: It is not difficult to prove that there exists a subset

L′ ⊆ L, which constitutes a homotopy basis of the original

surface [4]. Let w be an arbitrary wormhole on the surface,

and lw is an arbitrary loop on the surface that passes through

w. Since L′ is a homotopy basis, there must exists a loop lc
homotopy equivalent to lw while lc can be represented as the

concatenation of some proper loops in L′. It means w must

be passed through by at least one loop in L′ ⊆ L.

From Theorem 3, we have confined the locations of all

possible wormholes within the candidate loops L, although

we may not be able to locate exactly the endpoints of all

wormholes on L. Now, we prove our method is effective

and accurate on detecting Class I and II wormholes. We first

present Lemma 4, which reveals the parity property of the

non-separating loops.

Lemma 4: On surface S, a cycle c is non-separating if

there is a cycle c′ such that c′ crosses c odd times.

Proof: Following Lemma 2.1 in [15], if c is separating,

S − c has two components S1 and S2, each with c as its

boundary. If we trace the curve c′, it must switch between

S1 and S2 each time it crosses c, and never otherwise. Hence

there must be an even number of switches, contradicting the

fact that c and c′ cross oddly.



Theorem 5: All Class I and II wormholes are detected and

exactly located by our method.

Proof: Let w be an arbitrary Class I or II wormhole.

According to Theorem 3, there exists a loop lw ∈ L which

passes through w. Since w is a Class I or II wormhole,

w increases one degenerated genus on the surface. For the

degenerated genus, there exists a contractible simple closed

curve at one end of the genus that crosses lw one time, i.e., all

Class I and II wormholes can be effectively detected without

false negative. On the other hand, let l be an arbitrary loop in

L. If there exists a contractible loop l′ in the ε-neighborhood

of l′ crossing l oddly, according to Lemma 4, l′ must be

non-separating. l′ is both non-separating and contractible, so

l′ is continuously deformed and contractible to an endpoint

of at least one degenerated genus, never otherwise. When ε is

sufficiently small, it guarantees that there is only one endpoint

inside l′. Thus the detection method accurately locates the

Class I and II wormholes.

Theorem 6: Let l and l′ be a pair of knit non-separating

loops. There is at least one Class III or IV wormhole on l
and l′.

Proof: Suppose that neither l nor l′ passes a wormhole,

then l and l′ are also loops on the original surface without

wormholes. Since l and l′ form a knit non-separating loop

pair, l and l′ cross in odd times, thus l and l′ are both non-

separating according to Lemma 4. On the other hand, since

the original surface is homotopic to a plane area with holes,

according to Jordan Curve Theorem [7], a loop in the original

surface must separate the original surface into at least two

components. Hence, both l and l′ are separating, which leads

to contradiction and finishes this proof.

Theorem 6 shows that our detection method is accurate

on Class III and IV wormholes, i.e., each pair of knit

non-separating loops captures at least one Class III or IV

wormhole. We successively show by Theorem 7 and 8 that

our method detects all topologically detectable wormholes on

the original surface.

Theorem 7: The instant Class IV wormhole is homotopy

equivalent to a plain bridge on previous surface, and thus is

undetectable with topological method.

Proof: As we characterize in Section IV-B, an instant

Class IV wormhole adds a bridge on the same boundary. In

the sense of homotopy equivalence, it is indistinguishable

with a plain bridge on previous surface. Thus Class IV

wormhole is undetectable with topological method.

Theorem 8: Given the original surface τ0 = τ(0, 0, b0),
and the surface τ(g, d, b) after wormhole attacks. Our method

locates all d Class I and II wormholes and detects at least g
Class III or IV wormholes while the rest of wormholes are

topologically undetectable.

Proof: First, according to Theorem 5, our method is able

to locate all d Class I and II wormholes exactly. Second,

according to Theorem 6, we can detect at least g Class III or

IV wormholes by detecting g non-separating loop pairs for

genus g. Third, we consider an arbitrary order of inserting

the wormholes into the network. According to Theorem 1

and 2, an increase of genus happens when and only when

instant Class III wormholes (might be Class IV to the original

surface) are inserted. While the genus is increased by g, there

are g+b−b0 instant Class IV wormholes inserted. According

to Theorem 7, their topological impacts on the network

are indistinguishable from bridges and thus topologically

undetectable.

V. WORMHOLE DETECTION IN DISCRETE

ENVIRONMENTS

We have characterized the impact of wormholes and de-

scribed the principles of wormhole detection under con-

tinuous settings in the previous section. In a real multi-

hop network, however, nodes are deployed discretely on the

field. In this section, we present our approach in discrete

environments. First, we construct a shortest path tree from

an arbitrarily selected root node, so that each node obtains

shortest paths to the root. We accordingly select the candidate

loops from the cut pairs on the shortest path tree. Second, we

detect and locate Class I or II wormholes by testing whether

a candidate loop is an independent non-separating loop.

Specifically, we check whether there exists a contractible

cycle that crosses the loop one time. Third, we check the

existence of Class III or IV wormholes by seeking the knit

non-separating loop pairs. All operations are carried out in a

distributed manner in the discrete network. The principle of

this design follows what we introduced in the continuous

settings. When applied in discrete environment, however,

there exist substantial technical challenges in transforming

the principles into concrete protocols as follows. (1) It is non-

trivial to test in discrete networks whether or not a cycled path

is contractible, especially with only connectivity information

among local neighborhoods. (2) Determining the crossing of

two curves without any geometric information is challenging.

To calculate the accurate crossing times of the two curves

is even more difficult. (3) To seek the knit non-separating

loop pairs, we need to check whether a non-separating loop

is one-sided or two-sided. Having solely the connectivity

information, to determine the two sides of a path is also

difficult.
We address above challenges in this design, which in-

cludes three components: Candidate Loop selection, Finding
Independent Non-Separating Loops, and Seeking Knit Non-
Separating Loop Pairs. We illustrate the operations using the

example shown in Figure 5, where we have all four different

types of wormholes residing in a network, denoted from 1 to

4.

A. Candidate Loop Selection
After the shortest path tree is established, each node knows

its shortest paths to the root node. The neighboring nodes

exchange the information of their shortest paths. There are

some pairs of nodes connected with each other but with their

least common ancestor far away. These nodes form cut pairs
[21]. The cut pairs witness the candidate loops. The two
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Fig. 5: Wormhole detection in discrete environments.

shortest paths from the cut pair constitute a loop and we

qualify a candidate loop by setting a threshold on the length

of the loop. The threshold depends on the expectation of

the span of wormhole attacks, i.e., if we aim to detect all

wormholes across h hop span, we can set the threshold to h
hops.

Figure 5 (a) plots the detected cut pairs (big nodes) and

corresponding candidate loops (thin line paths). The shortest

path tree is constructed by flooding from the big root node in

the center. As shown in this example, there are variations on

the candidate loops, including misreported ones. Due to the

randomness and discreteness of the network deployment, it

is indeed difficult to obtain the cut locus accurately under

discrete settings. To tackle this problem, we perform all

consecutive operations on all candidate loops, instead of

selecting only one loop for each cut path as in continuous

principles. Such operations might introduce extra network

cost. In practice, we can filter most of redundant candidate

loops simply by checking their neighboring relationship,

which leads to significant savings on the overhead.

B. Finding Independent Non-Separating Loops
Let l denote a candidate loop. To test whether l passes

a Class I or II wormhole, we verify whether or not l is an

independent non-separating loop. As described in previous

section, we need to find a small contractible circle that crosses

l one time.
We articulate the concept of contractible circle in discrete

settings. Given the communication graph G, and two positive

integers k and δ. For a vertex v ∈ V (G), let Γk(v) denote

the set of nodes within k hop distance to v. v ∈ Γk(v). Let

Γk,δ(v) = Γk+δ(v) − Γk(v). Given a vertex set U ⊆ V (G),
let G(U) denote the vertex induced subgraph of G from

U . Thus, for an arbitrary node v ∈ V (G) and r, δ ∈ N, if

G(Γk,δ(v)) is a connected circular strip, we find a skeleton

circle within G(Γk,δ(v)). Tracing such a skeleton circle is

non-trivial. We conduct a restricted flooding from an arbitrary

node in the strip graph G(Γk,δ(v)) and build a shortest path

tree, We find an arbitrary cut pair among the leaf nodes

and connect them into a loop, similarly as what we do

for constructing foregoing candidate loops. We record it as

C(v, r, δ). Apparently, when r and δ are sufficiently small,

C(v, r, δ) is contractible. Moreover, we say that Γk(v) is a

k-hop contractible disk at v, if for any r0 ≤ r ≤ k, there

exists a skeleton circle within G(Γk,δ(v)). A contractible disk

represents a set of network nodes embedded in a geometric

region without voids and the skeleton circles on different

levels of the contractible disk are all contractible circles. In

our later example and simulations, we set r0 = 1, k = 3 and

δ = 2.
By creating a contractible disk, we explore the existence

of contractible circle C(v, r, δ) around each node v in the

candidate loop l. If there exists such a circle C(v, r, δ),
there must be intersection between C(v, r, δ) and l. In the

discrete settings, however, with only network connectivity

information, it is yet challenging to determine how many

times C(v, r, δ) crosses l. The two general curves might in-

tersect with no common nodes or even at multiple ambiguous

intersection nodes. Similar problems are also considered in

[6]. Fortunately, we can restrictively transform our case into

a relatively easier one, as we only need to judge if C(v, r, δ)
crosses l once or not. We let Γ1(C) and Γ1(l) denote the

sets of nodes within one hop distance to C(v, r, δ) and l
respectively. Let I = Γ1(C) ∩ Γ1(l). We check if there

is only one single connected component in I or not and

accordingly conclude if C(v, r, δ) crosses l only once one

time. We confirm that the candidate loop l is an independent

non-separating loop if our test shows that C(v, r, δ) crosses l
one time. Thus there must be one endpoint of the wormhole

included in C(v, r, δ). Figure 5 (b) illustrates that our ap-

proach works on a candidate loop across a Class I wormhole.

The vertical single line represents the candidate loop that

passes through the wormhole. The red double-line paths are

the detected contractible circles that cross the candidate loop

one time. The deep blue and red nodes near the lines are the

one-hop neighborhoods of the lines, respectively. The black

nodes show the intersection of blue and red node sets. By

shrinking the contractible circles, we can eventually locate the

wormhole endpoints. As shown in Figure 5 (c), this approach

successfully finds the contractible circles and locates the two

endpoints of the Class I wormhole and one endpoint of the

Class II wormhole. By tracing the traffic flow from one end,

we can successively locate the other end of the Class II

wormhole.

C. Seeking Knit Non-Separating Loop Pairs
To detect Class III or IV wormholes, we continue to test

whether a candidate loop l passes through a Class III or IV
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Fig. 6: Distinguishing the two sides of loop l.

wormhole. According to the principles in continuous case,

we seek the knit non-separating loop pair containing l.
The principle is simple, i.e., we conclude whether loop l

is separating or non-separating by checking whether l is one-

sided or two-sided. This can be easily achieved in continuous

settings by flooding red and blue from l to its two sides

and checking whether the two colors ultimately meet with

each other. In discrete settings, however, it becomes difficult,

as with only network connectivity information, we cannot

distinguish the two sides of l. We cannot locally determine

a node is on which side of l by solely connectivity.

We propose corresponding countermeasures to address the

issue above. We first flood from loop l and construct a

shortest path tree rooted at l. Each node is thus aware of

its shortest distance to l. Γa(l) denotes the set of nodes

within a hop to l. Indeed, as Figure 6 shows, we let nodes in

Γa(l) keep silent, separating the shortest path tree into two

parts corresponding to the two sides of l. We let each node

within Γa,b(l) delivers its specific color down to successive

nodes. The color is represented by its node ID or a randomly

generated number. The color value is first flooded within

Γa,b(l). During flooding, the smallest color value suppresses

other color values. Then along the shortest path tree, the

dominant color value is delivered and inherited by every

node. In our implementations, we set a = 2 and b = 4.

After the colors spread over the network, different colors

classify the nodes in the network into at least two types,

as Figure 5 (d) shows. We then verify whether the nodes

with different colors neighbor to each other by exchanging

the color information among neighboring nodes. If there does

exist such a pair, loop l is one-sided. There are two paths from

the pair of nodes to loop l through the two components of

different colors, and accordingly the two paths can constitute

a loop l′. l and l′ compose a knit non-separating loop pair,

as the pair of blue single-line and double-line loops found in

Figure 5 (d). We then conclude that there is at least a Class

III or Class IV wormhole on l or l′.
Figure 5 (e) displays a candidate loop formed by a Class

IV wormhole. As such a Class IV wormhole is topologically

indistinguishable from a bridge across the void hole, the

loop is also tested to be separating. Our approach cannot

detect such a type of wormholes, neither any other topological

approaches.

VI. EVALUATION

We conduct extensive simulations under various situations

to evaluate the effectiveness of our approach. By varying

node density, the number and type of wormholes inside the

network, we evaluate the rate of successfully detected worm-

holes. We compare our fundamental topology deviations

based approach (denoted as FTD) with the packing number

based approach (denoted as PN) proposed by Maheshwari

et al. [13], which is to the best of our knowledge the only

distributed method using solely node connectivity to detect

wormholes.

A. Simulation Setup
The basic network setting is the same as the example

shown in Figure 5, i.e., a 600m by 600m square area with

multiple holes inside. We fill the area with a network of

3200 nodes. In our simulations, nodes are deployed using the

model of perturbed grid. The perturbed grid model deploys

nodes on a grid and then perturbs each node with a random

shift. This model has been adopted [21] to approximate

manual deployments of nodes, corresponding more closely to

planned organizations of a wireless network, e.g., organizing

nodes in an indoor environment. It uniformly fills sensors

into the field.
Although our detection approach does not enforce the com-

pliance to specific communication models for the network,

for the convenience of comparison, we assume UDG model to

build the network, which establishes the basis for the correct

operation in PN approach. We vary the communication radius

of sensors from 17 meters to 25 meters, yielding average node

degrees from 8 to 18. Indeed, during our simulation we test

our approach on various network fields of different shapes,

and obtain consistent results. We omit presenting the results

due to the space limitation.

B. Impact of Density and Different Types of Wormholes
We test the impact of different node densities on our

approach, and compare our FTD approach with the PN

approach. We vary the density of nodes so that the average

degree of each node is increased from 8 to 18. For each

set of simulation, we conduct 100 runs with different node

generations and report the average. In each run, we randomly

place a wormhole inside the network with at least 8 hops

span. We test the detection rates of the two approaches against

Class I, II and III wormholes under different node densities.

We randomly generate each type of wormholes with at least

8 hops span. For the packing number based approach, we

set the forbidden parameter f1 = 3, which has been shown

effective for most cases in [13].
The results are displayed in Figure 7 (a-c). For Class I

wormholes both our approach and the packing number based

approach can achieve nearly 100% detection rate even under

low node density. For the cases of Class II and III worm-

holes, the packing number based approach bears relatively

low detection rate, while our approach rapidly approaches

100% detection rate when the node degree rises above 9.

This is mainly because in packing number based approach,

the probability of the appearance of forbidden structures

around Class II and III wormholes reduces dramatically when
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Fig. 7: Detection rates against different node degrees and types of wormholes.

wormhole endpoints locate on network boundaries. Instead,

our approach successfully captures the global impact of

Class II and III wormholes by detecting non-separating loops

(pairs). Further, an interesting behavior can be observed from

Figure 7 (c). The detection rate of Class III in our approach

is independent of the average node degree. This is due to that

the partner loops in the detection of Class III wormholes is

much longer than the locally contractible cycles in the case

of Class I and II. These long cycles can still form even when

the average degree is relatively low.

VII. CONCLUSIONS

Wormhole attack is a severe threat to wireless ad hoc

and sensor networks. Most existing countermeasures either

require specialized hardware devices or have strong assump-

tions on the network, leading to low applicability. In this

work, we fundamentally analyze the wormhole issue by

topology methodology and by observing the inevitable topol-

ogy deviations introduced by wormholes. We generalize the

definition of wormholes, classify the wormholes according

their impacts on the network and propose a topological

approach. By detecting non-separating loops (pairs), our

approach can detect and locate various wormholes and relies

solely on topological information of the network. To the best

of our knowledge, we make the first attempt towards a purely

topological approach to detect wormholes distributedly with-

out any rigorous requirements and assumptions. Our approach

achieves superior performance and applicability with the least

limitations.
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