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Abstract—Estimating the number of RFID tags in the region
of interest is an important task in many RFID applications.
In this paper we propose a novel approach for efficiently
estimating the approximate number of RFID tags. Compared
with existing approaches, the proposed Probabilistic Estimating
Tree (PET) protocol achieves O(loglogn) estimation efficiency,
which remarkably reduces the estimation time while meeting
the accuracy requirement. PET also largely reduces the com-
putation and memory overhead at RFID tags. As a result,
we are able to apply PET with passive RFID tags and provide
scalable and inexpensive solutions for large-scale RFID systems.
We validate the efficacy and effectiveness of PET through
theoretical analysis as well as extensive simulations. Our results
suggest that PET outperforms existing approaches in terms of
estimation accuracy, efficiency, and overhead.

Keywords-Probabilistic estimating tree; Probabilistic algo-
rithm; RFID counting system.

I. INTRODUCTION

Radio Frequency Identification (RFID) technology [3] has
recently attracted dramatic attentions from the research com-
munity. A typical RFID system consists of RFID readers,
RFID tags, and the middleware software to support proper
working of the system [22]. An RFID tag is a small mi-
crochip capable of wireless communication, which transmits
data in response to interrogation by an RFID reader. RFID
tags, each with a small size of memory to store its unique
ID number as well as other related information, are usually
attached to real objects for explicitly labeling those objects.
An RFID reader can thus identify and itemize the objects by
verifying the unique IDs of RFID tags attached to them. Due
to the simple structure, small size, and low manufacturing
cost of RFID tags, it provides us an economic and compet-
itive method to utilize the RFID system for massive object
management in a variety of applications, such as localization
[17], inventory control [11, 21], object tracking [25], activity
monitoring [13], authentication [14, 23, 24] and etc.

Estimating the number of RFID tags, accordingly the
number of objects, is one of the primary tasks in many
such applications, e.g., counting the number of conference
or exposition attendees with RFID badges [10].

The problem of estimating RFID tag number can be easily
reduced to identifying the IDs of all RFID tags and itemizing
them. As the RFID readers and tags in the area usually
share one same communication channel, a careful scheduling
mechanism must be provided for multiple channel access
and collision arbitration. There have been already a number
of works proposed for solving the tag identification problem
[1, 19, 26] and they can be directly borrowed to compute
the exact number of RFID tags when the size of the RFID
system is small. Those solutions, however, become infeasible
when the RFID system scales up. The processing time
rapidly grows as the number of RFID tags increases.

As a matter of fact, counting the exact number of RFID
tags is not necessary. Instead, knowing the approximate
amount with some guaranteed accuracy and confidence level
will be adequate in many application scenarios. For example,
it suffices to know the approximate amount of products
instead of the exact number in shipping a large amount of
cargoes. More importantly, ALOHA protocol can achieve
near-optimal performance when the approximate tag number
is known. In accordance with that, a set of probabilistic
counting schemes have been proposed to estimate the ap-
proximate number of RFID tags with much reduced time
slots for information exchange [7, 9, 10, 18]. Some most
recent works achieve processing efficiency with O(logn)
time slots to the total number of RFID tags n. Nevertheless,
as we will later elaborate, most probabilistic approaches
require many independent rounds of estimation so as to
reach high accuracy and confidence level. Thus it is yet
significant to further improve the processing efficiency such
that the system would scale up to support a larger number
of RFID tags. Besides, most existing approaches require
that the RFID tags react to the reader in a probabilis-
tic manner with uniform or geometric distribution hash
functions implemented inside. Generating randomness itself,
however, becomes already a heavy burden for computation
and memory limited RFID tags, especially those passive tags
without self-support energy source.

In this paper, we propose a novel approach for efficiently



estimating the approximate number of RFID tags with
arbitrarily required accuracy and confidence level. We divide
the tag set and define random estimating paths based on a
novel coding structure, Probabilistic Estimating Tree (PET).
With the help of PET, we develop an estimation algorithm
of O(loglogn) processing efficiency to the total number of
RFID tags n, which significantly improves the state-of-the-
art performance bound. By querying on random estimating
paths, PET further shifts the overhead of generating prob-
abilistic hash results on the tags to random path selection
on the readers, which remarkably reduces the computational
burden of RFID tags, providing better applicability and
scalability. Our contributions can be summarized as follows.

• We propose an O(loglogn) estimation approach, PET,
which significantly improves the state-of-the-art per-
formance bound of RFID estimation, providing the
capability to support millions of RFID tags.

• PET remarkably reduces the computation and memory
overhead at RFID tags, providing us applicable and
scalable alternatives of using much less costly but
resource-limited passive RFID tags.

The rest of the paper is organized as follows. We introduce
related works in Section II. In Section III, we give a formal
description of the RFID estimation problem and present the
design goal and requirements. In Section IV we give detailed
description on the design and analysis of PET. In Section V,
we do intensive simulations to evaluate PET performance
and compare with most recent works. Finally we conclude
this work in Section VI.

II. RELATED WORK

The problem of estimating the number of RFID tags can
be directly reduced to identifying the IDs of all RFID tags
and itemizing them. Since a large number of RFID tags
normally share the same physical communication channel,
unordered concurrent communications may result in trans-
mission collisions among tags. To address such a problem
[12, 15, 16], many anti-collision time-domain methods have
been proposed [1, 19, 20, 26], which can generally be
classified into two categories: slotted ALOHA protocols
[19, 20] and Tree based protocols [1, 26]. In an ALOHA
based protocol, an RFID tag replies immediately to reader’s
interrogation. If a collision occurs, the tag replies again after
a random delay. The process continues until all tags are
successfully recognized by the reader. The ALOHA based
protocols mitigate the negative impact of collisions with
retransmissions but cannot remove collisions. With ALOHA
based protocols, a specific tag may not be identified for an
excessively long time. In a Tree based anti-collision proto-
col, an RFID reader interrogates tags and detects whether or
not there are any collisions. Once collisions occur, the reader
splits the tag set into two subsets by tag IDs and queries the
subsets with fewer tags. The reader continues the splitting

procedure and the probability of collisions within each tag
subset decreases until each tag can be successfully identified.

In small-scale RFID systems, RFID identification schemes
can be directly applied to estimate the exact number of
tags by itemizing each tag within the reader’s interrogation
region. Those solutions, however, become infeasible when
the RFID system scales up. The processing time rapidly
grows as the number of RFID tags increases. In particular,
compared with tree based anti-collision protocols for RFID
identification, the PET approach proposed in this paper only
estimates the total number of tags. PET does not aim at
resolving any tag collisions.

Rather than identifying all the RFID tags, probabilistic
counting algorithms have been designed for quickly esti-
mating the number of distinct RFID tags.

Kodialam and Nandagopal presented Unified Simple Es-
timator (USE) and Unified Probabilistic Estimator (UPE)
in [9]. One drawback of those schemes is that they are
vulnerable to replications when one tag is read by multiple
readers, and the schemes require approximate magnitude of
the tag number as a prior knowledge. In [10], an Enhanced
Zero-Based (EZB) estimator was proposed which provides
anonymous estimation and can estimate relatively larger
number of tags.

Some most recent approaches advance the estimation
efficiency, and achieve O(logn) processing efficiency to the
number of RFID tags n. In [7], Han et al. present an
O(logn) estimator by quickly positioning the first non-empty
slot with binary search algorithm. They further provide an
adaptive shrinking algorithm to adjust the upper bound of the
tag number so as to speed up the estimation process. Qian et
al. [18] propose LoF estimating algorithm, which leverages
a geometric distribution hashing process to code tags with
O(logn) bits and by so estimates the tags with O(logn) time
slots. LoF [18] is able to address the multiple reader problem
as well. Both approaches require that RFID tags react to the
reader with on-chip computations for generating some kind
of randomness (uniform or geometric distribution hashing).

III. PROBLEM DESCRIPTION

A large scale RFID system consists of one or more RFID
readers and a vast number of RFID tags attached on physical
objects. The goal of efficient RFID cardinality estimation is
to obtain the approximate number of RFID tags in the region
in a fast and accurate manner. Since the number of RFID tags
can be extremely large in meeting large scale application
demands, like product amount estimation in shipping cargo
containers, the processing approach needs to be designed
scalable with the quantity of RFID tags while meeting pre-
required accuracy and confidence level.

Similar with [7, 9], the accuracy requirement of estimation
is defined by two parameters: a confidence interval ε and
an error probability δ. Assume that an estimating result
of the RFID tag number is n̂ while the actual number
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Figure 1. Probabilistic Estimating Tree (PET).

is n. We consider the estimator accurate and precise if n̂
satisfies Pr{|n̂ − n| ≤ εn} ≥ 1 − δ. For instance, if the
actual number of RFID tags in a region is 50000, and the
accuracy requirement is specified as ε = 5% and δ = 1%,
an accurate estimation approach is expected to output the
estimated number within the interval [47500, 52500] with
more than 99% probability.

The underlying RFID system is assumed to work on a
slotted MAC model. The time period is divided into small
time slots. In each slot the reader first transmits continuous
waves to energize the RFID tags as well as the command
for tags’ response and the tags then accordingly respond in
the second half of the time slot, which is denoted as Reader
Talks First mode and has been widely accepted and used in
many RFID systems [1, 7, 19, 26]. Some works also assume
that the reader sends out the command at the very beginning
of a frame of slots and RFID tags then consequently respond
at consecutive time slots. Such an assumption, however,
requires that all RFID tags need to synchronize their frame
of slots and will have their own energy resource to support
their proper working for the entire frame.

One main requirement for a good RFID estimation ap-
proach is efficiency, which requires a short processing
period, i.e., a small number of time slots for reader-tag
communication to achieve the desired accuracy. We want
to keep it a small order to the total number of RFID tags so
as to support scalable RFID systems.

We also want to make the approach lightweight for RFID
tags. There are two types of RFID tags, active ones and
passive ones [3]. Active tags are capable of doing complex
computations with self energy supply but are expensive and
bulky. Passive tags are instantly energized by the reader
to carry out extremely limited computations but are cheap
and easy to be massively used. We want to design the
estimation approach lightweight so as to support a variety
of applications using passive tags.

Table I
KEY NOTATIONS

Symbols Descriptions
n Number of tags

n̂ Estimated number of tags

p Fraction of white leaves on the estimating tree

r A random estimating path

H Height of the probabilistic estimating tree

h Height of the gray node

H() A uniform hash function

nodeir Node along r at the height of i

ST i
r Subtree of node i along r

ST i
∼r Subtree of node i NOT along r

IV. PET DESIGN

To estimate the total number of RFID tags in the region
of interest we code those tags and divide them into small
subgroups. We show that a probabilistic estimation tree
well organizes the coding structure. By defining an arbitrary
estimating path on PET, we get an actual querying scheme
to estimate tags across different subgroups and approximate
the total number of tags. In the following sections, we first
present a basic estimation algorithm of O(logn) processing
efficiency in Section IV-A. We present theoretical analysis
of the basic algorithm in Section IV-B and then develop a
practical estimation protocol in Section IV-C. Based on the
basic protocol, in Section IV-D we optimize the algorithm
and present an O(loglogn) protocol that significantly im-
proves the processing efficiency. In Section IV-E, we develop
techniques to further reduce the computation and memory
overhead at RFID tags.

A. Basic Algorithm

PET is built on top of a binary tree as shown in Figure 1.
We call a non-leaf node as node, and a leaf node simply as
leaf. Each node has two branches, labeled as the 0-branch
and 1-branch. Each top-down path from the root to a leaf
thus gives a bit string with branch labels, and such a bit
string codes that leaf. Different RFID tags are mapped to
different leaves according to the codes.

For the sake of simplicity, we use an example to illustrate
the design of PET. We assume that there are n = 4 RFID
tags in the system.

First, PET uses a uniform random hash function
H(tagID)→ [0, 2H − 1] to generate a random code for each
RFID tag. In this example, we set H = 4, and assume the 4
RFID tags are assigned random codes 0001, 0110, 1011, and
1110, respectively. As Figure 1 depicts, they are mapped to
the four black leaves. For an arbitrary node in PET, if there
are no black leaves within the subtree rooted at it, we say
the subtree is white, and label the node white; otherwise the
subtree is black and the node is labeled black.



We define the height of a node as the distance of the path
between the node and a leaf in its subtree. The height of
PET, denoted as H , in this example is 4.

To estimate the number of tags, an RFID reader generates
a random bit string r, say 0011 in this example, indicating
an estimating path from the PET root down to a leaf. For
each node i, there are two subtrees along its two branches.
We denote the subtree of node i along the estimating path r
as ST ir, and the other subtree of node i that does not follow
r as ST i∼r. If node i is black, either ST ir or ST i∼r is black,
and if node i is white, both ST ir and ST i∼r should be white.
There is a particular black node i along the path whose ST ir
is white (all other black nodes have black ST r) and such
a node is the lowest black node along the path. We define
it as a gray node (node A in Figure 1). The height h of the
gray node, as our later analysis in Section IV-B, implies the
number of RFID tags (black leaves in PET). Intuitively, we
can imagine that the bigger fraction of white leaves there
are in PET, the higher the gray node is. Thus we can use h
to estimate the number of RFID tags. Table I summarizes
the notations used across this paper.

To find out h, the RFID reader initiates prefix query along
the selected estimating path r, for the example in Figure 1,
0011. First the reader requests those tags whose random
codes match prefix 0*** to respond. As the 4 tags (black
leaves in PET) are assigned 0001, 0110, 1011, and 1110,
respectively, the ones with 0001 and 0110 will respond to
the reader at the reply slot. Though the responses result in a
collision slot, the reader detects the existence of responsive
signal and is aware of the existence of 0*** prefix tags.
The reader then goes ahead with the estimating path and
requests the response of 00** prefix tags, and the tag with
0001 responds. The reader continues such a process till there
is no response from RFID tags. In this example when the
reader queries 001* prefix, as no tags are with such a prefix,
no response is made and the reader detects an idle slot. The
reader can thus infer that there must be some black leaves
matching prefix 000* and find out the only gray node A
(with path prefix ”00**”) on the estimating path r = 0011
in PET. Consequently, the height h of A is 2. We will show
in the next section how the height of A is used to derive the
approximate number of RFID tags.

In practice, we use a relatively large H , say 32, to build
a large PET that is able to accommodate billions of black
leaves. Querying along the 32-bit estimating path will lead
us to h and thus the number of RFID tags. One thing
worth noting is that, the PET structure is neither created
nor maintained at the RFID reader. It is only a conceptual
data structure that illustrates the organization of RFID tag
groups as well as the reader query process over such tag
groups. As we will see in Section IV-C and Section IV-D,
in a practical protocol, the reader simply queries the tags
with a randomly selected estimating path and calculates h
with tag responses.

B. Algorithm Analysis

As suggested in the previous section, the height h of
the gray node plays a very important role in estimating the
number of RFID tags. We can use h to estimate the number
of black leaves in PET, accordingly the number of RFID
tags. We denote the fraction of white leaves in PET as p and
the fraction of black leaves is 1− p. We present theoretical
analysis for the estimation accuracy of PET algorithm in the
following.

We start from two extreme cases, p = 1 and p = 0,
respectively. p = 1 corresponds to that all the leaves in PET
are white. In such a case we can infer that the number of
tags is 0. p = 0 corresponds to that all the leaves in PET
are black. In such a case, we can roughly estimate that the
number n of tags hashed to the leaves of PET

n ≥ 2H . (1)

As a matter of fact, in the case of p = 0 the hashing
process can be modeled as the famous coupon collector
problem taking the hashing collision into consideration. This
paper does not try to deeply investigate such a case, as
we can always choose a sufficiently big H such that we
can make p = (1 − 1

2H
)n ≈ 1 for an arbitrary number

of n (H = 32 can accommodate n = 40, 000, 000 with
p ≈ 0.99), leading to rare hashing collisions.

For the ease of analysis, we focus on the case where both
n and 2H are sufficiently large, and p ≈ 1.

Let the random variable h be the height of the gray node
i on a randomly selected estimating path r. Then we have

Pr(h) = Pr{ST ir = white,ST i∼r = black}. (2)

As the PET random codes of tags are independently
assigned for the 2h−1 leaves in either ST ir or ST i∼r with
uniformly random distributed hash function. So we have

Pr{ST ir = white} = p2h−1

. (3)

We can also obtain

Pr{ST i∼r = black} = 1− p2h−1

. (4)

Hence we have

Pr(h) = p2h−1

(1− p2h−1

). (5)

As a result, the expectation of h is

E(h) =

H∑
k=1

kPr(k) = −Hp2H +

H−1∑
k=0

p2k . (6)

Since p = (1− 1
2H

)n ≈ e−n2−H
, we have

E(h) = −He−n +

H−1∑
k=0

e−n2−k−1 ≈
H−1∑
k=0

e−n2−k−1

. (7)



We appeal to Mellin transforms to derive the asymptotic
closed form of the harmonic summation [5] as follows.

E(h) ≈ H−[log2 n+
γ

ln 2
− 1

2
+P(log2 n)+O(

1√
n

)], (8)

where γ is Euler’s constant, P(x) is a periodic and contin-
uous functions of x with period 1 and amplitude bounded
by 10−5. We omit the term P(log2 n) + O( 1√

n
) , and let

φ = eγ√
2

= 1.25941 . . . , then

E(h) ≈ H − log2(φn). (9)

Correspondingly, the standard deviation of h is

σ(h) =
√
V ar(h) =

√√√√ H∑
k=1

[k − E(h)]2Pr(k). (10)

Similar to the method we derive E(h), We appeal to
Mellin transforms to approximate the standard deviation [5].

σ(h) ≈
√

π2

6(ln 2)2
+

1

12
= 1.87271 . . . (11)

For detailed analysis, we refer the reader to [8], which
presents mathematics of probabilistic counting theory and
can be used to derive E(h) and σ(h).

According to Equation (9), the observation of h, the height
of gray node, can be used to estimate n, the number of tags.

However there may exist variance between the observed
height h of gray node and its expectation E(h). According
to law of large numbers [6], the average of the observation
results from a large number of trials should be close to the
expectation of the value, and will tend to become closer as
more trials are performed.

We define the random process h̄ = 1
m

∑m
i=1 hi as the

average value of m independent observations, where hi
denotes the ith observation of random variable h. Since
both the estimating path of the reader and the PET codes at
tags are randomly generated in each round of estimation, the
trials of hi(1 ≤ i ≤ m) are independent random processes.
Therefore, we have

E(h̄) =
1

m

m∑
i=1

E(hi) = E(h), (12)

σ(h̄) =
√
V ar(h̄) =

√
V ar(

∑m
i=1 hi)

m2
=
σ(h)√
m
. (13)

According to Equations (9) and (12), we can estimate the
number of tags as follows

n̂ = φ−1 × 2H−h̄ = φ−1 × 2H−
1
m

∑m
i=1 hi . (14)

Then, according to Equation (13), we will be able to
reduce the variance and improve the estimating accuracy by
performing m rounds of estimation.

Next, we show that given a particular accuracy require-
ment, e.g., Pr{|n̂ − n| ≤ εn} ≥ 1 − δ, how many rounds
of estimation PET should take to output satisfying results.

We define a random variable as follows

X =
h̄− µ
σ

. (15)

By the central limit theorem [6], we know the random
variable X is asymptotically standard normal distribution,
where µ = E(h̄) = H − log2(φn), and σ = σ(h̄) = σ(h)√

m
.

So, the cumulative distribution function of variable X is

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt. (16)

Given a particular error probability δ, we can always find
a constant range c which satisfies

1− δ = Pr{−c ≤ X ≤ c} = erf(
c√
2

), (17)

where erf is the Gaussian error function [6]. On the other
hand, we can rewrite the accuracy requirement as follows

Pr{|n̂− n| ≤ εn}
=Pr{(1− ε)n ≤ n̂ ≤ (1 + ε)n}
=Pr{(1− ε)n ≤ φ−1 × 2H−h̄ ≤ (1 + ε)n} (18)
=Pr{H − log2 φ(1 + ε)n ≤ h̄ ≤ H − log2 φ(1− ε)n}.
Therefore, if we have the following condition

H − log2 φ(1 + ε)n− µ
σ

≤ −c, (19)

H − log2 φ(1− ε)n− µ
σ

≥ c

we can guarantee the accuracy requirement Pr{|n̂ − n| ≤
εn} ≥ 1− δ. Combining Equations (12), (13) and (19), we
have

m ≥ max{[ −cσ(h)

log2(1− ε) ]2, [
cσ(h)

log2(1 + ε)
]2}. (20)

Therefore, with such calculated m rounds of estimation,
PET can guarantee the accuracy requirement of Pr{|n̂ −
n| ≤ εn} ≥ 1 − δ. Note that m is solely determined by
the accuracy requirement ε and δ. Given the pre-required
accuracy level, we can use a constant m that does not relate
to the scale of RFID tags.

C. General Protocol

As elaborated in previous sections, the number of RFID
tags is estimated based on the height of gray nodes in
PET, i.e., the idle slots when the reader query with the
selected estimating path. In this section we formally present
the general estimation protocol, regulating both the reader
behaviors and RFID tag behaviors.

Algorithm 1 defines the behaviors of the RFID reader
during each round of estimation. The RFID reader uses
Reader Talk First mode to communicate with tags. At the



Algorithm 1 PET algorithm for RFID readers

1: m← max{[ −cσ(h)
log2(1−ε) ]2, [ cσ(h)

log2(1+ε) ]2}
2: for i← 1 to m do
3: Select a random estimating path r and a random seed

s; Broadcast r and s
4: for j ← 1 to 32 do
5: Set high j bits of mask
6: Broadcast mask; Listen in the following slot
7: if there is no response in the slot then
8: hi ← j − 1
9: break

10: end if
11: end for
12: end for
13: return n̂← φ−1 × 2H−

1
m

∑m
i=1 hi

Algorithm 2 PET algorithm for RFID tags
1: Receive the estimating path r and the random seed s
2: Compute PET random code prc← H(s, tagID)
3: while TRUE do
4: Receive mask
5: if prc ∧mask = r ∧mask then
6: \∗ Check whether high mask bits of prc is equal

to that of r ∗\
7: Respond immediately
8: else
9: Keep silent

10: end if
11: end while

first, the reader computes the number estimation rounds
according to accuracy requirement (line 1). In each round
the reader selects a random estimating path r and a random
seed s, and broadcast them to the tags (line 3). The reader
queries the tags with the additively increased path prefix
in the following 32 time slots (line 4-11). In particular, at
the j-th time slot the reader queries with the j-prefix of
the selected estimating path r (line 5). At each time slot the
reader broadcasts the prefix mask for each tag’s comparison
(line 6). The reader listens to the channel and obtains the idle
slot j when no response is received and store the value of
j−1 (line 7-10). Finally the reader derives the approximate
number of RFID tags according to Formula (14) described
in previous section (line 13).

Algorithm 2 defines the behaviors of RFID tags during
each round of estimation. Compared with reader behaviors,
the task of each tag is simpler. The tag receives the estimat-
ing path r as well as the random seed s, and generates the
PET random code (line 1-2). The tag keeps receiving the
additively increased mask for the path prefix and compares
the path prefix with the prefix of its own generated random
code. If they are the same the tag responds to the reader and
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Figure 2. Gray node on the estimating path r

Table II
NODE CLASSIFICATION ALONG AN ESTIMATING PATH r

Node i Remarks
black node ST i

r = black

white node ST i
r = white AND ST i

∼r = white

gray node ST i
r = white AND ST i

∼r = black

otherwise the tag simply keeps silent (line 3-11). With such
behaviors fewer RFID tags responds as the querying process
goes on and finally all tags will keep silent.

Similar with previous estimation approaches like FNEB
[7] and LoF [18], the random code of each tag is generated
with a random seed sent from the reader at the beginning of
each estimation round. In such a case, we need to use active
tags such that each tag is capable of executing the random
hashing functions to generate the random code.

D. O(loglogn) Algorithm

Given an estimating path r, we define the node along r
with the height of i in PET as noderi . In the basic algorithm
the reader queries the path prefix additively, which can be
mapped to searching the gray node from the root down to
the leaf on the estimating path r in PET.

Figure 2 gives an example to illustrate such a process.
In Figure 2, the estimation process first probes noder5,
and searches along r with additive path prefix query until
the gray node noder3 is found. We need O(H) time slots
for such a sequential path prefix query in searching the
height h of the gray node in PET. When the number of
RFID tags is large, the height of PET H ≈ log2 n, and
thus the basic estimation protocol has O(logn) efficiency,
which is comparable performance with the state-of-the-art
approaches, such as FNEB [7] and LoF [18].

In this section, we improve the estimating efficiency by
speeding up the process of path prefix query. As a matter of
fact, the nodes along the estimating path r can be classified
as shown in Table II. For arbitrary i > j, we have

(ST jr
⋃
ST j∼r) ⊆ ST ir. (21)

Thus we have the following relations between noderi and
noderj . For i > j,
• if noderi is white or gray node, then noderj is white

node.
• if noderj is black or gray node, then noderi is black

node.
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Figure 3. Protocol execution, (a) Basic algorithm; (b) Binary search algorithm. In this example, the height H of PET is set to 6, and the estimating path
r is selected to be 000011.

Algorithm 3 PET algorithm for RFID readers with binary
search

1: m← max{[ −cσ(h)
log2(1−ε) ]2, [ cσ(h)

log2(1+ε) ]2}
2: for i← 1 to m do
3: low ← 1, high← 32
4: Select a random estimating path r; Broadcast r
5: while low < high do
6: mid← d(low + high)/2e
7: Set high mid bits of mask
8: Broadcast mask; Listen in the following slot
9: if there is no response in the slot then

10: high← mid− 1
11: else
12: low ← mid
13: end if
14: end while
15: hi ← low
16: end for
17: return n̂← φ−1 × 2H−

1
m

∑m
i=1 hi

• In either case, only one gray node exists in an estimat-
ing path.

Such an observation directly reveals the monotonic feature
of the node colors along the estimating path, i.e., the black
and white nodes are consecutively aligned and concatenated
by the only gray node. In the example shown in Figure
2, noder0,1,2 are white nodes, noder4,5 are black nodes,
and noder3 is the only gray node in between. Utilizing the
monotonic feature of the estimating path, we can use a
binary search algorithm to rapidly find the gray node in PET.

Mapped back to the estimation protocol, the reader no
longer conducts a sequential path prefix query. Instead, the
reader queries the path prefix with binary search. Algorithm
3 gives the improved protocol for the reader. The binary
search algorithm is applied to query the path prefix (line 5-
15). Instead of querying the additively increased path prefix,
the mid = d(low + high)/2e bit prefix is chosen at each
time slot (line 6). The high end and low end of the prefix
range are adjusted according to whether or not the response

is received from the tags (line 9-13). Finally the high end
and low end converge to the height of the gray node on
the estimating path, and it is used to derive the approximate
number of RFID tags (line 17).

With the above new protocol, the estimation efficiency is
further improved. Only O(logH) time slots are used to find
the gray nodes in PET, which finally gives us O(loglogn)
estimation efficiency.

Figure 3 uses an example to demonstrate the performance
gain of the improved protocol compared with the basic one.
The example contains one RFID reader and 16 RFID tags.
The height H of PET is chosen to be 6. Each tag generates
a random code with 6 bits and the reader selects a 6-bit
random estimating path r = 000011.

Figure 3(a) depicts the estimation process with the basic
protocol. At time slot 0, the reader queries the path prefix
0*****. As a result, the first 4 tags and the 4 tags with
prefix 01**** respond. The reader is aware of that and
keeps proceeding at time slot 1 with a path prefix 00****.
The query process continues until time slot 4, during which
the reader queries the path prefix 00001* and identifies an
idle slot. The entire process contains 5 time slots.

Figure 3(b) depicts the estimation process with the im-
proved protocol. At time slot 0, the reader directly queries
the mid (mid = d(low+high)/2e = d(1 + 6)/2e = 4) path
prefix 0000** and one tag responds. Receiving the response,
the reader then raises the low end of the query range and at
time slot 1 queries path prefix 00001*. At this time, there
is no tag response. The reader then lowers the high end of
the query range and the estimation converges. The entire
process contains only 2 time slots.

E. Shifting the Computation Burden from RFID Tags

With the basic protocol each tag will generate a random
PET number for mapping into the PET structure at each
round of estimation. Generating the random code at each tag
requires a fair amount of computation, which is infeasible
for passive tags. An alternative is to preload a number of
such random codes on the chip of each RFID tag during
manufacturing. At each round of estimation the tag uses
one of the preloaded random codes. As a trade-off, however,
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Figure 4. Evaluation of PET protocol with different numbers of estimating rounds: (a) Estimation Accuracy; (b) Standard deviation; (c) Normalized
standard deviation.

extra memory cost is required to store those random codes,
which is proportional to the number of estimation rounds m.
As there will be generally many rounds of estimations for
accurate results, the memory cost for preloaded PET random
codes will be high.

With the above concern, we propose to shift such compu-
tation burden from RFID tags to the reader. We rely on the
random estimating paths generated on the reader rather than
refreshing the random codes at tags. Instead of using new
random codes at different estimating rounds, a 32-bit PET
random code is preloaded on each tag during manufacturing
and used across all rounds of estimation. A group of off-
the-shelf uniformly distributed hash functions can be used
to generate the PET numbers, including Message-Digest
algorithm 5 (MD5) and Secure Hash Algorithm (SHA-1).
Note that MD5 generates a 128-bit hash value, but we can
trivially convert them to shorter length, e.g., a 32-bit hash
value, at will.

The reader generates a uniformly distributed random
number as an estimating path at each round of estimation.
By solely changing the 32-bit estimating path in the 232

combinatorial space at each round of estimation, even the
PET codes of tags keep unchanged, we are still expecting
near independent estimating instances, and the algorithm
analysis in Section IV-B still holds. The tags use the
preloaded random codes through all rounds of estimation
instead of generating PET random codes at each round. In
such a way, a tag only performs bitwise comparison on the
PET code and path prefix during each round of estimation.

V. PERFORMANCE EVALUATION

We evaluate the performance of PET through extensive
simulations. First, we investigate the tunable estimation
accuracy and processing time of PET with different param-
eter settings. We then compare PET with two most recent
estimation approaches FNEB [7] and LoF [18] in terms of
estimation accuracy and efficiency, as well as computational
overhead at RFID tags.

A. Simulation Setup and Performance Metrics

In the simulations, we assume that there is no transmission
loss between RFID tags and the reader. The RFID reader is
capable of detecting idle slots from singleton slots as well as
collision slots. Before estimation, each RFID tag is assigned
a 32-bit PET random code by hashing its unique tag ID. To
get each simulation result, we take 300 runs and measure
the average.

The estimation accuracy is the most important metric for
the estimation protocols. We use the same metric as that
defined in LoF [18].

Accuracy =
n̂

n
, (22)

where n̂ is estimated number of RFID tags while n is
the actual number of tags. This parameter indicates the
estimating accuracy. The closer it is to 1, the more accurate
an estimation is. Another metric we are interested in is the
standard deviation of estimation.

σ =
√
E[(n̂− n)2]. (23)

Such a parameter measures the estimating precision.
Generally, a high standard deviation means the estimated
values are dispersed, and a low standard deviation means
the estimated values are concentrated about the actual tag
number. The smaller the standard deviation is, the more
precise the estimation protocol performs. Hence an ideal
estimation protocol is expected to have an accuracy of 1
with a low standard deviation.

Another important metric we consider is the estimating
time the protocol takes to meet a particular accuracy and
precision requirement. For each round of estimation, the
reader takes a number of time slots in interacting with tags.
Therefore the estimating time is proportional to the number
of time slots during the estimation. We thus abstract the
estimating time as the total number of time slots during the
entire estimating process. The estimating time reflects the
protocol efficiency. The protocol with short estimating time
will be able to scale up easily.



Table III
TOTAL TIME SLOTS NEEDED FOR PET

Rounds 1 4 16 64 256 1024 4096

Time slots 5 20 80 320 1280 5120 20480

Table IV
TOTAL TIME SLOTS NEEDED TO MEET THE ESTIMATION ACCURACY

REQUIREMENT WITH DIFFERENT ε (δ = 1%).

ε Enhanced FNEB LoF PET

20% 5366 3857 1681

15% 8524 6566 2862

10% 17067 14120 6154

5% 60483 53885 23484

Table V
TOTAL TIME SLOTS NEEDED TO MEET THE ESTIMATION ACCURACY

REQUIREMENT WITH DIFFERENT δ (ε = 5%).

δ Enhanced FNEB LoF PET

15% 18759 16734 7406

10% 24699 22004 9590

5% 34465 30705 13382

1% 60483 53885 23484

Beside accuracy and efficiency, we also take the computa-
tion and storage overhead on RFID tags into consideration.
We measure and compare such overhead of PET and other
protocols.

B. PET Investigation

First, we demonstrate that PET provides tunable estima-
tion accuracy at the cost of estimating time. As illustrated
in Figure 4(a), one can improve the estimation accuracy
of PET by performing more rounds of estimation. With
32 to 64 rounds of estimation, PET already maintains the
accuracy very close to 1. Such a characteristic of PET
enables modulating the estimating accuracy and efficiency
according to the distinctive application needs. Figure 4(a)
also suggests that the change of the number of tags has no
significant impact on the estimation accuracy of PET, i.e.,
we can accurately estimate a wide range of RFID quantities
without a priori of the tag number.

We are also interested in the standard deviation of the
estimation results. The standard deviation and normalized
standard deviation of PET estimation results are depicted
in Figure 4(b) and 4(c), respectively. The figures suggest
that by performing more rounds of estimation, the standard
deviation of the estimation results can be reduced. Figure
4(c) further suggests that if we take a look at the normalized
standard deviation, the number of tags will affect little. 64
rounds of estimation lead to nearly 0.2 normalized standard
deviation. According to the simulation results, repeating a
constant number of estimation rounds suffices to meet the
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Figure 5. Memory consumption in storing the random codes (in log scale):
(a)with different confidence interval ε, and the same error probability δ =
1%; (b)with different error probability δ, and the same confidence interval
ε = 5%.

requirement of estimation accuracy regardless of the number
of tags.

The processing time of PET is also examined. In the
simulation we use a fixed length of PET number H = 32. In
such a setting, PET only takes 5 time slots to complete each
round of estimation. Therefore the total number of time slots
needed in m rounds of estimation can be listed in Table III.

C. Performance Comparison

We compare the performance of PET with the two most
recent estimation approaches FNEB [7] and LoF [18]. We
may compare the estimation accuracies of the approaches
given a certain amount of estimating time, or compare
the estimating time given a certain estimation accuracy
requirement. As we can always trade higher estimation
accuracy with longer estimating time, we only need to
compare with one setting. Hereafter we mainly compare
the estimating time of the three approaches for particular
estimation accuracy requirements. We measure the total time
slots used in all estimation rounds.

First we compare the estimating time slots given a partic-
ular estimating accuracy requirement Pr{|n̂ − n| ≤ εn} ≥
1 − δ, where ε = 5%, δ = 1%. We keep δ fixed and
change ε from 5% to 20%, giving more error tolerance. The
number of RFID tags is 50000. All three approaches shall
perform multiple rounds of estimation to achieve the given
accuracy requirement. Table IV summarizes the total time
slots used by each of the three approaches. As suggested
in Table IV, PET outperforms both FNEB and LoF with
about 35% to 43% of their estimating time. In Table V we
fix the confidence interval ε and vary error probability δ
from 1% to 20%. Table V suggests similar results that for
arbitrary accuracy requirements PET consumes less than half
of the estimating time of FNEB and LoF. From a different
point of view, the results also indicate that given a certain
amount of estimating time, the estimation accuracy of PET
will be much higher than FNEB and LoF. As a matter of
fact, since PET has O(loglogn) estimation efficiency, when



the number of RFID tags scales, the performance gain of
PET over FNEB or LoF will be larger.

Beside the estimation accuracy and efficiency, we com-
pare the computation and storage overhead of the three
approaches. For each round of estimation, FNEB or LoF
requires each tag to generate a uniformly or geometric
distributed random number. For passive tags, such random
numbers shall be preloaded and stored at each tag. We
examine the storage overhead of storing such random num-
bers and compare with PET in Figure 5. In Figure 5(a) we
fix the error probability δ and vary the confidence interval
ε from 5% to 20%. In Figure 5(b) we fix ε and vary
δ from 1% to 15%. Both figures explicitly suggest that
PET outperforms both approaches with much smaller such
cost. In contrast, PET shifts computational burden to the
more powerful reader side with randomly generating the
estimating path.

VI. CONCLUSION

In this paper, we propose PET for efficiently estimating a
large number of RFID tags. The theoretical analysis shows
that PET is able to estimate the number of tags with arbi-
trarily required accuracy and confidence level. In particular,
PET achieves O(loglogn) processing efficiency, to the total
number of RFID tags, which significantly improves the
state-of-the-art performance bound of RFID estimation. With
the estimating path dynamics, PET shifts the computational
burden from RFID tags to the reader, which allows us to
use much less costly but resource-limited passive RFID tags
in more scalable applications. We do extensive simulations
to evaluate the performance of PET. The simulation results
suggest that PET outperforms two most recent estimation
approaches FNEB and LoF in the sense that PET achieves
the same accuracy requirement with much less processing
time. The computational overhead of PET is also much
smaller at RFID tags.
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