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Abstract—The networked application environment has mo-
tivated the development of multitasking operating systems for
sensor networks and other low-power electronic devices, but
their multitasking capability is severely limited because tradi-
tional stack management techniques perform poorly on small-
memory systems. In this paper, we show that combining binary
translation and a new Kkernel runtime can lead to efficient
OS designs on resource-constrained platforms. We introduce
SenSmart, a multitasking OS for sensor networks, and present
new OS design techniques for supporting preemptive multi-task
scheduling, memory isolation, and versatile stack management.
We have implemented SenSmart on MICA2/MICAz motes.
Evaluation shows that SenSmart performs efficient binary
translation and demonstrates a significantly better capability
in managing concurrent tasks than other sensornet operating
systems.

I. INTRODUCTION

The growing popularity of low-power and pervasive
wireless computing devices naturally leads to an emphasis
on networked operations and a seamless interaction with
the ambient context. This trend is seen on PDAs, active
RFIDs, various intelligent consumer electronic devices, and
wireless sensor networks. Such networked operations and
contextual interaction make the application software much
more complex than that running on traditional embedded
devices. Particularly, the sensor network is a representative
technology where the relevant design factors — resource
constraints, application complexity, and multi-hop network-
ing — are manifested to a great extent. A typical sensor
node may only have a simple CPU and a few kilobytes of
RAM [1][2], but the software running on it can take tens
of thousands lines of code to implement, performing a wide
range of tasks related to sensing, topology control, wireless
routing, power management, signal processing, and system
adminstration [3][4][5].

The complexity of application software and the fact
that the software runs on numerous unreliable devices call
for strong system software support. One critical need is
a preemptive multitasking operating system. Without that,
handling important interrupts could be delayed by long com-
putational tasks, communication operations could disrupt the
timing of the sensor channel sampling, and unpredictable
latencies would make network level activity unreliable and
energy-costly.
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Consequently, a number of recent operating systems for
sensor networks have included multitasking and preemp-
tive scheduling features. However, a careful examination
of current multitasking systems shows severe limitations
in both functionality and usability. The key problem is
stack management — how can an operating system efficiently
manage multiple stacks on a small-memory platform?

In a multitasking system, the stacks of concurrent tasks
routinely grow and shrink during their execution. The dy-
namics of the stacks is particularly high for event-driven
systems, which is the de facto standard programming model
for sensornet systems [2][6][7]. The ability to hold multiple
stacks in memory and efficiently handle the stack dynamics
is a fundamental determinant of the performance of a
multitasking OS.

On resource-rich platforms, stack management is often
considered as a solved problem with textbook solutions.
Three facts have helped the traditional stack management
become successful on such systems.

e Virtual memory in modern microprocessors eliminates
external fragmentation, and limits stack collisions to
only occur within individual address spaces.

« Abundant virtual memory space is usually provided for
typical stack usage. Hence, inter-thread stack collisions
inside a process can be avoided by allocating “suffi-
cient” memory areas to the threads.

o The size of the physical memory in resource-rich
systems keeps growing, making internal fragmentation
negligible.

However, none of these facts are true in low-power com-
puting systems, and, not surprisingly, traditional solutions do
not perform well on senor nodes that are strictly resource
constrained and absent of virtual memory hardware. Some
recent multitasking systems have ported existing stack man-
agement solutions to sensor networks, but suffered severe
limitations. They typically require that programmers provide
worst-case estimation of stack usage for various tasks, or
use a statically analyzed value for stack size, resulting in
significant waste in memory allocation and degradation in
the number, types, and combinations of tasks the OS can
schedule. Hence, current multitasking sensornet operating
systems typically have a weak “stack versatility” — a term
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we use in this work to describe the ability to efficiently
handle multiple stacks without a priori knowledge on their
dynamics. The weak stack versatility directly affects these
OSes’ ability to accommodate concurrent tasks.

Designing versatile stack management on resource con-
strained platforms is a new challenge. Though the low-power
computing technology develops steadily, virtual memory
is still very unlikely to be available to the sensor nodes
using very-low-power processors. Some recent embedded
processors claim to enable a 32-bit architecture with the
cost and power consumption of 8-bit systems. The claim
is, however, only partially true because downscaling power
is often accompanied by removing architectural features.
Most low-power microcontrollers (MCUs) do not support
hardware memory translation or memory protection. Many
low-power systems also do not support instruction privilege,
which is prerequisite for traditional multitasking designs. It
is also unlikely that very-low-power systems can afford to
scale up physical memory size as quickly as the cost of
RAM drops. In the past two decades, the typical memory
capacity of computer systems has grown dramatically, but
many MCUs today still use kilobytes of SRAM for energy
efficiency.

Furthermore, simple augmentations to stack handling or
memory system are unlikely to work in our design context. A
simple copy-on-switch scheme appears to solve the problem
by swapping one task’s stack out to the external storage
(FLASH on motes) and swapping it in when the task
is activated again. However, writing the external FLASH
takes more than 10 milliseconds on a MICA2 mote. Such
long context-switch delays, as well as other limitations
(e.g., the erase cycle of FLASH chips), make the copy-
on-switch scheme impractical for sensor nodes. Static stack
analysis, on the other hand, has intrinsic limitation due to the
incomputability of the general problem — how many blocks
on the tape a Turing Machine reads or writes [8]. The use of
fibers simplifies the scheduler design but does not eliminate
the need for stack management [7]. Some other solutions,
such as the “protothreads” [9], have their own limitations,
as we will cover in Section II.

In contrast to earlier solutions, we take an approach
of combining binary translation and a lightweight kernel
runtime to provide strong stack versatility and multitasking
capability. We have designed and implemented a new op-
erating system prototype, SenSmart, which includes several
new designs on base-station-side binary re-writing, logical
address translation, and stack relocation. These new designs
reduce memory overhead, minimize the external fragmenta-
tion, and provide new level of stack versatility on strictly
resource constrained sensor nodes. As an example of the
effectiveness, SenSmart can handle a multi-task workload
even when the total “needed” stack space of all tasks exceeds
the total available stack space in the physical memory.

The rest of this paper is organized as follows. Section II
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discusses the related work. Section III presents an overview
of our system architecture and technical approaches. Section
IV describes the detailed design of SenSmart. Section V
focuses on the system implementation and evaluation. We
summarize the work in Section VI.

II. RELATED WORK

Researchers have developed a number of operating sys-
tems for sensor networks and low-power devices, such as
TinyOS [2],SOS [10], Contiki [11], MANTIS OS [12],
Nano-RK [13], LiteOS [14], and the t-kernel [15]. In order
to support more reliable, efficient, and sophisticated appli-
cation systems, recent systems start to provide advanced
OS features, such as multitasking, memory protection, and
software-based memory swapping. In particular, multitask-
ing has become an important feature as the applications grow
to be more network-oriented and function-rich. However, for
reasons explained in Section I, existing multitasking systems
for sensor networks have to place harsh restrictions on the
concurrent tasks, such as pre-determined maximum stack
depth.

In TinyOS [2], tasks are executed (called through a func-
tion pointer) in serial. Hence, there is no concurrency among
them, and the stack management is simple. Without memory
isolation, a task in TinyOS, as well as other application logic,
can write to any physical memory areas including those used
by the OS. To improve the quality of system services, other
works attempt to add features such as preemption or memory
checking for TinyOS [16][17][8], but the proposed methods
still have their own limitations.

MANTIS OS [12], Nano-RK [13], Contiki [11], SOS [10],
Harbor [18], and RETOS [19] attempt to design multi-
tasking sensornet operating systems using traditional OS
design techniques. For instance, MANTIS OS implements a
multithreading kernel with preemption. Each thread has its
own stack area, and scheduling is built on clock interrupts.
As explained in Section I, traditional solutions usually lead
to low stack versatility and harsh restrictions on application
tasks. For example, it is very difficult to efficiently allocate
stack memory to tasks without introducing extra burden (and
dependence) on application programmers. For correctness
and simplicity, such systems usually allocate stack memory
to a thread based on the worst-case situation. Without
virtual memory paging, this pessimism, combined with the
aforementioned inflexible allocation, aggravates the waste
and drains a fair portion of previous memory resources.

Besides stack versatility, most of the aforementioned sys-
tems also have difficulty with preemptive scheduling because
the clock-interrupt-based scheduling on sensor nodes is not
reliable. Many MCUs used in sensor nodes do not support
instruction privilege, and application code can disable inter-
rupts.

Departing from traditional solutions, the t-kernel [15]
implements preemptive scheduling, OS protection and vir-



tual memory with binary re-writing on sensor nodes. The
tasks in the t-kernel share a common stack space, and the
memory protection is asymmetric — only the kernel memory
is protected. SenSmart also uses binary re-writing as an
important technique to implement preemptive scheduling
and memory isolation. Different from the t-kernel and
other binary re-writing systems for sensor networks [20],
SenSmart conducts complete binary translation on the base
station. As we will show later, this approach gives SenSmart
unique advantages in reducing system complexity and code
inflation ratio.

Maté [21] and MagnetOS [22] represent the virtual ma-
chine approach, another software-based method to provide
enhanced system abstractions. The disadvantage of this
approach is that scarce resources do not allow virtual ma-
chines to perform sophisticated optimization on the byte-
code. Hence, such virtual machines often resort to slow
interpretation based execution.

III. OVERVIEW

In this section, we give an overview of SenSmart. We first
define the design space, then provide a high-level operational
view of SenSmart.

A. Examination of the design space

We use the MICA2/MICAz sensor nodes [23] as represen-
tatives of strictly resource constrained networked platforms.
As the assumption on hardware, we expect that the hardware
platform has at least the same amount of resources as
a MICA2 mote, which has an 8-bit ATmegal28L MCU,
4KB SRAM-based data memory, and 128KB FLASH-based
program memory.

As assumptions on software, we expect the applications
to meet the following requirements.

o The application code does not modify itself. Note
that this restriction does not apply to the OS code —
reprogramming can be performed as an OS service.
The heap areas and stack areas used by the applica-
tions are not overlapping, i.e., the applications do not
intentionally use a memory area as both a heap and a
stack.

The application code does not use dynamic memory
allocation.

Most of the sensornet platforms and TinyOS/nesC appli-
cations meet these requirements. As an explanatory note to
the third assumption on software, most of the applications
running on MICA2/MICAz motes do not use dynamic
memory allocation. For those applications that do, it is not
difficult to add a specific allocation module, which claims a
chunk of memory and re-allocates parts of it upon requests,
to emulate the dynamic memory function. Some versions of
TinyOS already contain such a module.

In this strictly resource-constrained design space, we
design SenSmart to be a reliable OS with solid multitasking
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Figure 1. The compiling, re-writing and loading process in SenSmart

capability. Using software methods, it solves the critical
problems of stack versatility and purely software-based
preemptive scheduling.

B. System overview

A sensornet application is often written in a sensornet pro-
gramming language, such as nesC [6]. After being compiled
into a binary executable, the application program is loaded
into the program memory and executes on the sensor node.
SenSmart rewrites the binary executable on the base station
after the application program has been compiled and before
it is loaded. The re-writing logic, called rewriter, analyzes
the binary image, and patches the application code to ensure
that multiple application tasks run on one node following
appropriate multitasking semantics.

Figure 1 shows the process of sensornet application de-
velopment with SenSmart. After the compiler generates the
binary code and the memory usage information contained
in the symbol list, the rewriter translates the program code
to be a “naturalized program”, which cooperates with the
kernel runtime to support multitasking. After compiling and
translating multiple programs, SenSmart links them together
with the pre-compiled system kernel, which includes the
kernel runtime, to form the executable to be loaded to sensor
nodes. When the application programs are instantiated, they
execute concurrently as application tasks under the control
of the kernel. Each application task has its respective time
slice and memory region. SenSmart schedules the tasks with
preemption, and isolates their memory regions by translating
memory addresses into appropriate physical addresses at
runtime. Transparent to application tasks, SenSmart auto-
matically adjusts the sizes and locations of the tasks’ stack
areas when it is necessary, and avoids stack collisions when
it is possible.

IV. SENSMART DESIGN

We present the design details of SenSmart in this section.
We first introduce how SenSmart performs binary re-writing
on the base station, then briefly cover multi-task scheduling,
and present the details of the memory management.

A. Binary re-writing on the base station

Following common C and nesC programming paradigms,
sensornet programs are usually developed and executed with
a view that they exclusively use the CPU and memory on the
sensor node. The code re-writing process, performed on the



base station by the rewriter, virtualizes the CPU and memory
so that multiple programs thus developed can be instantiated
as application tasks on one sensor node and share the CPU
and memory resources.

The rewriter modifies the following types of instructions.

o The instructions which affect the CPU control flow,
including the branch instructions and the CPU control
instructions (e.g., the SLEEP instruction), are re-written
in a way to ensure that the OS frequently takes over
CPU to run system services.

The direct or indirect memory access instructions and
stack pointer operations, are re-written in a way that
cooperates with the memory management mechanism.
The instructions that access some OS-reserved re-
sources are also re-written. For example, SenSmart
reserves the Timer3 of ATmegal28L MCU as a global
clock, therefore, the accesses to the I/O registers of
Timer3 are intercepted and handled in special ways .

Departing from the on-node binary re-writing in the t-
kernel, SenSmart rewrites the binary code on the base
station, and strikes a balance between reliability and cost.
This approach has a number of benefits as follows.

First, the base station can collect the whole-program
characteristics such as the heap usage information from the
symbol list generated in compiling. Such information is
useful for our approach.

Second, having plenty of resources, the base station is
able to thoroughly analyze the application program for more
efficient re-writing. In contrast, the t-kernel performs code
re-writing on resource constrained sensor nodes, and can
only work on no more than a “page” at a time. One page
containing up to 128 instructions. Such a modest size of
re-writing units limits opportunities of optimization, and
introduces additional complexity.

Finally, by moving the code re-writing logic to base
stations, SenSmart also significantly reduces the kernel size
on individual sensor nodes.

Another design in SenSmart is that it maintains an ap-
proximate linearity of the original program’s instruction ad-
dresses and the naturalized program’s. After the re-writing,
one instruction can be translated into a variable number of
instructions, and this usually results in a code inflation non-
linear to the instruction addresses in many other systems.
SenSmart regularizes the instruction re-writing to mitigate
the inflation. When patching one instruction, SenSmart re-
places the instruction with one JMP or CALL instruction,
which takes the control flow into a code snippet (called
“trampoline”) corresponding to the re-written logic. All of
the trampolines are appended after the application program.
Hence, the instruction count of the patched program, exclud-
ing the trampoline code, is exactly the same as that of the

Note that Timer3 is not used for preemption, as SenSmart chooses not
to rely on clock interrupts for scheduling.
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original, though the byte sizes may still differ because the
byte sizes of individual instructions vary. Such an approxi-
mate linearity makes it easier to map instruction addresses
from the original program to the patched one, particularly
when the addresses have to be resolved at run time (e.g.,
indirect branches). Moreover, since many trampolines are
similar, they can be merged to save space (even if they
belong to different application programs), and further reduce
the size of the naturalized program.

B. Task scheduling

With no privilege support on many sensor nodes, it is
unreliable to design preemptive scheduling based on clock
interrupts as traditional operating systems do, since the
interrupts could be disabled by application tasks. Instead,
SenSmart modifies the branch instructions so that one out of
256 backward branches executed by the MCU jumps to the
OS kernel, a technique also used in the t-kernel. However,
SenSmart differs from the t-kernel in that it uses time
slices to schedule tasks. Counting time slices using Timer3,
SenSmart schedules tasks using a round-robin policy, and
preempts a task after its time slice is used up. Note that the
scheduling does not guarantee that the preemption occurs
exactly when the time slice ends because the software
traps are triggered aperiodically. However, the delay of the
preemption, usually no more than a couple of microseconds,
is small enough to be ignored for most applications. Even
with interrupts disabled, SenSmart can still preempt the
application task by the software traps, although the moment
such preemption occurs may be slightly later than the
moment stipulated by the time slice.

C. Stack management

An effective multitasking mechanism shall accommodate
arbitrary combinations of tasks within the resource limita-
tion, and handle the dynamics of resource utilization when
the tasks execute concurrently. Earlier sensornet operating
systems are not able to meet this requirement, and a major
obstacle is the difficulty in handling the stack dynamics.

With preemptive multitasking, switching to a different
task before the current one terminates forces the system
to maintain multiple “active” stacks in the sense that the
stacks are still used by tasks, and that the stacks may expand
and shrink without predictable patterns. In a small-memory
system with multiple active stacks, the expansion of one
task’s stack can easily touch the border of another active
stack, and some application tasks may have to be terminated
even if the system still has free memory space. Hence, the
ability to manage multiple stack areas is a crucial part of
the memory management in a multitasking OS.

To provide stack versatility and adapt to the variety and
dynamics of stack usage, SenSmart introduces software-
based logical addressing, and automatically adjusts various
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Figure 2. Layout of the data memory and logical addressing

tasks’ stacks while guaranteeing the memory access seman-
tics. In this section, we first give an overview of the memory
organization in SenSmart, then present the logical address
translation and stack management algorithms.

1) Memory Organization: SenSmart divides the data
memory space into the I/O area, the application area and the
kernel area. The I/O area is mapped to the I/O registers in
ATmega MCU, and the kernel area is reserved by SenSmart.
The application area is divided into independent memory re-
gions, each region assigned to one task. Without dynamically
allocated memory (refer to Section III-A), a memory region
comprises a fixed-size heap area, and a variable-size stack
area. SenSmart laces the heap area in the lower part of a
memory region, and the stack area in the upper part. Figure
2 shows the structure of memory organization.

A task running in SenSmart is analogous to a process
instead of a thread because each task has its independent
memory region with a heap and a stack. For each task, we
use three pointers, p;, p,, and py, to indicate the lower bound
of the task’s memory region, the upper bound of the task’s
memory region, and the upper bound of the task’s heap area,
respectively. Suppose the size of the physical memory is M.
Obviously, we have p; < pp, < p,, < M. After excluding the
I/O area, the kernel area and all heap areas, the remaining
space is the total available stack space for all tasks.

2) Logical addressing: SenSmart uses a logical address-
ing mechanism to provide each application task a logical
memory space, which is as large as the physical memory, so
that the task can “exclusively” use it. The logical addresses
are translated into physical addresses at run time, and
accesses beyond a task’s memory region are intercepted
and treated as invalid instructions. Such logical addressing
mechanism makes the program-visible memory addresses
independent of their locations in the physical memory. It
not only makes it very easy to implement memory isolation
for multiple tasks. but also allows SenSmart to tune the
locations of the memory regions and the stack sizes for
various application tasks with different stack dynamics.

To implement logical addressing on strictly resource
constrained hardware, the binary rewriter modifies memory
access instructions to include logic for run-time address
translation. Under the assumptions listed in Section III-A,
there are only three types of valid data memory accesses:
1) random access in the current heap area, such as LD/ST
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instructions in ATmel’s AVR instruction set; 2) random
access in the stack frame of the current function; 3) LIFO
access to the current stack using stack-mutating instructions,
such as PUSH/POP/CALL/RET. The memory translation
handles all three types of accesses, as illustrated in Figure
2.

Generally, the address translation adds a displacement (p;
for heap and for p,, — M for stack) to the original memory
address to form the effective memory address, as well as
performs boundary checking. Meanwhile, various forms of
translation and adjustments are added for both correctness
and performance.

When a task attempts to retrieve its stack pointer, the
kernel translates the stack pointer to the logical address
which uses the upper bound of the logical memory space
as stack bottom. The kernel will also translate it back when
an application tries to set the stack pointer. This allows
stack memory accesses implicitly using the stack pointers
to execute efficiently and correctly.

The overhead of data memory address translation is rel-
atively high because there is no dedicated register or other
hardware support, and several extra memory accesses are
needed to determine the boundary of current memory region.
We have noticed that, in most sensornet applications, 2 or
4 memory access instructions are often performed together
using the same indirect address registers to fetch or store
word or double-word data. Thus the binary rewriter can
identify the instructions as a grouped memory access and
only translate the address once. This optimization effectively
improves the performance, and is made possible because
basic block information can be used by the rewriter to ensure
correctness.

Despite the overhead, the benefits of the memory in-
direction are multi-fold. The most important one is that
application tasks can program on logical address spaces
which are independent of the real locations in the physical
memory. The logical addressing is a key functionality of
SenSmart that enables the stack relocation to be discussed
in Section IV-C3. In sensor networks, data memory is always
a keenly constrained resource. CPU cycles are, however,
usually not a bottleneck. Hence, we believe the benefit of
logical addressing in system functionality, reliability, and
usability by far out-weights the overhead in CPU cycles.

Similar to data memory, program memory address trans-
lation is also necessary for the correctness of the naturalized
program. At run time, the translation of program memory
address occurs when there is a program memory data access
or an indirect branch. Other program memory address trans-
lations, for example, branches with relative addresses, are
directly resolved by the binary rewriter on the base station.
Such a separation of program memory address translation
effectively reduces the workload on sensor nodes.

Because each instruction in the AVR instruction set is 16
or 32 bits long, we use a sorted array called “shift table”
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to record the addresses of re-written instructions that are
inflated from a 16-bit instruction to a 32-bits JMP/CALL
instruction. Based on the shift table, we can map a program
address in the original application task to the corresponding
program address in the naturalized program. Note that, on
an ISA with fixed-size instructions, the shift table can be
eliminated and the time complexity of program memory
translation can be reduced to virtually zero.

3) Stack relocation: Most sensornet application programs
follow an event-driven model [2], which typically use the
stack in a highly dynamic manner [7]. In a sophisticated
TinyOS application, 10 levels of nested function calls are
common even with compiler inlining optimization, resulting
in a sizable stack area. Following a “split-transaction” pat-
tern for event-driven processing, tasks can quickly shrink
their stack on a blocking I/O, and leave the unfinished
work to another event-driven task to be executed when the
I/O completes. There are also tasks which use only a very
small stack. Such a workload pattern makes fixed-size stack
management cumbersome and inefficient.

One important technique SenSmart uses to enhance stack
versatility is allowing stacks to freely relocate in the physical
memory, and programs will run on SenSmart without know-
ing the underlying stack motions. This appears to be a heavy-
weight solution, but the cost is, in fact, surprisingly low
in a small-memory system, and it keeps the stack memory
semantics as the compilers know it.

In SenSmart, All of the tasks are given a predefined initial
stack size. During their execution, some tasks may need
more stack space, and others still have surplus. In order
to check the stack space at run time, the binary rewriter re-
writes the instructions that change the stack pointer to invoke
a stack checking routine. When SenSmart detects that the
stack space of a task is to overflow, it increases the stack of
the overflowing task by relocating a number of tasks’ stacks.
With stack relocations, SenSmart adapts to the stack memory
usage of the combination of tasks concurrently running in
the system.

The relocation logic enumerates the application tasks in
the system to look for available memory. The application
with most surplus available stack space is selected, and
the memory regions are moved as shown in Figure 3. The
application task with the most surplus stack space provides
half of its available stack space to the one with insufficient
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stack space. Since the application programs only use logical
memory addresses, all accesses to application tasks’ memory
regions, including heap and stack areas, can be translated to
correct physical addresses after the stack relocation.

V. PERFORMANCE EVALUATION

We have conducted extensive evaluation on SenSmart pro-
totype implementation. First, the overhead of key operations
is measured. Second, we use kernel benchmark programs to
evaluate typical code in sensor networks. Finally, we show
that SenSmart has a much better capability in accommodat-
ing concurrent tasks.

A. Implementation

We have implemented SenSmart on MICA2/MICAz
motes. The SenSmart kernel is configurable. In the default
setting, the kernel occupies less than 6% of the program
memory and about 10% of the data memory. This memory
footprint is much smaller than the t-kernel and many other
operating systems. The t-kernel uses more data memory be-
cause it performs on-node re-writing, and reserves physical
data memory to be used as virtual memory frames.

Table I lists the implemented features of typical related
systems as a comparison. Although these systems have
respective advantages, SenSmart performs better in multi-
tasking related functionalities as listed.

B. Overhead

The task scheduling and memory protection logic in
SenSmart ensure the system integrity under multitasking,
but they also inevitably introduce overhead into the system.
Using the ATmega simulator in AVR Studio, we measure
the overhead in CPU cycles, and list the results in Table II.

If not fully optimized, the overhead of memory address
translation and checking would dramatically affect system
performance since the memory accesses occur frequently in
programs. Fortunately, this overhead can often be reduced
within basic blocks as discussed in Section IV-C2. Indirect
branches have high overhead due to branch destination
lookup at run time, but such instructions are rare in current
sensornet applications. The overhead of stack reallocation
and context switching varies in different cases. The numbers
shown in Table II give representative examples. It is worth
noting that relocating a stack on an ATmegal28L MCU
running at 7.32MHz may introduce 100 — 300us delay.
SenSmart is conservative on memory relocations, hence such
delays should be infrequent in stable systems. Moreover,
since many common operations, such as sensor I/O and
packet transmissions, take multiple milliseconds on a sensor
node, we feel confidently that occasional sub-millisecond
delays paid for an unprecedentedly versatile multitasking
support is a small and welcomed cost.



COMPARISON OF TYPICAL SYSTEMS

Table T

TinyOS/TinyThread | Maté MANTIS OS | t-kernel RETOS LiteOS | SenSmart
TinyOS Compatible N/A No No Yes No No Yes
Preemptive Multitasking Yes No Yes Partial Yes Yes Yes
Concurrent Applications No N/A No No No No Yes
Interrupt-free Preemption Yes N/A No Yes No No Yes
Memory Protection No Yes No Partial Yes No Yes
Logical Memory Address No N/A No No No No Yes
Physical Mem Management | Automatic Automatic | Automatic Automatic | Automatic | Manual | Automatic
Stack Relocation No No No No No No Yes
Table II
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C. Kernel benchmark programs

To assess SenSmart with typical sensornet applications,
we test the seven kernel benchmark programs used in the t-
kernel for our evaluation [15]. These programs cover typical
operations in sensornet applications. Figure 4 analyzes the
code inflation of the kernel benchmark programs under
SenSmart and the t-kernel, as compared with the native size
of the code. The code inflation under SenSmart is within
200%. As a comparison, the t-kernel, which also using the
binary translation, makes the code size much larger than
SenSmart. The t-kernel’s philosophy is to performs swapping
for both code and data, and keeps only the working set in
memory so that the effect of code inflation is mitigated.
SenSmart, in contrast, conducts translation on base station,
and can make translated code much more optimized in terms
of space efficiency.

In fact, the increased use of program memory does not
create a new bottleneck in the system. In general, the
program memory is not as scarce a resource as data memory
even for large sensornet applications. A very large sensornet
application, the VigilNet system, has more than 30,000 lines
of C code for the mote-side software. It occupies 90% of
data memory without including stack space, but only 30%
program memory including both TinyOS and the application
code [4].

After measuring the code size of the programs, we
compare the execution performance of SenSmart with other

Figure 4. Code inflation of kernel benchmark programs
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Figure 5. Execution time of kernel benchmark programs

software-based solutions. It is not a design goal of us to opti-
mize for execution speed, but SenSmart still has a reasonable
execution speed, and only shows a moderate slowdown as
compared to the t-kernel, which is optimized for execution
speed. Although t-kernel has better performance in most of
the seven programs as Figure 5 shows, we believe that the
extra cost is fair and reasonable because SenSmart supports
concurrent tasks with independent time slice and memory
regions, while the task and memory protection in the t-kernel
are both simpler as shown in Table 1.
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We use a PeriodicTask program to emulate the common
operating pattern of sensornet applications — periodic events
triggering computational tasks. Using the PeriodicTask pro-
gram, we examine SenSmart’s performance in more realistic
settings, and stress-test it to see when it fails to handle
the workload. The computational tasks in PeriodicTask can
be configured to a desirable computation size (number of
instructions) to emulate applications of different complexity.
When we configure less computational instructions for each
task, it works more like an ordinary event-driven application.
‘When more instructions are added into the tasks, it becomes
more and more computation-intensive until the workload is
completely CPU bound.

We test the PeriodicTask program in SenSmart with
different computation sizes. For each test, we record the
execution time of 300 tasks on real sensor nodes. More-
over, We use the Avrora [24] to measure the proportion
of the active cycles, which can be taken as the average
CPU utilization during the execution. As a comparison, the
cases for the native-code execution without any operating
system overhead are also tested, and we list the results
in the work of t-kernel. As shown in Figure 6(a), when
the computation size is less than 60,000 instructions, the
execution time in SenSmart is very close to the native case.
After the threshold of 60,000 instructions, the execution
time increases dramatically. Figure 6(b) shows the CPU
utilization data. Larger computation size inevitably increases
the CPU utilization, and it increases more rapidly in SenS-
mart due to the overhead of task switching and memory
protection operations. When it reaches 60,000 instructions,
the CPU utilization in SenSmart is nearly saturated. Beyond
that saturation point, the task execution takes longer time
because, when the CPU is busy, some timer tasks cannot
be handled in time. Hence, SenSmart is suitable for the
applications with a CPU utilization lower than 30%, which
is the common case in sensornet applications.

It is noteworthy from Figure 6(a) that, for the tasks with
less than 60,000 instructions, SenSmart performs better than
t-kernel even though the latter has lighter memory protection
operations. The reason is that the t-kernel has a warm-
up re-writing overhead, which introduces an initialization
delay of about one second. This implies that SenSmart
is likely to have better performance in both of execution
speed and multitasking capability for applications that are
not computation intensive.

We have also compared the t-kernel and SenSmart with
the software-based virtual machine, Maté, using an equiv-
alent PeriodicTask program. The result is shown in Fig-
ure 6(c), in which the Y-axis is exponential. The execution
time of PeriodicTask program in Maté is much slower than
in t-kernel and SenSmart. As a fully virtualized environment,
the virtual machine can also enhance reliability and ensure
memory protection [25]. But interpretation-based execution
has a performance penalty, as indicated by the significant
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difference in execution speed.

D. Stack versatility

In this section, we evaluate SenSmart’s versatile stack
management and compare it to other multitasking operating
systems in this aspect. To make the comparison possible,
we choose to use the number of maximal schedulable tasks
as the metric, because it is an important indication of
the operating system’s multitasking capability and can be
evaluated on most of the multitasking operating systems.

We use a set of tasks with different stack dynamics.
A common workflow in a sensornet application follows a
“sense-and-send” paradigm in an event-driven style. Sensor
and radio channels feed data to the sensor node. The arrival
of data triggers various event-driven handlers to read the
data, verified them, and usually, stored them in the heap
in a specific data structure. When a certain amount of
data is accumulated, a few larger processing tasks may be
activated to read data from the heap, analyze them, and,
sometimes, send out wireless packets. There are usually
multiple processing tasks in a system, e.g., compression,
routing, and signal processing, and these tasks are activated
upon different conditions. We use one data feeding task and
several processing tasks to approximate such a “sense-and-
send” workflow. The data feeding task periodically stores
randomly generated “incoming data” onto the heap to form
six binary trees, and then the processing tasks are activated
to recursively search randomly selected binary trees. Both
the shapes and heights of the binary trees depend on the
sequence of the random data, and, hence, the search tasks
have a slight variance in their recursion depths — 12 levels on
average and some reaching 15 levels. Each level of recursion
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Figure 7. Binary tree search in SenSmart with increasing tree sizes

adds 15 bytes to the stack, and, hence, the historically largest
stack size of the search tasks is around 180 bytes.

Figure 7 shows the number of stack relocation activities,
the average stack allocations, and the maximal number of
search tasks the system may accommodate, with different
binary tree sizes. Obviously, the larger binary trees will
increase the heap usage, thus the stack space has to be
reduced. Furthermore, the larger binary trees may also
increase the recursion depth of the search task, thus the stack
usage of each task also increases. Both factors reduce the
maximal number of search tasks that can concurrently run
in SenSmart. SenSmart terminates one task when it can no
longer accommodate all concurrent tasks in the system. As
shown in Figure 7, when a search task is terminated, the
average stack space for each search task increases because
the remaining tasks start to expand their stack space on the
released memory of the terminated task. SenSmart performs
more stack relocations to tune the sizes of the stacks of
concurrent tasks in the system, when the average stack
allocation is overly insufficient. Nevertheless, the maximal
number of stack relocations is under 50 times, thus the
performance penalty of stack relocation is insignificant.

As mentioned before, a search task needs about 180 bytes
of stack size on average, while we can also observe from
Figure 7 that the average stack allocations in all cases do not
exceed 130 bytes. It implies that, on average, a task does not
have sufficient stack space for its need, while SenSmart can
still accommodate all the tasks by exploiting the dynamics
of the stacks. Only when the average stack allocation is
significantly smaller than the average required stack size is
SenSmart forced to terminate tasks. Such a behavior shows
an excellent stack versatility and proves the versatile stack
management’s effectiveness.

Figure 8 compares SenSmart with LiteOS in their ability
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Figure 8. Comparison of SenSmart and LiteOS

to schedule tasks under memory constraints. LiteOS is a
well-designed and easy-to-use sensornet operating system
with a number of useful features. The advanced design,
meanwhile, requires that LiteOS uses more than 2000 bytes
of static data in the physical data memory. To perform a
fair comparison, we limit the number of binary tree to two,
and instruct SenSmart to use the same amount of memory
for overall stack space as what LiteOS uses. The result in
Figure 8 shows that the versatile stack management enables
SenSmart to adapt to stack dynamics and accommodate
more concurrent tasks.

VI. CONCLUSIONS

Multitasking is a useful system function for complex
sensornet applications. However, it is not easy to implement
a reliable and flexible multitasking system using traditional
approaches on resource constrained sensor nodes. SenSmart
implements a multitasking operating system by solving the
critical stack management problem with a set of techniques
to enhance stack versatility, which significantly improves
the multi-task scheduling capability. We have implemented
SenSmart. The OS exhibits excellent capability in scheduling
concurrent tasks.
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