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Abstract - We demonstrate that the network flux over the sensor
network provides us fingerprint information about the mobile
users within the field. Such information is exoteric in the physical
space and easy to access through passive sniffing. We present a
theoretical model to abstract the network flux according to the
statuses of mobile users. We fit the theoretical model with the
network flux measurements through Non-linear Least Squares
(NLS) and develop an algorithm that iteratively approaches the
NLS solution by Sequential Monte Carlo Estimation. With sparse
measurements of the flux information at individual sensor nodes,
we are able to identify the mobile users within the network and
instantly track their movements without breaking into the details
of the communicational packets. A particular advantage of this
approach is that compared to the vast information we can reveal
the required knowledge is extremely cheap. As all fingerprint
information comes from the network flux that is public under
current wireless communication medium, our study indicates that
most of existing systems are vulnerable in protecting the privacy
of mobile users.

Keywords—sensor networks; network flux; mobile user; finger-
print

1. INTRODUCTION

Recent advances in wireless sensor network (WSN) tech-

nologies envision more pervasive usage of the sensor network
where the human beings are deeply interacting with the cyber-
physical environment. In addition to the traditional paradigm
of data collection from remote sensor networks, people may
coexist in the same physical space of interest with the sensor
network infrastructures. Equipped with 802.15.4 compatible
communicating devices, each user is able to move around
within the sensor network and directly communicate with
nearby sensors, capable of pervasive access to the instant data
over the entire field.
In such a pervasive context of data access, the deployed infra-
structural sensor network is capable of simultaneously sup-
porting multiple mobile users and providing them with field
data in an anyone-anywhere-anytime manner. There have been
substantial applications based on this data access mechanism,
from ubiquitous data acquisition to human navigation, and etc
[11, 13]. The mobile users access the network at different lo-
cations and acquire network-wide data instantly through in-
termediate nodes.
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Figure 1. The network flux with three mobile users. (a) The
data collection trees; (b) The network flux pattern.

In this paper, however, we demonstrate that such a working
paradigm suffers from a potential risk of leaking the location
privacy of users. With alarming ease, a malicious entity can
track the every move of mobile users only from passively
sniffing the network traffic flux at a sparse set of points. They
do not even need to break into the content of data packets.

The mobile users access the network at different locations
and produce their own traffic flows respectively across the
network. In most of existing works, a data collection tree is
built for each mobile user and network-wide data are deliv-
ered by intermediate sensor nodes along the tree [10, 14]. The
produced traffic flows of different mobile users add upon each
other at intermediate nodes and the traffic amounts cumulate.
If we summarize the traffic flux distributed over the network
we get a flux pattern of particular shape. Figure 1 depicts the
network flux pattern where there are 3 mobile users collecting
data from the network. Figure 1 (a) presents the three mobile
users and their data collection trees built across the network
and Figure 1 (b) depicts the network flux pattern introduced
by the mobile users. Indeed, the pattern of the network flux is
related to the statuses of mobile users. It digests the informa-
tion including the number of mobile users, their locations,
their traffic stretches, and etc. Thus by exploring the traffic
pattern over the network, we are able to build a mapping be-
tween the instant distribution of mobile users and the observed
network flux.



We build a parameterized model to abstract the network
flux with different situations of mobile users. By fitting the
theoretical model to the measurements on real network flux,
we are able to gradually identify the locations of mobile users
distributed over the field. While gathering the flux informa-
tion over the entire network might be of heavy overhead, we
show that even with sparse measurements of the flux at a
small set of individual sensor nodes we are still able to finger-
print the mobile users through parameter fitting. We further
develop an algorithm that iteratively approaches the move-
ments of mobile users by Sequential Monte Carlo Estimation
technique. Our algorithm takes a time series of flux measure-
ments as inputs. At each time instance, the possible locations
of mobile users are predicted by a set of weighted samples
that approximate their posterior distribution. The samples are
filtered and updated according to the NLS fitting result and
new predictions are drawn from them. As more flux measure-
ments are cumulated, our algorithm converges to the moving
trajectories of mobile users and approximates their locations
with high accuracy.

A particular advantage of this approach is that compared to
the vast information we can reveal, the required knowledge is
extremely cheap. Only sparse knowledge of the network flux
is enough for the entire calculation. As a matter of fact, due to
the broadcast nature of the wireless communication medium,
such information is easy to access through passive sniffing.
We only grasp the amount of traffic flux at each individual
node instead of taking out the concrete flow information, i.e.,
we do not need to look into the transmitted packets which are
much more expensive and often difficult to access. As a direct
result, we demonstrate that most existing systems are vulner-
able in protecting the privacy of mobile users. The malicious
entities can easily identify the mobile users within the network
and instantly track their movements without breaking into the
details of the network communications. Any cryptographic
mechanisms cannot protect the privacy of mobile users from
revealing their movements in the network flux information.

The remainder of the paper is organized as follows. Section
2 discusses existing work related to this study. Section 3 de-
scribes the main design rationale. In Section 4, we give de-
tailed descriptions on how we fingerprint the mobile users
with sparse samplings of network flux. In Section 5, we vali-
date our design with extensive simulations. Finally, we con-
clude this work in Section 6.

II. RELATED WORK

Knowing accurate locations of interesting objects or people
is of essential importance for many pervasive applications.
Initial attempts of the research community include LAND-
MARC [17], RADAR [1], Cricket [20], and etc. There have
been also many approaches proposed for locating and tracking
objects within the sensor network.

Some approaches aim to automatically determine sensor lo-
cations once upon the network is deployed, referred to as self-
localization. A general overview of the state-of-the-art

schemes is available in [6]. Basically, those approaches rely
on a set of beacon nodes with known locations. Other nodes
measure physical distances through ranging techniques or vir-
tual distances within the network and compute their own loca-
tions based on the beacon nodes and the distance measure-
ments. Various ranging techniques have been applied for dis-
tance measurement, such as Time of Arrival (TOA) [25],
Time Difference of Arrival (TDOA) [21], Radio Signal
Strength (RSS) [1], Angle of Arrival (AOA) [18], and etc.
Many techniques have also been developed to compute the
locations with such measurements, from global embedding
and optimization to sequential triangulation or sweeping [5, 7,
12, 16]. For self-localization, both the network infrastructure
and the nodes to be determined are cooperative, i.e., we can
easily access information exchanged among nodes within the
network, such as location beacons, distance measurements,
network structures and so on, which provides us adequate
knowledge for location calculation.

Some approaches aim to remotely locate external objects in
the sensor network field, referred to as remote localization.
Techniques like ultrasound, infrared, or RF Doppler effect
based detection methods are developed for accurate object
detection [9, 20, 24]. By sequentially computing the instant
locations of remote objects it is possible to track their move-
ment trajectories. Instead of directly estimating the static loca-
tions of the object at discrete time instances, constrained non-
linear least squares (CNLS) and extended Kalman filter (EKF)
are usually applied to establish the motion model of objects
and achieve higher accuracy [9, 23]. Different from self-
localization, in remote localization and tracking applications
the target object may not always be cooperative, e.g., the in-
truder detection, wildlife tracking, and etc [22, 26]. Neverthe-
less, the sensor network system itself is open, providing us all
operational information that is needed.

Different from all existing studies, in this work we demon-
strate that even when both the moving entities and the sensor
network infrastructures are non-cooperative, we can still iden-
tify the mobile users with minimum information that is diffi-
cult to secure. Our research result implies that there exists
potential threat towards protecting user privacy in existing
sensor network systems.

The problem of disclosing user privacy in wireless network
context has recently drawn the concern of research community.
There have been studies showing that the location privacy
could be vulnerable with the “broadcast” wireless communica-
tion channels [2, 4, 19]. They demonstrate that the adversaries
are able to acquire user locations with wireless fingerprint
information that can be obtained through direct or indirect
access to the inbound and outbound traffic nearby the user.
Most existing studies require direct access to the data packets
or heavy monitoring of the traffic flows to obtain necessary
fingerprint information. In this work, however, we show that a
sparse sampling on the amount of traffic flux in the field suf-
fices to reveal fair amount of location privacy of mobile users,
which is much cheaper and easier for the malicious entities to
launch.



sink d sink
(a) (b)

Figure 2. Illustration of the network flux model. (a) Continuous
case; (b) Discrete case.

III. DESIGN RATIONALE

Our goal is to solely utilize network flux information to fin-
gerprint the mobile users within the sensor network field. In
this section, we first formalize the problem we are studying,
including the application scenario, design objective, assump-
tions, and etc. We then develop a parameterized model to pre-
dict the network flux over the field. We introduce our basic
design rationale of locating mobile users through briefing the
network flux.

A. Problem Statement

We consider the scenario where multiple mobile users move
around within the sensor network field, collecting the sensory
data from the network.

Let the number of mobile users be K. Each mobile user re-
peatedly collects the updated data from the network at its own
will. The data collection of each user happens at different time
and different places. For any mobile user i, there exists a time
series of data collections [£, 75, ..., 4] while the correspond-
ing positions are [p'}, p's, ..., p']. Different users may have
different time series of data collections independent of each
other. Our goal is to track those mobile users, i.e., to figure
out the location instances of each mobile user {[p';, p’, ..., P’
| 1<i<K}.

Towards such a goal, what we assume available are the in-
stant measurements of the traffic flux over the network at each
time window AT. The time window AT determines the meas-
urement granularity. When AT—0, we get ever more delicate
observation of the network flux. In practice, AT is limited by
the inherent duration of wireless transmissions, synchroniza-
tion among different observers, and etc. Nevertheless, with
current technologies, AT can be bounded at the “seconds”
level, leading to minor observation error compared with the
intrinsic system error brought by the discrete position estima-
tions with “minutes” intervals. Within each time window, dif-
ferent mobile users may or may not happen to initiate the data
collection. In a more general way as adopted in most existing
works, when one mobile user wants to collect the data from
the network, it builds a data collecting tree that roots at the
sink and spans the network. Different mobile users may have
different traffic stretches, i.e., they collect different propor-
tions of data from each node due to their interests at different
environment aspects. The measured network flux at each time

window is the sum-up of the traffic F; initiated by each mobile
sink. At each node, we can measure the cumulated traffic flux:

K
F=>'F,
i=1

However, we cannot exactly separate each share of the flux
amount introduced by each mobile user. Instead, we develop a
mathematical model to fit the mobile user statuses according
to such combined fingerprint flux information.

B. Network Flux Model

In this section, we study how the network flux is composed
when the mobile user absorbs data from the network-wide
data collecting tree. We accordingly build a network flux
model to approximate the amount of data flux at each node.

Note that the data flux at each intermediate node is the cu-
mulated amount of data it generates and relays, including the
data generated at all successor nodes on the subtree it roots.
We first consider a continuous scenario where sensor nodes
are deployed over the field with infinite density. Figure 2 (a)
depicts a sector-like region of angle w and radius / originated
at the user. We assume that each point within the sector-like
region generates a unit of data and the traffic stretch is s for
each unit area. For the arc a which is d distant from the sink,
all data generated at points beyond a (in the blue area) pass
the arc. Let the average traffic flux at each point on arc a be
F,. We have the entire amount of data delivered across a:
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From Equation 3.1, we get F, = s(/*-d”)/2d, which is inde-
pendent of the angle w. We let w—0 and obtain that the flux
at each intermediate point F, is determined by the distance d
from the sink to that point and the distance / from the sink to
the network boundary along the direction of that point.

Fy=s(P-d*)/2d (3.2)

Formula 3.2 models the traffic flux for the ideal network of
infinite node density. For a more practical flux model, we fur-
ther generalize our analysis for the discrete networks. Figure 2
(b) illustrates how the data flux concentrates at the k-hop away
nodes from the user. All k-hop nodes reside inside the strip
area k hop distant from the user and all nodes beyond & hop
away from the user (in the blue area) have their data amount
relayed by those k-hop nodes. Let the flux at each k-hop node
be F;. We have the entire amount of data transmitted through
those k-hop nodes is:

PR L PSSP S
where 7 is the average distance of each hop, p is the node den-
sity, and s is the traffic stretch of the current sink.

From Equation 3.3, we get Fj = s(P*-(k-1)*)/(2k-1)r*. We
can reformulate it and approximate Fj with items of real dis-
tance variables:

F, =~ s(P-d*)/2dr (3.4)
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Figure 3. Statistical results. (a) CDF of the approximation error
rate; (b) Flux measurement v.s. approximation.

Indeed, Formula 3.4 is a consistent representation of For-
mula 3.2 in the discrete setting with a division factor of the
average hop distance r. According to Formula 3.4, the posi-
tion of the mobile user determines the parameter / and d, thus
affecting the traffic flux at intermediate nodes. Using Formula
3.4, we are able to approximate the traffic flux at any position
for general discrete networks. On the other hand, if we have
the measurements of the traffic flux at each node, Formula 3.4
allows us to identify the location of the mobile user with a
parameter fitting. Indeed, if we average the amount of flux
within the neighborhood of an intermediate node, we are able
to get a smoother map of the network flux and better ap-
proximation accuracy by mitigating the randomness of routing
tree construction.

To examine the approximation accuracy of this model we
simulate uniform random networks of 2500 nodes on a square
field. Figure 3 presents the statistical results. Figure 3 (a) plots
the cumulative distribution of the approximation error with
different network densities. According to the statistics, the
traffic flux of most nodes (80%+) can be well approximated
with less than 0.4 error rate. As the node density of the net-
work increases, the error rate can be further reduced. Figure 3
(b) plots the concrete traffic flux measurement (red dots) v.s.
the approximated flux amount (black dots) according to our
model. In this experiment, the average network degree is set to
12. Indeed, we find that the approximation error decreases
with the network hops between the sink and the estimated
nodes. If we focus on those nodes 3 hops away from the sink
(denoted in the box in Figure 3(b)), we can get much lower
approximation error and still preserve more than 70% energy
of the network flux. This allows us to identify the position of
the mobile sink more accurately with those nodes.

C. Briefing the Network Flux

According to the analysis in the previous section, with the
summary of traffic flux over the network we are able to iden-
tify the location of the mobile user by simply extracting the
point of traffic concentration. The problem, however, be-
comes a bit more difficult when there are multiple mobile us-
ers initiating data collection at the same time. As Figure 1
demonstrates, there are three mobile users collecting network
data with three different data collecting trees and their traffics

Figure 4. Briefing the network flux.

cumulate at intermediate nodes. Under such circumstances,
simply detecting the traffic peaks is not effective any more.
We cannot distinguish traffics of different mobile users and
the traffic flux of one mobile user may heavily influence the
observation on other mobile users, especially when different
mobile users have different traffic stretches.

Against such a problem, we use a recursive method to brief
the observed network flux with our theoretical model. We
identify the positions of mobile users in multiple rounds. In
each round, we detect the global traffic peak and accordingly
identify the position of a mobile user. We then estimate the
traffic stretch of the mobile user with the peak traffic. From
the theoretical model, we are thus able to approximate the
network traffic flux associated with the current mobile user.
We then subtract its corresponding amount of traffic from the
original network flux, facilitating later detection of other mo-
bile users. By such a method, we always get reduced map of
network flux and are able to identify the mobile user of domi-
nating traffic at each round. In Figure 4, we demonstrate how
we apply such a method to brief the network flux of the exam-
ple shown in Figure 1. Figure 4 (a) depicts the reduced net-
work flux map after one mobile user is identified. Figure 4 (b)
depicts the map after two mobile users have been identified.
We find that our network flux model well approximates the
real observations and such a recursive method accurately iden-
tifies the distribution of mobile users despite that their traffics
mix with each other. On the other hand, this method requires
the flux information over the network to capture those traffic
peaks. Such a requirement leads to expensive overhead, i.e.,
sniffing all the nodes within the entire network. In next section,
however, we show that we can fingerprint the mobile users
with only sparse samplings of the network flux, largely reduc-
ing the overhead.

IV. FINGERPRINTING WITH SPARSE SAMPLINGS

Instead of acquiring the traffic flux information over the en-
tire network, we can merely use sparse samplings on a small
portion of nodes to get adequate fingerprint information. We
do a parameter fitting on our theoretical flux model according
to the node flux samplings over the network such that we can
find the best possible distribution of mobile users. We further



develop an algorithm that iteratively approaches the mobile
sink movements by Sequential Monte Carlo Estimation tech-
nique.

A. NLS Parameter Fitting

With only sparse samplings from a small portion of nodes,
we are not able to directly map out those traffic peaks of mo-
bile user origins. Instead, we do parameter fitting on our theo-
retical flux model such that the flux measurements can be the
best fit.

Assume that we have the flux samplings at » nodes. From
the theoretical model indicated by Formula 3.4, we can esti-
mate the flux vector F at sampling nodes and compare with
the real measurement vector . The best parameter fitting
corresponds to a Non-linear Least Squares (NLS) optimiza-
tion problem, which will minimize the following objective
function:

min.|F—F| @)
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Here, F; describes the estimated flux amount at the i-th node
according to the flux model, where the traffic of K mobile
users cumulates. The estimated value F; is determined by the
positions of mobile users (x;, y;), and their traffic stretches s;.
We try to fix such parameters as the solution € R** for this
optimization problem. Indeed, the number of mobile users K
is not necessarily preknown. For the cases where we do not
know the exact number of mobile users in the field, we can
conservatively choose a K large enough, and after the optimi-
zation process the K coordinates will converge at the actual
positions of mobile users. There is an unknown constant 7 in
the function which measures the average distance of each
communication hop. In practice, r is limited by the maximum
communication radius R, but is different under different net-
work densities. Nevertheless, we take s;/r as an integrated fac-
tor and fit its value.

Directly applying numerical techniques to solve the above
NLS problem is not feasible in some situations, where the
objective function may not be differentiable. As a matter of
fact, the shape of the network boundary determines our func-
tion of calculating /;;. A non-differentiable network boundary,
say, a rectangular field, usually leads to non-differentiable
objective function. Traditional numerical techniques like
Gauss-Newton method or Levenberg-Marquardt method [15]
all require the objective function to be differentiable, thus not
applicable in those cases. On the other hand, the direct solu-
tion of the NLS problem is not always a stable estimation of
the locations of mobile users, due to the measurement errors
and model prediction errors. The estimated locations may

largely vary between consecutive estimations with different
instances of flux observations.

Against such challenges, we propose to approach the mobile
user movement with sequential samplings. Under the NLS
constraints, we can efficiently filter those outlier samplings
and keep a good approximation. With the Sequential Monte
Carlo Sampling technique, we are able to cumulate our prior
observations on network flux and get constantly refined esti-
mation accuracy.

B. Sequential Monte Carlo Estimation

In our problem, for each mobile user i, there exists a time
series of data collections [£, £5, ..., £4] corresponding to the
sequence of its positions [p’, p, ..., p']. The Sequential
Monte Carlo method allows us to represent the real position of
the mobile user pf',» at each instance j with a set of random sam-
ples. Those samples are updated iteratively with the impor-
tance sampling method. Through the prediction and filtering
operations in each round of update, we are able to restrict the
samples to the posterior distribution of the mobile user’s pos-
sible positions.

Let ¢ be the discrete time instances. For mobile user i, it cor-
responds to the time series of data collections [£, 75, ..., £4].
Let p, represent the position distribution at time 7. We can
predict the current position distribution of the mobile user
from its previous position, i.e., P(p] p.1). On the other hand,
according to our observations on the network flux we get the
likelihood of the mobile user’s current position with the ob-
servation constraints, i.e., P(p/ 0;). With sequential observa-
tions on the network flux evolutions, we iteratively approach
the posterior distribution P(p,| 01, 0y, ..., 0;). At each stage, we
use a set of N random samples P, to approximate the position
distribution p,, We accordingly update the set of samples as
the observed network flux pattern evolves. At each time in-
stance ¢, P; is computed with the previous approximation P,
and the current observation o,.

C. Prediction and Filtering

Initially, without any knowledge and constraints on the po-
sition of the mobile user we assume a uniform distribution and
select the samples uniformly random over the field. At each
time step, we predict the possible positions of the mobile sink
based on the transition distribution P(p,| p..;) and get updated
position samples. We then eliminate those predictive samples
inconsistent with network flux observations in a filtering
phase. In such a process, the sampling distribution gradually
approaches the posterior distribution P(p,] o1, 0y, ..., 0,).

In the prediction phase, we get the updated set of samples P,
from the previous set P,;. We assume a weak model to predict
the movement of the mobile user, i.e., we do not have any
specific information on its mobility pattern (speed, direction,
trajectory, and etc.) except the knowledge of its maximum
moving speed v,,,,. Thus from any sample position in the pre-
vious step P.(7), the possible current position P,i) is uniform
random within a circular region of radius v,,,'At, where At is
the time interval between the two consecutive time instances.



Algorithm 4.1

Initialization

For each mobile sink
tlast =0 . .
Puse = {M random positions in the field}
thust(i) =1/M

End

Step

For every AT time interval

Observation
Input = network flux observation vector F’
Record current time ¢

Prediction
For each mobile sink
At= -ty
P, = {N random position samples according to formula 4.2}
End

Filtering
Calculate ||F-F|| for each of N¥ position compositions
Get top M compositions with least objective values

Asynchronous updating
For each mobile sink

If the best fit s;/r—0
Null

Else
last =t
P, = {M position samples in the top M compositions}
Calculate {w(i)|(i=1, 2, ..., M)} with formula 4.3

Wilast = Wi
End
End
End
i dpp ) S
ﬂ'(vmax ] At)2 s pt’ pz—l — "max (42)
P(px | px—l) =
07 lf d(pt’pt—l)>vmax At

After the prediction phase, there are N new samples drawn
randomly from the discs centered at previous sample origins,
corresponding to increased uncertainty on the movement of
the mobile user. Indeed, above mobility model can be further
refined if we have more accurate mobility prediction, say, the
heading of the mobile user.

In the filtering phase, we eliminate those impossible posi-
tion samples from P, to cut down the uncertainty due to the
unawareness of mobility. The filtering operation is bound to
our network flux observations. For each mobile user i, we
estimate the incurred network flux when it is at any of the N
possible updated positions. We sum up the flux amounts in-
curred by all K mobile users and obtain the estimated flux
vector F for the n sampling nodes. For all N* possible combi-
nations of the mobile user positions, we estimate the flux vec-

tor F and compare it with the real measurement F’. Since
there still exists freedom on the traffic stretches of mobile
users, we take s;/r (j =1, 2, ..., K) as integrated factors and fit
their values to minimize ||F-F’|. We are then able to find
minimized objective value ||F-F"| for each possible combina-
tion of the mobile user positions, with specific traffic stretch
factor s;/r. Such observations allow us to filter out those posi-
tion combinations apart from real measurements by their ob-
jective values. We rank the N possible updated positions for
each mobile user 7, according to their minimum objective val-
ues each of which is achieved in N*' possible combinations.
Finally, we keep the top M updated positions for each mobile
user and filter out the other possible positions.

D. Importance Sampling

In the prediction and filtering phase of each round, we keep
the top M updated positions for each mobile user in P, and
indeed treat them equally in the following round to generate
new samples. Such a method may not be the most efficient
way to converge our position samples to the posterior distribu-
tion P(p| 0y, 0y,..., 0,). We slightly alter our sampling method
and use importance samplings to achieve faster and more ac-
curate convergence.

Suppose the samples are drawn independently from an im-
portance function. We can measure the importance of each
position sample and assign different weights for different
samples. We are then able to use these weighted samples to
estimate the posterior distribution P(p,| 0y, 05, ..., 0,). We rep-
resent each sample with a duple <P(i), w(i)> which records
the position and weight of the sample, and we adopt recursive
importance sampling technique to estimate the weight for each
updated sample.

w, ()" =w,, (@) P(o, | B(©))

(4.3)
w, (@)’

w, () =%

2w’

As formula 4.3 shows, we calculate the weight for each up-
dated sample w,(7) based on the weight of the original sample
wy.1(f) and the posterior probability of the observation at cur-
rent position P(o|P(i)). We then normalize the weights for all
updated samples. With such an iterative calculation, the
weighted set <P(i), w(i)> approaches the posterior distribu-
tion P(p/ 01, 0y, ..., 0;). Good approximations for P(o/P(i)) at
each round will lead to more accurate estimations on the final
posterior distribution and achieve faster convergence. Indeed,
the observation o, at each round comes from the network flux
measurements from the n sampling nodes, and the basic sense
is that a smaller deviation between the predicted and observed
network flux values implies a larger observation probability
P(0,)P(i)). Thus we use the reciprocal of the minimum objec-
tive value ||F-F"| of each of the top M sample position to ap-
proximate such observation probability.



E. Asynchronous Updating

Recall that in our application context different mobile users
collect the updated data from the network at their own wills.
For any mobile sink 7, there exists a time series of data collec-
tions [£, £5, ..., £4] which is independent with each other. As
a matter of fact, the observable updating of their positions is
by nature asynchronous. For each round of observing the net-
work flux some mobile users may not happen to collect data
from the network and there is a best fit traffic stretch s,/r—0
estimated for each of them in the prediction and filtering
phase. In such a case, we will not update the position samples
of those mobile users and instead we allow a larger At for
computing the transition distribution P(p/| p..,) in following
rounds. As a result, the samples of different mobile users are
asynchronously updated. For each mobile user i, the time in-
terval At used to calculate the movement radius v, Af in
formula 4.2 is the time period between two consecutive time
points of data collection #-;.;. We show the pseudo code of
the Sequential Monte Carlo Estimation in Algorithm 4.1.

V. EVALUATIONS

We do extensive simulations to validate the effectiveness of
our approach. We first evaluate the accuracy of locating users
inside the network with NLS parameter fitting. We demon-
strate the results with various inputs and examine the perform-
ance of our approach under different conditions. We then let
the internal users move within the network and track their
movement by Sequential Monte Carlo Estimation. We vary
the number of mobile users and their speed to examine the
performance of our approach with different conditions.

Finally, we launch a trace driven experiment with the move-
ment logs of mobile users in Dartmouth Campus data set. We
test the efficacy of our approach in tracking those asynchro-
nously updated mobile users.

A. Instant Localization

To demonstrate the basic localization framework that we
provide with the fingerprint information of network flux, we
simulate a sensor network with 900 nodes on a 30 by 30 rec-
tangular field. The sensor nodes are distributed over the field
in perturbed grids [3]. The communication radius for each
node is set to be 2.4, resulting in an average degree of 18. We
simulate internal users within the field, collecting sensory data
from the network. The traffic stretch of each user is randomly
selected from 1 to 3. As described in Section 4.1, by doing the
NLS fitting on the traffic flux over the network, we are able to
approximate the locations of all internal users that are collect-
ing data from the network.

Figure 5 shows three instant cases in the experiment. In
each case, we test 10,000 random location samples for each
user and perform NLS fitting to find the top 10 combinations
that minimize the objective function ||F -F || . The true loca-
tions of the users are marked with stars. Figure 5 (a) depicts
the case where there is only one user inside the network. Ac-
cording to the result, all 10 location predictions concentrate in
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Figure S. Instant localization cases: (a) one user, (b) two users,
and (c) three users.

a small region very close to the true location, with an average
error of 0.97, less than 5% of the field diameter. Figure 5 (b)
depicts the case where two users reside inside the network.
According to the result, the location predictions for both users
are still accurate, with an average error of 1.27. Due to the
bilateral interference on the traffic pattern of the two users,
however, there are some outlier reports that deviate from the
true locations. As shown in Figure 5 (b), the largest error is
1.78. Nevertheless, such deviation is rare, and we are able to
filter them out by adopting the reports of majority. In Figure 5
(c), there are three users simultaneously collecting data in the
network. The traffic pattern over the network becomes more
complicated and our approach calculates their locations with
an average error of 1.63. The location predictions scatter
within a relatively broader area. The largest error reaches up
to 2.06. Indeed, as there are more internal users collecting
data simultaneously, the network flux introduced by different
users cumulate on top of each other, leading to less locating
accuracy. Such a problem, however, is largely mitigated in
reality when different users collect the updated data from the
network at their own wills. In such circumstance, different
users collect data asynchronously and at one time interval At
there are usually quite a small number of active users, letting
us easily calculate the locations of them asynchronously. We
will later validate this point in our trace driven experiment.

In Figure 6, we evaluate the localization accuracy of our
NLS fitting based approach with varied settings. We vary the
percentage of sensor nodes that provide us flux samplings,
testing the effectiveness of this approach with sparse inputs.
For each percentage level, we randomly select the percentage
of sensor nodes from the network and use their flux reports to
calculate the locations of users.
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Figure 6. Localization accuracy (a) against percentage of sam-
pling nodes and (b) against network density.

In Figure 6 (a), we show how the localization accuracy var-
ies with the percentage of sensor nodes we use. Consistent
with our intuition, as the percentage of sampling nodes drops,
the localization error increases. Nevertheless, the results prove
that our approach is robust with sparse inputs. The localiza-
tion error keeps low even when we only use the reports from
10% nodes. A dramatic increase of error happens when we
further lower the usage of node samplings to below 5%. The
number of simultaneous internal users affects the localization
error. When we employ 10% nodes, our approach achieves
localization error of 1.23 for one user, 1.52 for two users, 1.84
for three users and 2.01 for four users. We then vary the num-
ber of nodes deployed in the field from 900 to 1800, resulting
in different network densities. For this set of simulation, the
node reports we use is fixed at 90. As Figure 6 (b) depicts, the
localization error decreases as the network density rises. That
is probably because in a denser network the proposed network
flux model approximates the real network traffic more accu-
rately, as we previously discussed in Section 3. The impact of
network density, however, is fairly limited. The localization
error does not significantly change with the network density.

B. Tracking Mobile Users

In this simulation, we let mobile users move within the field
and track their moving trajectories by our Sequential Monte
Carlo Estimation based approach. The basic settings are the
same as previous ones. In the Monte Carlo sampling process,
we select N=1000 random samples every time and keep the
top M=10 samples as the updated representatives for the loca-
tion of each user. At this stage we assume that all mobile users
simultaneously collect data with the same time interval, so we
are able to test how accurate our approach will work with the
complex traffic pattern assembled with multiple users. The
maximum moving speed of each user is restricted below 5 per
detection interval As, resulting in a resampling area of radius 5
each round.

Figure 7 presents us several instant cases where different
number of mobile users move along different trajectories. Our
algorithm continuously calculates the locations of each user in
10 rounds. We point out the 10 location representatives for
each user each round. The arrow lines indicate the movement
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Figure 7. Instant tracking cases: (a) one user, (b) two users, (c)
three users, and (d) two users(crossing)

trajectories of the mobile users. Figure 7 (a) presents the sim-
plest case where there is only one mobile user moving within
the field. We can easily find that the location estimations con-
verge to the real trajectory from initial deviations as more and
more flux inputs are gathered. Finally, the average error is
limited below 2. Figure 7 (b) depicts the situation where there
are two mobile users moving simultaneously. Our approach
still captures their moving trajectories with high accuracy and
the location estimations approach the real trajectories as time
evolves. In Figure 7 (c) we depict the case of three mobile
users. The tracking accuracy decreases a bit due to the com-
plexity of the network flux introduced by multiple users but
still maintains high. A particular interesting case is depicted in
Figure 7 (d), where the trajectories of two mobile users inter-
sect and the two users come across with each other in their
movement. We find that when two mobile users meet, our
algorithm with solely network flux input can only detect the
locations of them but cannot distinguish their identities, i.e.,
our algorithm might mix up their location samplings, introduc-
ing errors for the successive predictions. As we observe from
this figure, the blue and red dots mix up at the intersection
point and then follow the trajectories of the other user. Never-
theless, our algorithm calculates the accurate locations for the
two users although their identities are mixed. Thus our algo-
rithm preserves the basic trajectories of the mobile users.

We test the accuracy of our approach with different per-
centage of flux samplings and against different network densi-
ties. We measure the error of the location estimation of each
user in the final round and depict the results in Figure 8. As
shown in Figure 8 (a), the tracking accuracy does not vary
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Figure 8. Tracking accuracy (a) against percentage of sam-
pling nodes and (b) against network density.

much until the percentage of sampling nodes drops below 5%,
which is consistent with what we observe in the localization
scenario. Although a large number of flux samplings help to
provide high accuracy, using only 10% nodes still provides us
acceptable accuracy. In Figure 8 (b), we depict how the track-
ing error varies with the network densities. The number of
nodes deployed in the field is varied from 900 to 1800 and the
node reports we use is fixed at 90. Similar with the situation in
the localization scenario, the network density does not signifi-
cantly affect the tracking accuracy, although a denser network
provides more accurate approximation with the network flux
model.

C. Trace Driven Experiment

To examine the performance of our approach in practice,
we launch a trace driven experiment with the Dartmouth
Campus data set. We use the mobility data set v1.3 extracted
form the “syslog” portion of the Dartmouth Wireless-Network
Traces [8]. The data include traces from April 2001 to June
2004 recording the wireless APs associated with different
network interface cards at different time. There are around
500 APs distributed within the Dartmouth Campus and we use
the 50 of them in a rectangular region as landmark references
for the locations of mobile users. Figure 9 shows a part of
those APs distributed in the campus. The mobility data set
records a sequence of APs each user uses at different time, so
by concatenating the locations of those APs we are able to
figure out a mobility path for each user. The mobility path,
however, reflects the movement behaviors of each user in a
relatively long period, e.g., one data instance records the AP
association of one network interface card for more than 6200
hours. To make compact movement trajectories we intercept a
segment from each record and compress the timeline by a fac-
tor of 100. We divide the test field into a 30 by 30 grid and
simulate 900 sensor nodes deployed with in the field.

We deploy sensor nodes in two ways, into perturbed grids
and purely random. While the former deployment represents
more regular conditions, the latter one stands for more vari-
ability. We do our experiment 10 runs, each time with 20 ran-
domly chosen mobility records representing 20 mobile users.
According to the locations and timelines recorded in the mo-
bility traces, mobile users asynchronously collect data from
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Figure 10. Tracking accuracy in the trace driven experiment
(a) against percentage of sampling nodes and (b) against the
maximum speed of mobile users.

the sensor network. We run our asynchronous updating algo-
rithm (algorithm 4.1) to calculate their instant locations re-
peatedly. We measure the tracking error between the calcu-
lated locations of each mobile user and its movement trajec-
tory and summarize the average error in Figure 10. In Figure
10 (a), we vary the percentage of reporting nodes and observe
the tracking accuracy. Consistent with our previous simulation
results, with perturbed grid deployment the tracking error is
quite limited below 3 when we use more than 10% node re-
ports, i.e., the error is less than 5% of the diameter of the test
field. The tracking error smoothly increases when we use less
node reports. The tracking error with purely random deploy-
ment, however, is about 1.5 times that with perturbed grids.
The deviation of errors is also enlarged in such a more vari-
able setting. In Figure 10 (b), we vary the maximum speed of
each mobile user. The direct result is that in the prediction of
our algorithm the disc area for resampling is enlarged and the
sample locations drawn are scattered more widely. The results
in Figure 10 (b), however, show that our approach is robust to



such increased uncertainty. The tracking error for both per-
turbed grid deployment and random deployment keeps rela-
tively stable with a slight increase as the maximum moving
speed increases.

An interesting observation is that, although in each run of
the experiment there are 20 mobile users coexisting within the

field the performance of our algorithm does not degrade much.

That is benefiting from the asynchronous operations of the
mobile users. Due to the asynchronous updates, for most of
the small time instances, there are only a small number of mo-
bile users issuing data collections, leading to the ease of calcu-
lating the traffic flux of limited complexity.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrate that the mobile users within a
sensor network take the risk of leaking their location privacy.
The network flux provides us fingerprint information about
the mobile users inside the network. We propose a flux model
that approximates the network flux within the network. Using
the NLS fitting algorithm we are able to analyze the network
flux and gradually calculate the locations of mobile users with
Sequential Monte Carlo Estimation. Through passively sniff-
ing at a small set of nodes in the network any adversary can
casily locate the mobile users and track their movement. In-
deed, our study reveals the potential threat in protecting the
location privacy of mobile users from malicious entities. Fu-
ture work includes exploring effective countermeasures
against such a threat, e.g., reshaping the network traffics to
prevent malicious detection.
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