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ABSTRACT 
 Contour mapping is a crucial part of many wireless sen-
sor network applications. Many efforts have been made to 
avoid collecting data from all the sensors in the network 
and producing maps at the sink, which is proven to be inef-
ficient. The existing approaches (often aggregation based), 
however, suffer from heavy transmission traffic and incur 
large computational overheads on each sensor node. We 
propose Iso-Map, an energy-efficient protocol for contour 
mapping, which builds contour maps based solely on the 
reports collected from intelligently selected “isoline nodes” 
in wireless sensor networks. Iso-Map achieves high-quality 
contour mapping while significantly reducing the generated 
traffic from O(n) to O( n ), where n is the total number of 
sensor nodes in the field. The per-node computation over-
head is also restrained as a constant. We conduct compre-
hensive trace-driven simulations to verify this protocol, and 
demonstrate that Iso-Map outperforms the previous ap-
proaches in the sense that it produces contour maps of high 
fidelity with significantly reduced energy cost. 

1. INTRODUCTION 
 Recent advances in wireless communication and micro 
system techniques have resulted in significant develop-
ments of wireless sensor networks (WSNs) [4, 6, 8]. A sen-
sor network consists of a large number of low-power, 
cost-effective sensor nodes that interact with the physical 
world. The increasing studies of wireless sensor networks 
aim to enable computers to better serve people by using 
instrumented sensors to automatically monitor the physical 
environment.  
 Contour mapping has been widely recognized as a com-
prehensive method to visualize sensor fields. A contour map 
of an attribute (e.g. height) shows a topographic map that 
displays the layered distribution of the attribute value over 
the field. It often consists of a set of contour regions out-
lined by isolines of different isolevels. Figure 1 plots a sec-
tion of underwater depth measurement and the correspond-
ing isobath contour map. For many applications, contour 
mapping provides background information for the sink to 
detect and analyze environmental happenings in a global 
view of the features in the field. Such a view is often diffi-
cult to achieve by individual sensor nodes with constrained 
resources and insufficient knowledge.  

       
   (a)         (b) 

Fig. 1. Contour mapping. (a) A section of underwater 
depth measurement; (b) The isobath contour map of (a). 

 
 A naïve approach for contour mapping is to collect sen-
sory data from all the sensors in the monitored field and 
then construct the contour map at the sink. Obviously, de-
livering a huge amount of data back to the sink incurs 
heavy traffic, which rapidly depletes the energy of sensor 
nodes. To address this problem, several aggregation based 
protocols have been proposed [9, 16, 17]. These protocols 
aggregate data with similar readings at intermediate nodes, 
reducing the traffic overhead up to 40% [16]. We believe 
the aggregation based protocols cannot further improve the 
scalability of the network based on the following observa-
tions. First, as long as all sensors are required to report to 
the sink, the number of generated reports is always O(n), 
where n is the total number of sensor nodes. Second, the 
aggregation operations insert a heavy computation overhead 
to the intermediate nodes. For example, INLR [16] requires 
each intermediate node to carry out multiple integrals in 
order to estimate the similarity of two contour regions.  
 In order to address the inherent limitations of aggregation 
based approaches, we propose Iso-Map. By intelligently 
selecting a small portion of the nodes to generate and report 
data, Iso-Map is able to construct contour maps with com-
parable accuracy while significantly reducing network traf-
fic and computation overhead. Although the basic idea be-
yond Iso-Map is comprehensible, several challenges exist in 
its design. For example, partial utilization of the network 
information reduces the network traffic, but naturally leads 
to the degradation of the mapping fidelity. Thus careful 
node selection policies and an effective algorithm to re-
cover the contour map from the partial information are 
necessary. We also need to balance the tradeoff between the 
traffic savings and the mapping fidelity. In addition, we aim 
to avoid heavy computational overhead in the intermediate 
nodes so that the design is scalable for resource constrained 
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sensor devices.  
 The major contributions of this work are as follows. (1) 
We design a novel algorithm to construct contour maps 
from a critical set of nodes, which we call isoline nodes. By 
restraining the traffic generation within the isoline nodes, 
Iso-Map significantly reduces the network traffic while still 
constructing high-quality contour maps that are comparable 
to the best ones ever achieved through existing protocols. 
Our analysis proves that, Iso-Map reduces the traffic gen-
eration from O(n) of existing protocols to O( n ). (2) By 
employing local measurement on sensors, the per-node 
computational overhead is constrained as a constant and 
does not grow with the network size. (3) We conduct a field 
study on a practical Iso-Map application, and based on the 
collected real world data, we conducted a trace-driven 
simulation which confirms the superior performance of 
Iso-Map compared with existing protocols. Another 
strength of this design is that Iso-Map is orthogonal with 
many other designs, enabling further traffic savings to be 
achieved together with other approaches. 
 The remainder of this paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 presents the 
Iso-Map design, illustrating the flow of its operations. In 
Section 4, we mathematically analyze the communicational 
and computational overhead of Iso-Map and compare with 
that of previous protocols. We present simulation results 
and evaluate the performance of Iso-Map in Section 5. Sec-
tion 6 introduces our investigation of a practical Iso-Map 
application. And we conclude the work in Section 7. 

2. RELATED WORK 
 Contour mapping has been widely proposed as a com-
prehensive method for visualizing sensor fields. Much re-
search on sensor network monitoring can utilize contour 
mapping to provide a global view of the monitored fields 
from which the occurrence and development of environ-
ment changes can be easily captured.  
 Hellerstein et al. [4] propose the first framework for 
contour mapping integrated in the TinyDB system. In Ti-
nyDB, sensor nodes are deployed into grids. Each sensor 
node builds a representation of its local cell and delivers it 
back to the sink. The sink accordingly constructs an isobar 
contour map based on the received representative values of 
different grids. Possible in-network aggregation is sug-
gested in this paper; different isobars may be aggregated in 
the transmission if their attribute values are similar. How-
ever, there is no detailed description for the aggregation 
algorithm in this paper. Xue et al. [16] further develop an 
in-network aggregation algorithm, INLR, for the isobar 
contour mapping to reduce the traffic overhead. INLR 
makes contour regions from close sensor reports of similar 
readings and delivers contour regions back to the sink. A 
numerical data model is built for each contour region to 
describe the distribution of attribute values within the re-
gion. INLR aggregates contour regions according to their 

data model during the delivery. The sink constructs the 
contour map from the received contour regions. eScan [17] 
is a similar work, that monitors the residual energy of sen-
sor nodes by constructing contour maps of the network. An 
eScan is defined as a collection of (VALUE, COVERAGE) 
tuples and each tuple describes a region of COVERAGE 
where each node has its residual energy within VALUE = 
(min, max). A tuple initially consists of only an individual 
sensor node and gets aggregated with other tuples with ad-
jacent COVERAGE and similar VALUE. The sink eventually 
collects different tuples and creates the eScan contour map 
based on them. Although the above protocols achieve con-
tour mapping with reduced traffic cost through in-network 
aggregation, they do not reduce the scale of the generated 
traffic. The traffic generated from all sensor nodes is still 
high, and the traffic generation none the less scales propor-
tional to the node number of the network, O(n). 
 The recently proposed protocol in [9] performs aggrega-
tion from the data suppression of sensor nodes to reduce the 
traffic overhead. The sensor node suppresses its data if there 
is another sensor node “nearby” transmitting similar data 
and the transmitted data is considered as a representation of 
the local field. Upon receiving a subset of sensor readings, 
the sink performs interpolation and smoothing to obtain the 
approximation of the contour map. The data suppression 
protocol reduces the generation of sensor reporting and thus 
reduces the traffic overhead. The fidelity of the resulting 
contour map is highly related to the rate of data suppression 
in the network. Limited data suppression can be performed 
to achieve an acceptable contour map approximation. As 
stated in the paper, the suppression algorithm ensures that 
the range spanned by suppressed nodes is bounded within 
the 2-hop neighborhood, so the traffic generation is indeed 
lowered by a factor of the node degree within 2-hop 
neighborhood. Nevertheless, the traffic generation scales 
linearly with the number of nodes in the network. 
 Isoline aggregation [13] shares some similarities with our 
work. It proposes to reduce the traffic overhead by restrict-
ing sensor reporting from nodes near the isolines. However, 
the paper neither specifies how the sensor nodes detect the 
isolines passing by nor how the sink recovers the isolines 
from the discrete reports from sensor nodes.  

3. ISO-MAP DESIGN 
 The basic idea of Iso-Map is to create the contour map 
based on a selected set of nodes, known as the isoline nodes. 
Isoline nodes are the sensor nodes residing on the isolines 
around contour regions. A more formal definition of isoline 
node will be given later. Intuitively, since isoline nodes 
correspond to the perimeter of contour regions, the number 
of reports from isoline nodes can be largely restricted com-
pared with the network size. Later we mathematically show 
that the traffic generated from isoline nodes is at the level of 
O( n ), where n is the total number of nodes in the moni-
tored field.  
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Fig. 2. Contour mapping from isoline nodes. (a) Dense de-
ployment of sensor nodes leads to the isolines; (b) Sparse 
deployment of sensor nodes provides ambiguous informa-
tion; (c1) – (c3) Three possible contour maps of (b). 
 
 It is not, however, trivial to construct the contour map 
based solely on isoline nodes’ reports. Ideally, as illustrated 
in Figure 2(a), when sensor nodes are densely deployed, the 
positions of isoline nodes clearly outline the contour re-
gions. In more practical scenarios, however, sensor nodes 
are usually deployed sparsely, as shown in Figure 2(b), in 
which the positions of isoline nodes provide only discrete 
“iso-positions”. We cannot deduce how the isolines pass 
through these positions. For example, based on the data 
illustrated in Figure 2(b), the sink can interpret into differ-
ent contour maps, such as the ones shown in Figures 2(c1), 
(c2) and (c3).  

In this section, we will introduce the major operations of 
Iso-Map including building network architecture, query 
dissemination and isoline node appointment, isoline node 
measurement, and contour map generation.   

3.1 Building Network Architecture 
 Iso-Map first builds the routing structure in the sensor 
network, through which the sink insert queries into the 
network and collects reports. Although we do not rely on 
any particular underlying network architecture, for this 
work, we assume a tree-based routing scheme that is 
adopted in many systems [4, 7]. We believe that assuming a 
concrete underlying networking strategy helps clearly state 
the idea, providing a fair platform for the comparison of 
performance of different approaches. In the tree-based 
routing scheme, a spanning tree rooted at the sink is con-
structed over the communication graph. Each node is as-
signed a level, which specifies its hop count distance from 
the sink. The parent node is one level lower than its chil-
dren nodes. Nodes in different levels forward packets dur-
ing different time slots. Topology maintenance mechanisms 
can be employed [7], which allow each node to dynamically 
choose a parent from its neighboring nodes based on com-
munication quality. MAC layer reliability of node transmis-
sions can be easily added into this framework [10, 11].  

3.2 Query Dissemination and Isoline Node 
Appointment 

 Initially, the sink disseminates a query through the rout-
ing tree for contour mapping over the targeted field. The 
query message specifies the data space [vL, vH] and the 
granularity T of the contour map, which specifies the de-
sired isolines in the contour map with the isolevels vi = vL + 
i ·T ∈ [vL, vH]. Upon receiving this query, each sensor node 
accordingly determines whether it is an isoline node.  
 Definition 3.1: A sensor node p (with sensing value vp) is 
an isoline node if and only if: (1) its sensing value is within 
a predefined border region of the isolevel vi specified in the 
query, i.e. [vi-ε, vi+ε], and (2) one of its neighboring nodes 
q has a sensing value vq, where vi is between their sensing 
values, i.e. vp < vi < vq, or vq < vi < vp. The satisfying node 
has the isolevel of vi.  
 Based on Definition 3.1, a node incurs local operations 
within its neighborhood. The two conditions guarantee that 
the isoline node is close to the isoline in terms of value and 
space. 

3.3 Isoline Node Measurement 
 Once the isoline nodes are appointed, they make local 
measurements and generate reports to send back to the sink. 
Each isoline node generates a 3-tuple report r = <v, p, d>, 
in which v represents the isolevel of the node, p represents 
the position of the sensor node and d represents the gradient 
direction of the attribute value at the sensor node. Clearly, 
the isolevel v can be obtained when the node determines 
that it is an isoline node, and the position p can be obtained 
either from attached localization devices such as a GPS 
receiver or by one of existing algorithms[3, 14]. However, 
as we mentioned earlier, having only p and v is often not 
sufficient for the sink to construct the contour map. To ad-
dress this problem, we introduce the new parameter gradi-
ent direction d. 
 Each isoline node performs local modeling on sensing 
values within its neighborhood and obtains an estimation of 
the gradient direction d. The spatial data value distribution 
is mapped into the (x, y, v) space, where the coordinate (x, y) 
represents the position and v = f(x, y) describes the distribu-
tion surface of the data value in this space. The gradient 
direction d denotes the direction where the data value most 
degrades in the space. The vector of d is calculated by: 

( ) ( , )             3.1Tf fd grad f f
x y
∂ ∂

= − = −∇ = −
∂ ∂

 

 To estimate the gradient direction d, an isoline node first 
needs to approximate the local data map. To build the local 
data map in this design, each isoline node sends queries to 
its neighboring sensor nodes for their positions and sensory 
values. The query scope can be adjusted within k-hop 
neighbors for different sensor deployment densities or to 
achieve different levels of estimation precision. 
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Fig. 3. Linear regression for spatial data modeling
 

 Upon receiving the <v, p> tuples from neighboring 
nodes, the isoline node approximates the local data map 
through regression analysis. Indeed, many regression mod-
els can be employed to construct the approximated data 
value surface on the local data map, among which linear 
regression is a simple and widely used one. The computa-
tional simplicity of the linear regression model makes it a 
natural choice for the resource constrained sensor devices.  
 Figure 3 illustrates the rationale of how the isoline node 
performs the linear regression and approximates the data 
value surface with the regression plane. Without loss of 
generality, we assume the isoline node position is p0(x0, y0) 
and the sensory value is v0. The positions of its n neighbor-
ing sensors are p1(x1, y1), p2(x2, y2), …, pn(xn, yn) and their 
sensory values are v1, v2, …, vn, respectively. A linear model 
v = L(x, y) = c0 + c1x + c2y describes the regression plane 
of the n+1 points in the data value space built on (x, y, v). 
With the n+1 points (x0, y0, v0), (x1, y1, v1), … , (xn, yn, vn), 
the isoline node computes the coefficients of the linear 
model by solving the equation: 
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 With the obtained plane of linear model approximation v 
= L(x, y), the isoline node can calculate its gradient by in-
troducing this approximation into formula 3.1: 

0 0 1 2( , ) | ( , )                      3.3T TL Ld p c c
x y

∂ ∂
= − =−

∂ ∂
 

 

Fig. 4. Gradient directions of the isoline nodes 
 

 Figure 4 plots an example where the isoline nodes are at 
the isolevel of 40. Each isoline node calculates the gradient 
direction from the regression within its neighborhood. We 
mark the calculated gradient directions in the figure. The 
calculated gradient direction of each isoline node reflects 
the local trend of data spatial variation and it well approxi-
mates the normal direction of the isoline passing by. 

3.4 Contour Map Generation 
 Upon receiving isoline node reports, the sink constructs 
the contour map which is delineated by isolines of different 
isolevels, say vi = vL + i ·T ∈ [vL, vH]. The sink separately 
constructs isolines of different isolevels, and the contour 
regions reside between them. 

 When constructing isolines of the isolevel vi, the sink 
utilizes the reports with isolevel vi from the isoline nodes 
residing along the isolines of vi. Since the data gradient di-
rection d at each reported position approximates the normal 
direction of isolines, it helps to construct local segments of 
isolines. Figure 5(a) shows that isoline nodes of the same 
isolevel report to the sink and Figure 5(b) depicts the re-
ported iso-positions and corresponding gradient directions. 
The sink first builds a Voronoi diagram for the set of 
iso-positions, as shown in Figure 5(c). The Voronoi cell 
specifies the affecting area of each iso-position, where the 
sink constructs the local isoline segment according to the 
gradient direction d at that iso-position. For each cell, a 
straight line passing the iso-position and perpendicular to its 
gradient direction d is drawn. It intersects with cell borders 
and partitions the cell into two parts. The part in the gradi-
ent direction is the outer part and the opposite one is the 
inner part. The separating line acts as a local boundary in 
each Voronoi cell, which we call the type-1 boundary. The 
sink then merges the inner parts in different Voronoi cells 
and complements the boundaries to separate contour re-
gions from outer area. The complementary boundaries 
along the cell borders are called type-2 boundaries. Figure 
5(d) illustrates this step. As shown, after this step, 
well-approximated contour regions are outlined by the 
concatenated local boundaries, though it appears a bit rough. 
The sink then regulates the approximation by smoothing the 
pinnacles based on the following two rules.  
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(b) (c) 

 
(d) 

 
(e) (f) 

Fig.5. Illustration of the process of contour boundary 
deduction 
 

 Rule 1. The type-1 boundary is prolonged at the end 
where it intersects with a type-2 boundary and their internal 
angle is within (180º, 270º). If it intersects with the type-1 
boundary in the adjacent Voronoi cell, the pinnacle area 
outside of it should be removed and accepted as the new 
boundary. Otherwise, no change is made. 
 Rule 2. The type-1 boundary is prolonged at the end 
where it intersects with a type-2 boundary and their internal 
angle is within (90º, 180º). If it intersects with the type-1 
boundary in the adjacent Voronoi cell, the concave area 
inside of it should be included and accepted as the new 
boundary. Otherwise, no change is made. 
 Figure 5(e) illustrates how the two rules are applied to 
regulate the approximation. The regulation process under 
the two rules substantially achieves better readjustments on 
the affecting area of each iso-position and makes a tighter 
approximation. The approximated isolines that are eventu-
ally obtained are shown in Figure 5(f).  
 The sink initially builds isolines of the lowest isolevel vL. 
These isolines enclose all contour regions above the 
isolevel vL. Isolines are then sequentially constructed ac-
cording to their isolevels.  

4. DISCUSSION 
 Iso-Map utilizes the reports from isoline nodes to con-
struct contour maps. Compared with existing works which 
rely on the aggregation of sensory readings from all nodes 
in the field, Iso-Map largely restrains the scale of sensor 
reporting. We will first conduct a theoretical analysis on the 
incurred traffic scale and prove that Iso-Map reduces the 
number of reports from O(n) to O( n ), significantly re-
ducing the traffic cost over the entire network. We further 
show that Iso-Map considerably reduces the computational 
overhead introduced to the nodes. Indeed, Iso-Map outper-
forms existing approaches in terms of both communica-
tional and computational complexity.  

4.1 Network Traffic 
To study the network traffic incurred by Iso-Map, we 

first simplify our analysis to a continuous domain, where 
sensor nodes cover the field with infinite density. The 
isoline nodes are then represented by continuous isolines. 
We prove that the total length of a constant number of 
isolines is O(n1/2) , given that all isolines are “well behaved” 
and do not intersect each other. It is natural that different 
isolines do not intersect each other due to the principle of 
contour mapping. We impose the constraint of “well be-
haved” curves as [1] did to exclude some pathologi-
cally-shaped “monster curves” such as Peano’s space-filling 
curves, which hardly emerge as contour boundaries in prac-
tice [12]. 
 Definition 4.1: A curve is well behaved if for any square 
box of any side x that intersects the curve, the length of the 
curve inside the box is less than cx for some constant c > 1.  
 The definition is equivalent to observing that the curve 
has a Hausdorff dimension of 1 [2]. In practice, most of the 
non-bizarre curves have Hausdorff dimensions of 1.  
 Theorem 4.1: For any constant number K isolines within 
an n1/2 × n1/2 square area, the total of their lengths L is 
O(n1/2). 
 Proof: We first enumerate the K isolines and assume that 
the bounding factors for the K well behaved curves are c1, 
c2, … , cK. We then split the square area into an r × r grid, 
with sides d = n1/2/r for each cell (see Figure 6). The i-th 
isoline intersects with some of the cells and the segment in 
each cell is bounded by the factor ci. So: 

2

1/ 2                      4.1i i i
r

l d c r c n< ⋅ = ⋅ ⋅∑  

If we choose c = MAX (c1, c2, … , cK), formula 4.1 can be 
reduced to li < r · c · n1/2. We sum up all isolines and get: 

1/ 2

1
                           4.2

K

i
i

L l Kcr n
=

= < ⋅∑  

Since the constant factor of K·c·r is independent of n, for-
mula 4.2 leads to the fact that the sum of isoline lengths is 
at the level of O(n1/2). ♦ 
 Now we extend our analysis into a more practical sce-
nario, where sensor nodes are uniformly deployed over the 
square field in a discrete manner. We assume that the den-
sity of nodes is p, and each isoline triggers a stripe of 
isoline nodes along it with a small width of ε (ε corresponds 
to the node communication radius, which is small enough 
compared with the size of the field). In fact, the continuous 
scenario discussed above is an extreme case of this when p 
→ ∞ and ε → 0.  
 Theorem 4.2: For any constant number K contour regions 
within a square area of n sensor nodes, the number of 
isoline nodes is O(n1/2). 
 Proof: The side of the square area is calculated to be 
(n/p)1/2. We then snatch the K isolines from the K contour 
regions. As shown in Theorem 4.1, the total length L of the 
K isolines is O((n/p)1/2) = O(n1/2). The area of the stripe is 
approximated by the path integral through these isolines: 
       

1 1
                 4.3

i

K K

i
i iL

S ds L Lε ε ε
= =

= = ⋅ =∑ ∑∫
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Fig. 6. The square field split into grids 

                     
 

TABLE 1: Overhead Comparison 
 

Approach Traffic Gen-
eration 

Network 
Computation 

Sensor 
Deployment

TinyDB [4] O(n) O(n) Grid 
eScan [17] O(n) O(n4) Free 
INLR [16] O(n) Ω(n1.5) Grid 
Suppression [9] O(n) Ω(nd) Grid 
Iso-Map O( n ) O(n) Free 
 

 According to formula 4.3, the number of isoline nodes 
scattered in the stripe is thus p·S = O(n1/2). ♦ 
 From Theorem 4.2, the generated traffic from isoline 
nodes is thus limited to O(n1/2). 

4.2 Computational Overhead 
 We analyze the computational overhead of (1) the isoline 
nodes for local measurements on the 4-tuple parameters and 
(2) the intermediate nodes which carry out in-network fil-
tering to reduce the traffic of reports. 
 The local measurements conducted by each isoline node 
require only local information within the neighborhood. 
The computational overhead is bounded by the node de-
grees. From the calculating process described in Section 3.3, 
we observe that the main computational workload comes 
from solving the regression equation of formula 3.2 which 
indeed incurs O(deg) calculations, where deg is the average 
degree of each node in the network. Therefore, the total 
computational overhead among all isoline nodes is bounded 
by O(deg·n1/2). The intermediate nodes which forward the 
isoline node reports normally simply relay the reports 
without any computational workload. Thus the computa-
tional overhead within the forwarding network is bounded 
by O(n). Combining the above two parts, the computational 
overhead within the entire network is O(deg·n1/2 + n) = 
O(n). 
 Table 1 summarizes and compares Iso-Map with 4 exist-
ing approaches. Iso-Map incurs the lowest traffic cost and 
network computation when performing contour mapping. 
Note that among the 5 approaches, only the Iso-Map and 
eScan protocols have no requirement on the sensor de-
ployment. The TinyDB, INLR and Data Suppression pro-
tocols basically rely on a regular deployment of sensor 
nodes into grids. They use sink interpolation to deal with 
irregular node deployment, which potentially degrades the 
fidelity of the resulting contour map. 

5. PERFORMANCE EVALUATION 
 We implemented the Iso-Map protocol and conducted 
trace driven simulations to evaluate its performance. We 
utilized a real map of underwater depth as our testing data 
which is obtained from sonar measurements in H.H. Harbor 

(see Section 6). Basically, n sensor nodes are uniformly 
deployed to monitor the depth values over a normalized n1/2 
× n1/2 surveillance field with a density of 1. The radio range 
of sensor nodes determines the average degree of each node. 
Experimentally, we find that to keep a connected commu-
nication graph, the radio range should be no less than 1.5, 
which results in an average node degree of 7. This corre-
sponds to a reasonable deployment of one node per 400 m2 
in practice, if we set up a 30 m radio range for the MICA2 
motes [5]. Perfect link layer is assumed in this simulation, 
in which the data delivery is guaranteed through perform-
ance based routing dynamics [7, 15] and MAC layer re-
transmissions [10, 11]. We first evaluate the produced fidel-
ity of Iso-Map under various settings. Then we study the 
network overhead incurred by Iso-Map on the construction 
of the contour map, including communicational overhead as 
well as computational overhead.  

5.1 Fidelity of Contour Mapping 
 We utilize a 400m × 400m section of the underwater 

depth measurement as our testing data (refer to figure 1 for 
the measurement and its contour map). We compare the 
resulting fidelity of Iso-Map with that of TinyDB, which 
achieves the best fidelity compared with all other existing 
approaches. Since the TinyDB protocol requires a grid de-
ployment of sensor nodes, when simulating the TinyDB 
protocol, we deploy the sensor nodes into grids instead of 
randomly. For both approaches, node density is the domi-
nating factor affecting the fidelity of the contour mapping. 
Thus, we simulate different node densities of deployment to 
reflect the impact. We study the cases with 400 nodes, 
2,500 nodes and 10,000 nodes separately. If we normalize 
the field size to be 50 × 50 units, the normalized node den-
sities are 0.16, 1 and 4, respectively. In practice, all three 
cases correspond to reasonable node densities for different 
applications requiring more or less surveillance precision.  

Figures 7(a) – (c) depict the resulting contour maps of 
TinyDB under the above node densities. Figures 7(d) – (f) 
depict the resulting contour maps of Iso-Map. The isoline 
reports received at the sink are 112, 89 and 49. Clearly, both 
approaches degrade in precision as the node density de-
creases, but both still produce acceptable fidelity maps. 
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Fig. 7. Performance of isobath contour mapping. (a) – (c): The contour maps created by TinyDB algorithm, under different 
normalized densities of sensor nodes (4, 1 and 0.16); (d) – (f): The contour maps created by Iso-Map, under different nor-
malized densities of sensor nodes (4, 1 and 0.16). 
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Fig. 8. (a) Contour mapping accuracy against node density; (b) Network traffic overhead against network diameter; (c) 
Computational intensity against network diameter. 

 
 Figure 8(a) plots how the mapping accuracy is affected 
by the deployed node density. Here the mapping accuracy is 
measured as the ratio of the accurately mapped area in the 
resulting contour map to the whole area. The normalized 
density of 1 corresponds to deploying 2,500 nodes in the 
400m × 400m field. The mapping accuracy of both TinyDB 
and Iso-Map rapidly jumps to a high level above 80% as the 
deployed node density increases. In all cases, Iso-Map is 
slightly below TinyDB but with comparable accuracy.  

5.2 Network Traffic Overhead 
It is well known that the network traffic consumes the 

largest portion of the sensor energy and is considered the 
most important metric used to evaluate the energy effi-
ciency of a WSN. In this section, we contrast Iso-Map with 
the most recent work INLR [16], as well as with the 
well-known TinyDB protocol. 
 We vary the network diameter so that three protocols are 
simulated over the fields of different sizes. With a constant 
node density of 1, the network diameter varies from 10 to 
50 hops. Each parameter in a report uses two bytes, such as 
the sensory value, position, gradient, etc. Figure 8(b) plots 
the traffic overhead of the three protocols in terms of kilo-
bytes. Consistent with the theoretical analysis, the traffic 
overhead incurred by TinyDB and INLR grows rapidly 
while Iso-Map mainly relies on the isoline node reports, 
imposing much less traffic.  

5.3 Node Computational Overhead 
In the aggregation based protocols, intermediate nodes 

conduct heavy computations to aggregate different map 
segments. On the other hand, in the non-aggregation proto-
cols, such as TinyDB, etc., reports are delivered to the sink 
without aggregation, which means the intermediate nodes 
simply store and forward packets. Thus, TinyDB actually 
gives a lower bound on the average computational overhead 
of each node. 
 We compare the computational overhead per node in 
TinyDB, INLR and Iso-Map. Figure 8(c) plots the normal-
ized computational intensity of the three protocols under 
different network sizes. As shown in Figure 8(c), TinyDB 
and Iso-Map constrain the computational intensity at a low 
level, while INLR introduces a relatively huge amount of 
computations on each sensor node, and such overhead 
grows with the network size. Compared with INLR, the 
difference between TinyDB and Iso-Map becomes negligi-
ble.  

6. APPLICATION SCENARIO 
 We conducted a field study on H.H. Harbor, which is 
currently the second largest harbor of coal transportation in 
China. It has experienced rapid development over the past 5 
years, and its coal transporting capability has increased 
from 1.6 million tons per year in 2002 to 6.7 million tons 
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per year in 2006. However, H.H. Harbor currently suffers 
from the increasingly severe problem of the silted sea route. 
H.H. Harbor has a sea route that is 19 nautical miles long 
and 800m wide at the entrance, including an inner route and 
an outer route. The sea route is designed to have a water 
depth of 13.5m to allow for the passage of ships that weigh 
over 50 thousand tons. Since the sea route has been in op-
eration, it has always been threatened by the movement of 
silt from the short sea area within 14 nautical miles outside 
the route entrance. In the event that the sea route is silted up, 
ships of large tonnages must wait to prevent grounding, and 
ships of small tonnages need be piloted into the harbor. 
Monitoring the extent of siltation reliably is critical in order 
to ensure the safe operation of H.H. Harbor.  
 The uncertainty and the high instantaneous intensity of 
the siltation make monitoring the extent of siltation ex-
tremely expensive and difficult. The amount of siltation in 
H.H. Harbor is affected by many factors, among which tide 
and wind blow are the most dominating. While the tide 
produces a periodical influence on the movement of silt, the 
sudden blowing of wind brings more incidental and inten-
sive influences.  
 We propose to deploy an echolocation sensor network on 
the sea surface to continuously monitor the water depth of 
the sea route. The precise depth measurement at each spot is 
not needed. Instead, Iso-Map can be utilized to build an 
isobath contour map to visualize the depth level of the sea 
area. The contour map depicts the contour sea zones above 
different depth levels. Based on this contour map, we can 
easily guide ships of different tonnages. With the map, we 
can also clearly locate the dangerous areas where the water 
depth is under alarm thresholds. 

7. CONCLUSIONS AND FUTURE WORK 
 We propose Iso-Map, which achieves energy-efficient 
contour mapping by collecting reports from isoline nodes 
only. Our theoretical analysis shows that Iso-Map outper-
forms previous protocols in terms of communicational and 
computational cost in the network. Iso-Map reduces the 
generated traffic from O(n) of existing protocols to O( n ). 
We also use trace-driven simulations to compare Iso-Map 
with existing protocols, and the results show that Iso-Map 
achieves high fidelity maps with significantly reduced 
overhead. The scalability of Iso-Map is superior, which 
makes Iso-Map feasible for the large-scale deployed sensor 
networks.  
 We conducted a field study at H.H. Harbor and investi-
gated the practical application scenario of monitoring the 
siltation of the sea route. We analyze the advantages and 
feasibility of deploying an echolocation sensor network for 
this scenario. We show that it will be of great benefit to 
utilize Iso-Map to construct contour maps over the sensor 
network in order to monitor the siltation. 
 Our future work includes building a prototype system at 
H.H. Harbor and testing our Iso-Map protocol on this pro-

totype. We hope the implementation experience helps us 
further understand the efficiency and scalability of the 
Iso-Map design. 
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