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Abstract—Real-time urban traffic conditions are critical to
wide populations in the city and serve the needs of many
transportation dependent applications. This paper presents our
experience of building a participatory urban traffic monitoring
system that exploits the power of bus riders’ mobile phones. The
system takes lightweight sensor hints and collects minimum set of
cellular data from the bus riders’ mobile phones. Based on such
a participatory sensing framework, the system turns buses into
dummy probes, monitors their travel statuses, and derives the
instant traffic map of the city. Unlike previous works that rely
on intrusive detection or full cooperation from “probe vehicles”,
our approach resorts to the crowd-participation of ordinary bus
riders, who are the information source providers and major
consumers of the final traffic output. The experiment results
demonstrate the feasibility of such an approach achieving fine-
grained traffic estimation with modest sensing and computation
overhead at the crowd.

I. INTRODUCTION

Real time urban traffic information is critical to wide popu-

lations living in the city. Comprehensive knowledge of instant

urban traffic conditions contributes to commuter’s better travel

planning, improved urban transportation and commuting effi-

ciency, reduced road congestion and waste emission, as well

as other time and cost savings. For the past decades, increasing

efforts have been put into exploring an accurate, efficient,

and inexpensive way to instantly monitor the urban traffic

conditions. Conventional methods rely on intrusive sensing,

where people deploy infrastructural devices like magnetic loop

detectors or traffic cameras at roadsides to actively detect traf-

fic references. Installing such intrusive devices incurs substan-

tial deployment and maintenance costs and can only provide

limited observation at sparse positions. Recent studies resort

to the GPS traces collected from “probe vehicles” like taxis or

private cars to estimate the road traffic conditions [22], [25].

Such a passive probing method avoids cumbrous infrastructure

deployment and enjoys flexible information extraction from

the running probes in the city. Nevertheless, most of them

largely rely on full cooperation from the probe vehicles and

bear substantial cost in obtaining their location references.

In this paper, we describe our experience in building a

participatory urban traffic monitoring system. Our system

takes the operating buses as probe vehicles to sample the

road traffic conditions. Instead of requesting any GPS traces

from the transit agencies, we crowdsource the sensing jobs to

public bus riders using their commodity off-the-shelf (COTS)

mobile phones. The bus riders intelligently collect real time

traffic sensing data on buses and anonymously upload the

data. A backend server identifies and reorganizes the up-

loaded information from different buses, based on which

the travel time and average vehicle speed at different road

segments are estimated and a complete traffic map can be

finally generated. We primarily rely on the cellular signatures

together with the use of several lightweight sensing hints like

audio and acceleration signals from the mobile phones rather

than the energy expensive GPS data to derive the location

references. Compared with existing approaches, the proposed

traffic monitoring system provides a grassroots solution that

solely relies on the collaborative efforts of the public. Built

on the COTS mobile phones, our system obviates the need

for special hardware extension and is energy friendly, which

reduces operational overhead, encourages wide participation

and expands the service coverage.

The full implementation of such a participatory moni-

toring system, however, entails substantial challenges which

require practical solutions to cope with. First, tagging location

with cellular references is non-trivial. The cellular signals

themselves contain very rough location dependence. Precisely

locating moving vehicles with only cellular signals may suffer

from high localization error [16], [24] and huge overhead

for complete war-driving [21]. In this work, we present

a novel method which intellectually explores the invariant

location and cellular attributes of bus stops so as to build

a location mapping between the physical space and cellular

space. Second, the crowdsourced sensing data are complicated

and essentially carry error and noises. In this work, we

carefully treat the sensing data on both mobile phones and

the backend server. We do data cleaning at individual mobile

phones and develop clustering and aggregation method on the

backend server to process the joint data from all participants.

We consolidate above techniques and implement a prototype

system on Android phones and a laboratory server. During a

2-month experiment with 8 bus routes in a ∼25km2 region

in Singapore, we are able to collect the data input from 122

participants and derive instant traffic map of that region. The

experimental results demonstrate high accuracy in mapping

the traffic observations. The system power consumption is also

carefully examined.

The rest of this paper is organized as follows. We introduce

the background and motivation of urban traffic monitoring in

§II. The methodology and detailed system design are presented

in §III. The implementation and detailed evaluation results are

reported in §IV. We introduce the related work in §V and

conclude this paper and discuss possible future work in §VI.
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Fig. 1. Measurement of GPS localization errors in downtown Singapore.

II. BACKGROUND AND MOTIVATION

Numerous approaches have been proposed to monitor the

traffic conditions. Conventional traffic monitoring mainly re-

lies on intrusive sensing infrastructures (e.g., the widely used

magnetic loop detectors, roadside cameras and speed meters)

to measure the spot speed of vehicles. The intrusive approach,

however, suffers from two major drawbacks. First, due to the

high implementation and maintenance cost, the systems are

usually sparsely deployed and provide limited coverage. For

example, a single loop detector costs $900∼2000 depending

on its type [19]. Second, measuring spot vehicle speeds at

certain places may not accurately capture the travel delays

along the whole road segments and introduce noises caused

by traffic interruptions and congestions.

In order to overcome such drawbacks, many studies resort

to using GPS traces from “probe vehicles” and measure the

average travel time to derive the full traffic map. Modern

public transport services cover most parts of the urban area

[1], [2], [3], which provides readily available probe vehicles

(e.g. numerous taxis) [18], [25]. Such an approach, however,

is strongly dependent on the cooperation from the transit agen-

cies and requires installation of real-time Automatic Vehicle

Location (AVL) systems, which usually comes with substantial

cost. With a fleet of thousands of vehicles, the installation of

in-vehicle AVL systems incurs tens of millions of dollars [20].

In this paper, we leverage the public buses to probe the

traffic conditions, but make use of bus riders’ mobile phones,

and fundamentally decomposes the individual “probing” tasks

from the running buses. By doing so, our system does not

rely on the cooperation of any transit agencies or even any

particular probe vehicles. The crowd-participation of the bus

riders themselves contribute the source sensing data and con-

sume the final traffic output. We believe such an approach

can be thus easily adopted to a wide range of different cities

with slight modification. This work is fundamentally different

from our previous work [27] on bus arrival prediction that the

problem of traffic monitoring looks at holistic data collection

and organization from unsorted bus trips rather than classifying

and inspecting specific bus routes in [27]. In this paper, we

focus on data fusion across bus riders’ updates for traffic

mapping and system scalability to support wider monitoring

field. Instead of using GPS data, our system primarily relies

on the energy-friendly and widely available sensing hints from

the phones to intelligently track vehicles (e.g., cellular signals).

No special hardware implementation or infrastructure devices

are needed. The energy efficiency of sensing resources and

automatic traffic data collection of the system brings negligible

overhead to the bus riders and their phones, which as a

result encourages user participation. There are some works

[4], [20], [22], [25] that explore the GPS traces of COTS

mobile phones to track vehicles or human movement. In this

paper we do not employ GPS due to the following two major

disadvantages. First, GPS suffers from big localization error

in the downtown streets. To understand the magnitude of GPS

tracking error, we perform a measurement study in downtown

Singapore and summarize the GPS errors in Figure 1. We

experiment with HTC sensation mobile phone and measure

the GPS errors stationary or moving on buses by calculating

the distance between the GPS position and the ground-truth

position. The median errors are as high as 41m and 68m,

respectively, and their 90th percentiles errors are 75m and

130m, respectively. Such big error is due to the complicated

immediate surroundings in the downtown area, where the high

buildings block the line-of-sight paths to GPS satellites and

cause multipath problem. It is made worse when the phones

are inside buses and the GPS signal is further attenuated.

Similar results are also observed in other works [12], [20],

[26], [17], which indicates that such a phenomenon is common

for many cities across the world. Second, GPS device is known

energy aggressive. We measure the energy consumption of

the GPS receivers on Google Nexus One mobile phones with

the Monsoon power monitor. Continuous GPS tracking incurs

as high as 300mW energy consumption (details in §IV-D).

Due to the limited battery capacity of COTS mobile phones,

people usually turn off the GPS module to save power, which

discourages user participation.

III. SYSTEM DESIGN

In this section, we first present the design methodology after

which we detail the practical techniques in system design and

implementation.

A. Design methodology

Bus routes have high coverage of the urban road systems.

For example, the bus route coverage ratio is as high as 75% in

London [2] and 79% in Singapore [1]. Figure 2(a) depicts the

Jurong West area with a size of ∼25km2 in Singapore, where

∼80% roads are covered by more than 20 bus routes. If we

can track the moving trajectories of buses, we are then able

to map down the probed traffic conditions in the region.

Solely using the cellular signals, however, is difficult to

instantly track the buses. In urban area, the coverage of a

typical cell tower is about 200∼900m, which cannot provide

adequate location references. However, the inherent constraint

of bus operation provides us a unique angle, i.e., buses strictly

follow determined routes and stop at known bus stops. As

Figure 2(a) depicts, more than 100 bus stops densely distribute

in the region and separate the road systems into small road

segments. The precise locations of the bus stops and detailed

bus route operations are public information which is readily
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(c) Similarity of the fingerprints of different
bus stops.

Fig. 2. Similarity measurement of bus stop fingerprints.
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Fig. 3. An example area with the cellular fingerprints of 15 bus stops.

available on the web. Therefore, if we can track the stopping

statuses of buses along the bus stops, we can naturally map

their moving trajectories and derive the traffic estimations on

the road segments in between bus stops. Assembling the traffic

estimations of all segments gives us the whole traffic map. In

order to implement such an idea, we consider fingerprinting

the cellular signals at different bus stops and mapping them

into the cellular space. Later we will be able to match those

bus stops in cellular space according to the cellular fingerprints

collected from the bus riders’ mobile phones.

To understand the practical feasibility, we conduct a set

of experimental studies to know how effectively the cellular

signals can be used to distinguish different bus stops. We

measure the cell tower signals at 86 bus stops of 5 bus routes

(bus route 179, 199, 243, 252, and 257 in the region as

shown in Figure 2(a)). We collect the cellular signals in two

situations: when we stand at the bus stop and when we pass

by the stops on a bus. Taking the time and weather factors

into consideration, we collect the cell tower signals on days

of different weather conditions and at different time of a day.

The mobile phone normally can capture the signals from

multiple cell towers at one time, and chooses to connect to

the one with the strongest signal strength. Typically there are

4∼7 visible cell towers at each bus stop in our experiment.

We order their cell IDs according to their Received Signal

Strengths (RSS) and use such an ordered set to signature each

bus stop in cellular space. Figure 3 depicts an example area

where the cellular fingerprints of 15 bus stops are measured.

For each bus stop, we collect the set of all visible cell towers

and rank them in descending order of the RSS. The sets of

cell IDs for different bus stops are highly different from each

other. The bus stops well segment the road network.

We statistically analyze the similarities of the cell ID sets

collected at the same bus stop (sef-similarity) in different

runs. We use a matching algorithm (§III-C1) to calculate the

similarities, where higher scores represent higher similarities.

Figure 2(b) depicts the CDF of the self-similarity scores for all

bus stops of the 5 routes. We see that the overall self-similarity

score is very high. Generally 90% of the similarity scores are

higher than 3 and more than 50% of the similarity scores are

higher than 4, which demonstrates that the cell ID sets are

adequately stable to signature bus stops.

We also analyze the similarities of the cell ID sets collected

from different bus stops and plot the overall CDF of similarity

scores in Figure 2(c). We see that for over 70% of the bus

stops, their similarities are scored as 0 (no common cell IDs

at all) and for over 90% of the bus stops, they have similarity

scores lower than 2. We further examine the measurement data

and find that most of those similarity scores higher than 3 are

from the cell ID sets of two bus stops at opposite sides of

the two-way roads. In terms of location reference, they can

be treated as the same bus stop. Such treatment is proper and

does not degrade our system because the uploaded trip is time-

stamped, from which we can derive the bus moving direction

and map the traffic estimation to the correct side of the road.

We plot the effective CDF in Figure 2(c) with such treatment

and we see that more than 94% bus stops have similarity

scores lower than 2. The results suggest the feasibility of using

cellular signal fingerprints to distinguish different bus stops.

We choose cell tower signals over other possible wireless

signals to provide location inferences mainly due to the fol-

lowing considerations. First, mobile phones always maintain

connections to nearby cell towers to support telephone calls

and SMS service. The marginal energy consumption of collect-

ing cell tower signals is negligible. Frequent scanning of other
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Fig. 4. System architecture and workflow.

wireless signals like WiFi, however, consumes much extra

energy [21]. Second, cellular network has almost complete

coverage of the entire city while other wireless signals usually

suffer from poor signal availability in many outdoor areas.

Third, the cellular signal sources are much more consistent

over time than other wireless signal sources like WiFi hotspots,

many of which are ad hoc and transient. The database built

on cellular signals is thus more stable and easier to maintain.

Based on such a methodology, we can effectively segment

the road network using bus stops and map down the traffic.

Figure 4 sketches the system workflow, concerning two major

components, i.e., online/offline data collection and trajectory

mapping for traffic estimation. The bus stop data database

can be updated in an online/offline manner. The real time

trips of bus riders are uploaded periodically. The offline bus

route and traffic model information is readily available. The

backend server carefully maps down the real time trips to

derive accurate traffic conditions. Each component will be

elaborated in the following subsections.

B. Data collection

As depicted in Figure 4 (top), the major system input

comprises three data sources.

Bus riders. The participatory bus riders serve as probes on

buses. The online collection of their trips starts automatically

when and only when users are detected on buses. We apply a

beep detection approach similar with that in our previous work

[27] to recognize the bus. Nowadays bus operators widely

employ IC card systems where most bus riders pay the fees by

tapping IC cards on the card readers which generate unique

beep response, e.g., EZ-link [1] in Singapore, Oyster [2] in

London, and MetroCard [3] in New York, etc. The beeps from

card readers are always made of audio signals of specific

frequencies (e.g., a combination of 1kHz and 3kHz audio

signals in Singapore and 2.4kHz in London).

We apply the Goertzel algorithm [5] to perform beep detec-

tion instead of FFT used in [27] to extract specific frequencies

(with prior knowledge of frequency components in the beep)

rather than all frequencies which significantly saves energy.

We measure and normallize the signal strength of several

typical frequency bands. If the signal strength of the 1kHz and

3kHz frequency band obviously jumps (an empirical threshold

of three standard deviation), we confirm the detection. We

use the standard sliding window averaging with window size

w = 300ms to filter out the noises and increase the robustness.

Once detecting the beep, the mobile phone starts recording

a trip. For each thereafter detected beep event, the mobile

phone attaches a timestamp and the set of visible cell tower

signals. The sensing data on the mobile phone thus record

a sequence of timestamped cellular samples in the trip. The

mobile phone concludes the current trip if no beep is detected

for 10 minutes, and starts uploading another independent trip

when new beeps are thereafter detected. We first primitively

filter out the noisy beep detections (e.g., the rapid train stations

use the same IC card readers) by thresholding the acceleration

variance (measured by the acclerometer) to distinguish the

people mobility pattern on rapid trains from taking buses.

It is based on the observation that buses usually move with

frequent acceleration, deceleration and turns, while rapid trains

are operated more smoothly.

Bus stop database. There is a database storing cellular

fingerprints of all bus stops which can be built online/offline.

The server relies on this database to identify the bus stops for

the uploaded cellular samples.

Bus routes and traffic model. The information of bus

operational routes is readily available from bus operators and

imposes constraints on how bus stops can be passed, which we

will exploit for trajectory mapping. There have been available

traffic models [10], [11], [18] giving the relationship between

the travel speeds of public buses and ordinary automobiles,

which we will adhere to for deriving the general traffic

conditions from buses.

For all bus stops, we aggregate the bus stops located at

the same location but different sides of the road as one,

and record their relative locations in the bus operational

routes. To yield the general traffic conditions from the bus

speed estimation, we make use of a traffic model [10] which

studies the relationship between public buses and ordinary

automobiles. We implement the model to our data set and

choose appropriate parameters according to our experiments

(§III-D).

C. Trajectory mapping

As depicted in Figure 4 (bottom), we do trajectory mapping

using bus stops as landmarks. We consider the received

sequence of cellular samples of each independent trip, based

on which the backend server identifies the passing by bus stops

and maps the trip trajectory down. Three levels of mapping

are done to refine the accuracy.

1) Per sample matching: With beep detection, the mobile

phone not only recognizes buses but also indicates the arrival

at bus stops because people only tap their IC cards at bus stops

for paying transit fees and the card readers are usually disabled

after buses move away from bus stops. Each uploaded cellular

sample thus corresponds to a particular bus stop.

We match each cellular sample from one trip to a signature

set stored in the fingerprint database and classify the sample

into one bus stop. Many algorithms, like k-means clustering,

have been used for fingerprint matching. In our system, the



TABLE I
BUS STOP MATCHING INSTANCE.

cupload 1 2 3 4 5 Match Gap Mismatch
∑

cdatabase 1 7 3 5
Match 1 × 3 - 5 3 1 1 2.4
Score +1 -0.3 +1 -0.3 +1

cellular samples at bus stops may be collected under different

conditions (e.g., on/off buses, different weather, etc.). While

the cell tower RSS values may vary, their rank always pre-

serves. Thus we use the modified Smith-Waterman algorithm

[23] which focuses on the orders rather than the absolute RSS

value to score the similarity of different sets.

The backend server arranges the cell tower IDs in the set in

the descending order of each cell tower’s RSS. We denote

the cell tower set of a cellular sample e(x) as cupload =
{u1, u2, · · · , ul} ordered by the RSS of the l cell towers.

(i.e., si ≥ sj , 1 ≤ i ≤ j), where ui and si denote the cell

IDs of cell tower i and its RSS, respectively. We denote the

cellular fingerprint of a given bus stop b(y) in the database as

cdatabase = {d1, d2, · · · , dq} also ordered by the RSS, where

q is the set length. We match e(x) and b(y) by comparing

the similarity of the two sets. cupload typically has a different

length with cdatabase. For each cell tower set, Smith-Waterman

algorithm compares the segments of all possible lengths to find

out the optimal alignment with one cellular fingerprint in the

database, and uses a scoring system to weigh the value of

match, mismatch and gap.

We modify the Smith-Waterman algorithm settings to adapt

to our system. The performance of such a matching algorithm

is mainly determined by two factors, the set length and the

penalty cost for gaps and mismatches. In our system, the

set length of the fingerprint for each bus stop (the number

of cell towers) is about 4 ∼ 7 which is sufficient for the

matching algorithm. We vary the value of mismatch penalty

cost from −0.1 to −0.9 and simulate the matching accuracy.

Choosing −0.3 as the penalty cost gives the best result. Table

I shows an illustrative example where the uploaded cell tower

set is cupload = 〈1, 2, 3, 4, 5〉 and compared with cdatabase =
〈1, 7, 3, 5〉. The matching algorithm scores 2.4 by aggregating

3 matches, 1 gap and 1 mismatch. We denote Sim(e(x), b(y))
as the similarity score of one cellular sample e(x) and that of

an actual bus stop b(y). The server selects the bus stop with

the highest similarity score from bus stop candidates. To filter

out noisy reports, we only keep the cellular sample when its

highest matching score with the candidate bus stops exceeds

a threshold γ. We set γ = 2 according to the measurement

results in Figure 1(b). All cellular samples whose highest

similarity score is lower than 2 are discarded without further

processing. If there are more than one matched bus stop, the

one with a larger number of common cell IDs is selected. We

denote M(e(x), b(y)) = 1 if the matching result of e(x) is

b(y), and M(e(x), b(y)) = 0 otherwise.

2) Per bus stop clustering: When a bus arrives at a bus

stop, there are usually a number of passengers boarding
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Fig. 5. Setting threshold ε.

and alighting giving multiple beeps, and multiple cellular

samples are taken. They will be received in a time sequence

at the server, allowing us information redundancy for better

reliability in identifying the correct bus stop. We co-cluster

the individual cellular samples according to their matched bus

stops and timestamps, and identify the bus stop for closely

clustered reports with more confidence.

For a sequence of m cellular samples E = {e1, e2, . . . , em}
with timestamps T = {t1, t2, . . . , tm}, their matching results

are a set of corresponding bus stops {b1, b2, . . . , bm} with

their similarity scores {s1, s2, . . . , sm}. In our co-clustering

algorithm, we denote the maximum possible similarity score

as s0 and the maximum possible time interval between two

cellular samples for the same bus stop as t0. In our system

implementation, parameters s0 and t0 are set to 7 and 30
secs, respectively. For two samples ei and ej , we weigh their

matching relationship as

L(ei, ej) =

{
s0−|sj−si|

s0
, if bi = bj

0, otherwise.

Adding the timestamp information, we put ei and ej into the

same cluster if

t0 − |tj − ti|
t0

+ L(ei, ej) > ε, (1)

i.e., two samples are classified into the same cluster if they are

detected close in time and have similar matching results. We

use a threshold parameter ε to verdict their relationship. We

vary ε from 0 to 2 with step length 0.1 and test the clustering

accuracy according to an experiment trial with bus route 243.

The result is plotted in Figure 5. If the threshold is too small,

cellular samples from different bus stops might be treated as

one cluster while if it is too big, the samples at the same bus

stop might be classified into different clusters. Nevertheless,

we find the result reasonably tolerates threshold selection. We

can get satisfactory clustering accuracy with ε = 0.3 ∼ 1. In

our later system implementation, we choose ε = 0.6.

Figure 6 shows an example with a sequence of cellular

samples collected from one trip. The backend server clusters

the cellular samples into 2 clusters corresponding to bus stop i
and j and extracts the arrival time and departing time at each

bus stop, which will later be used to estimate the bus traveling

speed (in §III-D).

After the cellular sample clustering, we get a sequence of

n clusters {C1, C2, . . . , Cn}. Each cluster Ci corresponds to

a bus stop. As the cellular samples in the same cluster may
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match different bus stops due to noises, at this moment each

cluster Ci is associated with a pool of potential candidate bus

stops as Figure 7 shows (though our experiments suggest that

for most clusters there is only one candidate in the pool).

3) Per trip mapping: The operation of bus routes largely

constrains the possible combinations and sequences the

bus stops can be visited. Considering such constraints,

we can further filter out the impossible bus stop candi-

dates and map each cluster of cellular samples to a sole

bus stop. As shown in Figure 7, a sequence of n cellu-

lar sample clusters are outputted from the previous step.

In each cluster Ck(k = 1, 2, . . . , n), there are a to-

tal number of Ek samples {ek(1), ek(2), . . . , ek(Ek)}, and

Bk potential candidate bus stops {bk(1), bk(2), . . . , bk(Bk)}.

Each candidate bus stop bk(i) is assigned a probability

pk(i) =
∑Ek

j=1 M(ek(j),bk(i))

Ek
and an average similarity sk(i) =

∑Ek
j=1[M(ek(j),bk(i))·Sim(ek(j),bk(i))]

∑Ek
j=1 M(ek(j),bk(i))

.

Our goal is to find out a segment from one bus route or all

possible concatenation of multiple bus routes that best matches

the current trip and successively derive the most “correct” bus

stop for each sample cluster. For two actual bus stops x and y,

we denote their relationship as R(x, y) = 1 if y is “behind”

x in some bus route, which means that buses might arrive

at y after passing by x, and R(x, y) = 0 if x = y, and

R(x, y) = −1 for the rest. Since there are probably more

than 1 bus stop candidates for some clusters, we can get a

set of all possible bus stop sequences S = {S1, S2, . . . , SN},

where N =
∏n

k=1 Bk. Each Sj is comprised of a sequence

of n bus stops {b1(aj(1)), b2(aj(2)), . . . , bn(aj(n))}. We use

maximum likelihood estimation to find the best matching

sequence

S∗ = arg max
Sj:1∼N

{p1(aj(1)) · s1(aj(1)) +
n∑

i=2

[pi(aj(i))

·si(aj(i)) ·R(bi−1(aj(i− 1)), bi(aj(i)))]}.
(2)

In Equation (2), we weigh a sequence Sj using both the

probabilities pi(aj(i)) and average similarities si(aj(i)). The

best matching sequence S∗ finally maps down the trajectory

of the trip, and determines the “most likely” bus stop for each

cellular sample cluster on the trajectory.

C2 C3 C4C1

b1(2)

b2(1)

b2(2)

b2(3)

t

b1(1) b3(1) b4(1)

b1(3)

b3(2) b4(2)

b3(3) b4(3)
... ... ... ...

...

Fig. 7. Bus stop identification with a cluster sequence.

D. Traffic estimation
Based on the mapping result, the backend server estimates

the average travel speed on road segments divided by bus

stops. As illustrated in Figure 6, for each uploaded trip, we

are able to identify the passing by bus stops and extract the

arrival time and departing time of each bus stop. We denote

the arrival time at bus stop i as ta(i) and the departing time

as td(i). The travel time between i and j is thus estimated

as tij = ta(j) − td(i). In practice, the bus may not stop at

one particular bus stop if there is no bus rider boarding or

alighting, and thus the information at the bus stop is missing.

In such cases, our method automatically treats the combined

two adjacent segments as one.
The bus travel time may not directly yield the general traffic

conditions. Public buses have more frequent stops and usually

adhere to more strict speed limits. The relationship between

the transit buses and general traffic conditions has been studied

in transportation domain [18], [10], [11]. We use a linear traffic

model similar with that in [10] to estimate ATT from BTT:

ATT = a+ bBTT, (3)

where a = road length
free travel speed , representing the average travel

time of an automobile when there is little or no traffic, and

b represents the effect of traffic congestion (as measured by

the running time of buses) on ATT. The value of b can

be determined using linear regression and our experimental

measurement suggests that the value of b lies within a narrow

range [0.13, 0.18] for most road segments. For simplicity, we

select b = 0.15 for all road segments.
When we consider the trip reports from massive mobile

phones, for each road segment, there are typically more than

one speed estimation. In our system, we use a Bayesian

method [18] to combine the initial estimation with new data

input. We denote the variance of the historic mean speed v̄0
as σ2

0 and the variance of new mean speed v̄ as σ2. Then the

updated speed estimation is normal with mean speed v̄new and

variance σ2
new

v̄new =

v̄0
σ2
0
+ v̄

σ2

1
σ2
0
+ 1

σ2

, σ2
new =

1
1
σ2
0
+ 1

σ2

. (4)

The updating procedure follows Equation (4) and produces

sequential travel speed estimations. The updating procedure
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Fig. 8. 8 concerned bus routes in the ∼ 25km2 implementation area.

uses the inverse of the estimation variance to weigh the historic

estimation and the updated estimations. The travel speed

estimation on each road segment is updated with a period of

T . In our experimental implementation, we set T = 15 mins.

IV. IMPLEMENTATION AND EVALUATION

We implement a prototype system on the Android platform

with different types of mobile phones, and experiment with

real data from two resources, manual collection and partic-

ipatory collection, over a 2-month period. In this section,

we introduce the experiment methodology and detailed re-

sults. we first present our experiment environment details and

methodology (§IV-A). We test and evaluate the performance of

bus stop identification (§IV-B) and show the traffic estimation

results during the experiment period (§IV-C) and compare the

estimation results with the official traffic data from the transit

angency. The system overhead is also carefully investigated

(§IV-D).

A. Experiment methodology

Mobile phones. We develop the data collection app with

Android phones in Android OS 4.0.3 with API version 15. We

do controlled experiments mainly with three types of mobile

phones, i.e., HTC Sensation XE, HTC Desire S, and Google

Nexus 4 and 5. All types of mobile phones can easily support

the light computation and sensing overhead in our app. As

our system is independent of platforms, we believe that the

proposed method can be easily implanted to other OS and

hardware platforms, such as Apple iOS and Windows Phone.

Backend server. We implement a backend server in Java

for our experiments. It is running on the DELL Precision

WorkStation T3500 with 6GB memory and Intel Xeon(R)

CPU W3565 @ 3.20GHz(4 CPUs). It provides database update

and receives data from the participants.

Experiment environment. The public bus transit system

serves millions of bus riders every day covering most parts

of Singapore [27]. It is commercially operated by two major

transit companies, SBS Transit [6] and SMRT Corporation

[15]. IC card systems are widely used for paying transit fees.

Multiple card readers are installed on each SBS or SMRT

bus for collecting fees. Figure 8 depicts the experiment region

TABLE II
BUS STOP IDENTIFICATION ACCURACY.

Route total errors error rate 1 stop error 2 stops error
182 121 8 6.61% 5 2
30 58 3 3.45% 3 0

241 80 6 7.5% 5 1
199 93 5 5.38% 4 1

in Singapore. Public transit buses periodically run on more

than 20 bus routes covering most of the roads in this 7km×
4km area. Our experiment primarily concerns 8 bus routes,

i.e, bus route 179, 199, 241, 243, 252, 257, 182 and partial

part of route 30. These 8 bus routes cover a major portion

of the road system in this area. We did extensive experiments

to study our system design feasibility and evaluate the system

performance. The performance of each system component was

carefully examined. The experiments started from Jan. 2013,

ended in Mar. 2014, and took more than 2 months in total.

Data collection. The data used in our system contain two

parts: the fingerprint database of bus stops and the real time

sensing data from the participatory mobile phones. In our

experiments, there are two data resources.

We manually collect the cellular fingerprints of the bus

stops on the 8 bus routes. For each bus stop, multiple cellular

samples are primitively collected and the sample with the

highest similarity with the rest samples is chosen as the

fingerprint and stored in the database. The cellular data used

in §III-A and the evaluation data for bus stop identification

used in §IV-B are also manually collected. The Land Transport

Authority (LTA) [7] of Singapore also provides us their traffic

data measured from the AVL reports of over 10,000 moving

taxis, which we take as ground truth in the experiment.

During the experiment, 122 participants, mainly under-

graduate students and volunteers, contribute real time bus

information to the backend server. The data collection app is

installed in each participant’s mobile phone and uploads the

sensory data through WiFi or 3G network. In the first month,

we receive limited data from the participatory bus riders

due to their small number. The data concentrate on frequent

taken bus routes. In order to comprehensively evaluate the

system performance with wider participation, we encourage

(with vouchers) the participants to intensively take buses for

9 days in total and provide richer traffic data for our system.

The experiment results of both the sparse and intensive data

collection stages are shown in §IV-C.

B. Bus stop identification

The accuracy of bus stop identification for the 8 experimen-

tal bus routes is shown in Table II. In order to evaluate our

bus stop identification algorithm, we take buses to collect the

cellular signals at bus stops for 8 rounds. The cellular signals

in one of the 8 runs are used as the fingerprints stored in the

database. The rest 7 runs of data are used to identify the bus

stops. In Table II, we summarize the statistical results of the

bus stop identification error for 4 bus routes. The results of the

other 4 bus routes are similar. The bus identification error is
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Fig. 9. 2 snapshots of the traffic map at different time of a day and the Google Maps traffic.

smaller than 8% for all the 4 bus routes. Bus route 241 has the

highest identification error and it has 13 effective bus stops.

In this experiment, we analyze 80 cellular sets collected from

its bus stops and 6 of them are mis-identified. In the mis-

identified cases, the results of 6 cases are 1 bus stop away

from the actual bus stop and only 1 case is 2 bus stops away.

The mis-identification cases have little impact on the system

performance. The high accuracy of bus stop identification

guarantees the accuracy of travel speed estimation.

C. Traffic estimation

In this section, we report our experiment results from the

participatory sensing data, and compare the results with the

official data provided by LTA.

Figure 9 depicts 2 snapshots of the traffic maps at different

time points (8:30AM and 15:00PM) on an experiment day

when we encouraged most participants to intensively take

buses. We show the travel speed of automobiles in 5 levels

as shown in Figure 9(a). The average moving speed is mainly

30-50 km/h. Traffic conditions in the studied area are spatially

different. For example, for the traffic condition at 8:30AM

shown in Figure 9(a), the highest moving speed is higher

than 50 km/h (left and bottom sides) while, in contrary, the

lowest speed is as low as 20 km/h (middle side). Meanwhile,

the distribution of the traffic at the 2 time points are also

different. The overall moving speed at 15:00PM (Figure 9(b))

is relatively higher. There are few road segments at 15:00PM

with travel speed lower than 20 km/h. The low-speed road

segments at 8:30AM are close to each other in 2 main roads in

the middle of Figure 9(a) where there are routine bus shuttles

between a university and a rapid train station every 15 minutes

every morning. As Figure 9 shows, although we only concern 8

bus routes, the coverage for the roads in the area is higher than

50% and they cover most major roads. The coverage ratio is

much higher than the Google Maps traffic for the area (Figure

9(c)). We believe that we can obtain more comprehensive

traffic conditions if more bus routes are concerned.

We compare our traffic estimation results with the official

traffic data that we acquire from LTA [7]. We pick 2 typ-

ical road segments (A and B, as shown in Figure (c)) for

comparison. Figure 10 compares the travel speed estimation
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of automobiles (vA) from our system, the travel speed (vT )

from official traffic data, and the traffic conditions indicated

from Google Maps on the two road segments for the time

period from 9:30AM to 17:30PM on another experiment day.

17 values are plotted for vA and vT respectively, each of

which is an average speed for a 15-minute window. The traffic

conditions from Google Maps are not the exact travel speeds

but 4 traffic levels indicated as very slow, slow, normal, and

fast. As depicted in Figure 10, Google Maps only provide

rough traffic levels which are not fine-grained in time and may

not accurately reflect the instant traffic conditions. vA and vT
are more sensitive to the traffic variation.

When we compare vA and vT on the two segments, they

are not always perfectly matching with each other but exhibit

interesting relationships. The speed estimates of vA are divided

into 3 groups, i.e., low speed (< 45 km/h), medium speed

(40∼50 km/h) and high speed (>50 km/h). When the travel

speed is low, vA perfectly matches vT . When the travel speed

is high, there is usually a gap between vA and vT . This is

probably because vA is the general traffic estimation derived

from the bus speeds, which are usually capped by lower

speed limits, while taxis on the other hand usually travel more

aggressively and yield a higher vT when the traffic is light.

Nevertheless, we clearly observe that vA follows the variation

pattern of vT for most of the time.
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In Figure 11, we statistically summarize the available

estimation results during the 2-month experiment, and plot

the CDF of the speed difference Δv between vT and vA
for all road segments and time durations when both are

available. We categorize the comparison cases into 3 types, i.e.,

high-speed traffics (vA > 50km/h), medium-speed traffics

(40 ≤ vA ≤ 50km/h) and low-speed traffics (vA < 40km/h)

and plot them separately. The majority of the studied cases

are of medium-speed traffics. As depicted in Figure 11, Δv
is the lowest (mostly about 3 ∼ 5) for low-speed traffics and

the highest (mostly about 8 ∼ 12) for high-speed traffics. For

medium-speed traffics, Δv is more disperse across 0 ∼ 12.

The results suggest that the estimated traffic speed from

our system generally provides a good measure of the traffic

conditions. It is particularly indicative for heavy traffics and

congestions that usually lead to low road speed.

D. System overhead

The computation complexity of the algorithms on mobile

phones is bounded by the Goertzel algorithm used for the

frequency extraction. The complexity of Goertzel algorithm is

O(KgNM) and that of FFT is O(KfN logN), where Kg and

Kf are the “cost of operation per unit” of the two algorithms,

respectively. M is the number of measured frequencies and

N is the sampling values. When the number of calculated

terms M is smaller than logN , the advantage of the Goertzel

algorithm is obvious. As FFT code is comparatively more

complex, the factor Kf is often much larger than Kg[5]. We

perform bus detection with microphone at the sampling rate

of 8kHz. By using the Goertzel algorithm instead of FFT, the

power consumption of the data collection app is reduced by

60mW.

We use Monsoon power monitor to measure the power con-

sumption of two types of mobile phones (HTC Sensation and

Nexus One) under different sensor settings and summarize the

results in Table III. For each setting, we record the consumed

energy over a period of 10 mins. The mobile phone screen

is switched off during the measurement. The relative standard

deviation is also shown in the parentheses. We measure the

power consumption when no sensors are activated as a baseline

case. The power consumption of sampling cellular signals

is negligible for smartphones. We then measure the power

consumption of GPS tracking at a sampling rate of 0.05Hz,

TABLE III
POWER CONSUMPTION COMPARISON (IN MW).

Sensor settings HTC Sensation Nexus One
No sensors 71(6) 84(5)

Cellular 1Hz 72(6) 85(8)
GPS 304(32) 333(41)

Cellular+Mic(Goertzel) 182(20) 196(22)
GPS+Mic(Goertzel) 447(45) 443(57)

which is already considered very low for vehicle tracking [22].

The average power consumption as high as 304mW for HTC

and 333mW for Nexus One. The overall power consumption

of our data collection app is 182mW for HTC and 196mW

for Nexus One but it can be as high as ∼450mW if we use

GPS instead of cellular data to track the trips of bus riders.

V. RELATED WORK

Traffic estimation. In transportation domain, some oper-

ational systems have been developed to measure the traffic

conditions using AVL system [10], [11], [18]. Chakroborty

et al. [10] study the possibility of using transit vehicles as

probes to predict automobile travel time. Pu et al. [18] propose

to use bus travel information to infer general vehicle traffic

conditions. Coifman et al. [11] use the transit fleet AVL data

to find all trips that use any portion of a prespecified freeway

segment. Researchers from computer science domain leverage

various location references to build up traffic monitoring

systems. VTrack [22] explores the GPS and WiFi references

using COTS mobile phones to tag the traffic estimations.

Aslam et al. [8] conduct a case study demonstrating that it

is possible to accurately infer traffic volume through GPS

data traces from a taxi fleet. Some works rely on heavy

deployment of static infrastructures providing very limited

spots of observations. For example, Kyun Queue [19] is a

sensor network system for real time traffic queue monitoring

with static sensor nodes deployed on roadsides. Our work

primarily differs from existing works. We rely on the bus

network to estimate the traffic conditions but fundamentally

decompose the “probing” tasks from the running buses. We

encourage participatory efforts from bus riders and derive the

traffic map without cooperation of any transit agencies.

Tracking and localization. Many approaches for vehicle

tracking and localization have been developed recently [14],

[20], [21], [22]. Jiang et al. [14] quantify the relative proximity

among physical objects and humans using “proximity zone”,

and compare the proximity zones created by various wireless

signals. Thiagarajan et al. [20] present a crowd-sourced al-

ternative to conventional transit tracking system using GPS,

WiFi and accelerometer sensors on smartphones. CTrack [21]

presents energy-efficient trajectory mapping using celltower

fingerprints and utilize various sensors on mobile phones to

improve the mapping accuracy. This work primarily differs

from those works in its goal of urban traffic mapping. Our

approach does not necessarily rely on tracking or locating

individual bus routes. Accurate bus stop identification and

mapping suffices to project the traffic estimation down to the



map. The system scalability and deployment overhead is a key

design consideration under the crowdsourcing framework.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents the design and evaluation of a partic-

ipatory urban traffic monitoring system. We leverage public

bus networks to estimate the traffic conditions, and explore

bus route constraints and bus stop references to generate the

traffic map. Our system relies on participatory efforts from bus

riders and utilizes lightweight sensing resources from COTS

mobile phones. We comprehensively evaluate the system with

a prototype system for 2 months in total in Singapore. The

implementation and experiment results demonstrate our sys-

tem effectively monitors the traffic conditions with amiable

overhead. Due to its low cost and independence on any third-

party cooperation, our system can be easily adopted to other

urban areas with slight modifications.

Future work includes deriving the overall traffic of a region

from the bus covered road segments. There have been some

existing models in transportation domain [9], [13], which can

be applied with our data feed. How to encourage bus riders’

participation for consistent and good performance is important.

At the initial stage, we may encourage the bus drivers to install

our app to bootstrap the system. Meanwhile we are putting up

the app on Google Play for possible experimental studies in

other areas and expect more user involvement.
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