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ABSTRACT  
Event detection is a crucial task for wireless sensor net-

work applications, especially environment monitoring. Ex-
isting approaches for event detection are mainly based on 
some predefined threshold values, and thus are often inac-
curate and incapable of capturing complex events. For ex-
ample, in coal mine monitoring scenarios, gas leakage or 
water osmosis can hardly be described by the overrun of 
specified attribute thresholds, but some complex pattern in 
the full-scale view of the environmental data. To address this 
issue, we propose a non-threshold based approach for the real 
3D sensor monitoring environment. We employ en-
ergy-efficient methods to collect a time series of data maps 
from the sensor network and detect complex events through 
matching the gathered data to spatio-temporal data patterns. 
Finally, we conduct trace driven simulations to prove the 
efficacy and efficiency of this approach on detecting events 
of complex phenomena from real-life records. 

1. INTRODUCTION 
Wireless sensor networks (WSNs) have been widely 

studied for environment monitoring. In such monitoring 
applications, automatically detecting events is quite essential, 
e.g. for detecting vehicles or forest fires. Currently, the 
typical event detection method [6] relies on decisions made at 
the sensor node(s) based on predefined data thresholds for 
normal environments. The rationale behind such threshold 
based approaches is that when events occur, there will be 
detectable changes in environmental data. Thus, an event can 
be captured once the observed sensory data exceed the pre-
defined thresholds.  

Our motivating scenario comes from the field study in a 
coal mine, where environment surveillance is carried out to 
ensure miners’ safety. The amount of oxygen, gas, dust, 
temperature, humidity and watery regions are monitored in a 
three dimensional (3D) space of underground tunnels in the 
mine. Several event-detection tasks are essential to secure the 
safety of the miners, such as detecting gas leakage, oxy-
gen-enriched spots and water seepage. Gas leakage often 
occurs when the digging machines expose a source of gas in 
the mining process, and it often leads to a local increase in gas 
density. If a certain district of gas accumulates to critical 

explosive con density, explosions could occur. Oxygen- 
enriched spots exist at the ventilative places where high 
oxygen density creates healthy environmental conditions for 
human beings. Indicating such areas provides important 
guidelines for the miners patrolling in the coal mine. Water 
seepage brings water into the coal mine tunnels, which cor-
rodes the tunnel surfaces and threatens the tunnel’s structural 
integrity.  

The events described above share the common character-
istics that their occurrence results in trends in the develop-
ment of environmental data, rather than some instantaneous 
overrun of specified thresholds in individual sensor nodes. 
Hence, the threshold based approaches work well for de-
tecting simple events, but the complex events with spa-
tio-temporal variety in the environment can hardly be cap-
tured by a simple cutoff method. An integrative view of the 
environment has to be established to extract the features of 
such events. For example, gas leakage usually leads to an 
expanding area of high gas density over the time, which 
spatially follows a degrading form where the gas density 
decreases from the source of the leak. 

In order to accurately detect complicated events, we need a 
non-threshold based event detection approach. We intend to 
describe complex phenomena with certain spatio-temporal 
data patterns and detect events through matching the gathered 
data to such data patterns. The challenges for such a design 
are as follows. First, differing from threshold based ap-
proaches, the environment data map has to be continuously 
maintained from real-time sensor readings, while conserving 
energy for battery-powered sensors is a very critical issue. 
We need to restrain the data traffic and maintain the data map 
in an energy-efficient manner. Second, the communication 
quality of WSNs is poor, especially in the underground 
monitoring environments, such as a coal mine. We have to 
develop robust methods of data map construction so that the 
accuracy of the obtained data map could be preserved in a 
high loss rate network. Third, the 3D monitoring field raises 
nontrivial issues in abstracting the environment, which are 
not faced by previous works in 2D cases. Efficient data 
structures and modeling methods are required in a point of 3D 
view. 

In this paper, we propose a 3D gradient data map using the 
space orthogonal polyhedra (OP) model. We build a 
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multi-path routing architecture to provide robust data deliv-
ery for the map construction. Instead of directly routing raw 
data to the sink before processing, a novel 3D aggregation 
algorithm is designed for map construction. We demonstrate 
the efficacy and efficiency of the proposed approach in trace 
driven simulations using synthetic datasets derived from the 
raw data collected in our study in the real coal mine envi-
ronment  

The rest of this paper is organized as follows. We briefly 
review the related work in Section 2. In Section 3, we de-
scribe the network architecture and construction of the gra-
dient data map. The aggregation criteria are also introduced. 
In Section 4, we describe the event feature patterns and il-
lustrate how pattern-based event detection is performed on 
the data map. Experimental studies of our approach are given 
in Section 5. Finally, we conclude this work in Section 6. 

2. RELATED WORK 
Event detection remains an essential task in various WSN 

applications. There are a number of recent works on 
event-oriented query processing in sensor networks [1, 4, 6, 8, 
9]. The COUGAR project [4] introduces a sensor database 
system and deals with three types of event queries: historical 
queries, snapshot queries, and long-running queries. The 
system employs threshold-based detection logic and encap-
sulates it into a set of asynchronous functions provided for 
users. Directed Diffusion [8] aims to address the event-based 
real-time queries by diffusing different event interests into the 
monitoring network and letting sensors report when occur-
rences of some specified events are detected. The Directed 
Diffusion approach does not explore the spatial or temporal 
correlations among the sensory data, and it relies on indi-
vidual reports of sensor nodes according to the disseminated 
event interests. TinyDB [6] defines the event by a composi-
tion of various specified attribute thresholds. The event de-
tection is carried out by comparing sensory readings of at-
tributes with predetermined the threshold values. TinyDB 
provides a distributed mapping method to construct contour 
maps of sensor network readings. Differing from our ap-
proach, the mapping process in TinyDB is only done in 2D 
fields and their work does not aim to provide event detection 
based on the data spatio-temporal patterns. Above works all 
focus on 2D scenarios. 

In-network data aggregation has been intensively studied 
as an effective method to provide energy efficient data col-
lection [5, 10-13]. Different from previous approaches, our 
approach explores the spatial correlations on the sensory data 
and achieves data aggregation through the combination of 
OPs in the gradient data maps. Recently proposed contour 
mapping methods [6, 15] share similar ideas with this work in 
visualizing the monitored fields for event detection. While 
those works utilize aggregation based approaches to effi-
ciently approximate the 2D field in contour maps, they pro-
vide no means to extend for 3D scenarios. 

(a) (b) 
 
Fig. 1.  (a) The multi-level network architecture, and (b) 
Node schedules in this  network 

 

3. 3D GRADIENT DATA MAP CONSTRUCTION 
In this section, we first briefly describe the sensor network 

architecture and deployment of sensors in a 3D space in 
Section 3.1. Then, in Section 3.2, we present the concept of 
3D gradient data map. In Section 3.3, we introduce the or-
thogonal polyhedra (OP) and describe how to achieve 
in-network construction of the gradient data map by the space 
OP model. Section 3.4 describes the aggregation criteria for 
the gradient data map construction. 

3.1 Network Architecture 
In our coal mine monitoring scenario, sensor nodes are 

assumed uniformly deployed in 3D monitoring space with 
measured location information. This could be easily achieved 
by placing sensors along the safety props in the tunnel. A 
cubic grid can be established on this network and each sensor 
node accounts for the environment sensing in the cubic cell it 
resides in (as shown in Fig. 1(a)). The grid information is 
created at sink and disseminated throughout the network.  

The whole network is organized into multi-path routing 
architecture. Sensor nodes are divided into different levels 
from the sink. The sensor nodes closer to the sink have lower 
levels. For each sensor node, those one level lower nodes are 
considered as parent neighbors, and those one level higher 
nodes are treated as child neighbors. Each node forwards the 
query messages originated in the sink to its child neighbors 
and sends the report messages to its parent neighbors. Thus, 
in the message relay process at each node, multi-relayers are 
triggered for message forwarding. By the means of multi-path 
routing, message redundancy is provided to ensure a more 
reliable message delivery in the lossy sensor network. 

The multi-path routing architecture is constructed by a 
two-phase initialization process, DIFFUSION and ECHO. In 
the DIFFUSION phase, the sink originated indicator message 
is flooded into the network. Each sensor node estimates its 
hop count from the sink. When the DIFFUSION phase 
completes, each sensor node gets its level and discovers its 
parent neighbors and child neighbors. The ECHO phase is 
triggered by the highest level sensor nodes which are farthest 
from the sink. ECHO messages are created by those nodes 
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and flooded in the network. Hence, the total level count is 
captured by all the nodes and each node calculates its own 
operation schedule for each sampling cycle. Figure 1(b) 
shows that sensor nodes in different levels share different 
schedules. Each node carries out sensing and processing at 
the beginning of a data sampling cycle. Nodes in different 
levels transfer data in different time slots. Lower level nodes 
need wait for the data from higher level nodes so that data 
aggregation could be implemented in each level. The sam-
pling cycle interval Ds, data processing time Tp and the total 
level count c determine the duration d of data transfer and 
aggregation for nodes in each level, d = 2(Ds - Tp) / c. For the 
nodes in the i-th level, their data transfer and aggregation 
process lies in the slot of [(c-i-1)·d/2, (c-i+1)·d/2].  

Since data duplicates are introduced by the multi-path 
routing strategy, we must employ duplicate-insensitive 
methods such as [14], to prevent error of data aggregation.  

3.2 3D Gradient Data Map 
Under the network architecture described in section 3.1, 

we propose 3D gradient data map to describe the monitored 
environment. As mentioned above, the sensor nodes are 
deployed in a 3D space in the monitoring area and each 
sensor is responsible for sensing the environmental data 
within its unit cubic cell (We assume that the data within a 
unit cube have the similar values). Thus, we can aggregate the 
cubic cells with similar sensor readings into a cube cluster 
and construct the gradient data map at each sampling period 
within the network. The gradient data map consists of dif-
ferent clusters with their own geometric shapes and data 
distributions. The gradient data map is an approximation of 
monitored environment and reflects environmental data dis-
tribution at each sampling period.  

 

 
 

Fig. 2.  3D space gradient data map 
 
We employ data aggregation in each sampling process and 

create partial gradient data maps from sensor readings. The 
partial data maps are merged as much as possible along the 
paths from sensors to the sink. At the sink, the gradient data 
map is built from a set of partial gradient data maps. Along 
with a sequence of sampling, a time series of approximated 
3D gradient data maps is constructed at the sink, on which 
event detection is performed. Figure 2 exhibits a partial gra-
dient data map including 3 different cube clusters. We can 
simply use the average value of all sensor readings in the cube 

cluster to approximate the data of this cluster during the 
aggregation. However, that approach introduces large ap-
proximating errors. In our gradient data map, we compute the 
data distribution f of each cube cluster and describe it with a 
geometric representation, space orthogonal polyhedra (OP). 
By manipulating the two parameters of OP, which can be 
simply transmitted with little bandwidth, the sensor nodes are 
collaborated to construct the gradient data map in an 
in-network manner. The key operations in the aggregation 
process are estimating the similarity of different OPs and 
merging the similar OPs at each sensor node.  

3.3 Space OP Model and Map Construction 
We use the space Orthogonal Polyhedra (OP) model to 

describe different cube clusters. OP can capture the data 
distribution in 3D cubic space and only requires few pa-
rameter settings. The OP was first introduced in Constructive 
Solid Geometry (CSG). Aguilera and Ayala investigated the 
characteristics of OP [2] and presented the geometric models 
to represent OP as well as  some basic geometric operations, 
which are summarized as follows.  
Definition 3.1: Orthogonal Polyhedra (OP) are polyhedra 
with all faces oriented in three orthogonal directions. 

In an OP, all planes and lines are parallel to three or-
thogonal axes. The number of incident edges for each vertex 
can be only three, four or six, which is referred as V3, V4 or 
V6, respectively [2]. An Extreme Vertices model (EV model) 
has been proposed to represent OP.  
Definition 3.2: The EV model for OP is defined as a model 
that only stores all V3 vertices. 

Aguilera and Ayala proved that the EV model is a valid 
B-Rep model, i.e., it is complete and compact in the sense of 
geometry. Furthermore, they proposed the ABC-sorted EV 
model which provides computational convenience for geo-
metric operations. 
Definition 3.3: An ABC-sorted EV model is an EV model 
where V3 vertices are sorted first by coordinate A, then by B 
and then by C. 

Figure 3 gives an example of the ABC-sorted EV model 
for the OP. The model is stored as a series of vertices (node 1 
to node 16). Based on ABC-sorted EV models, the following 
geometric operations can be efficiently performed: 
1) Volume calculation - To calculate the volume of an OP. 
An O(n) algorithm exists by accumulating the strip region 
between any consecutive different sections, where n is the 
number of vertices of the OP. 
2) Relationship checking - To check the relationship of two 
OPs: overlapping, adjacent or separated. An O(n) algorithm 
exists by sequentially checking the relationship of the sec-
tions of the two OPs along some axis. 
3) Boolean operations - To compute the union or intersec-
tion or difference of two OPs. An O(n) algorithm exists by 
sequentially exerting Boolean operations on the sections of 
the two OP along some axis.  
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Fig. 3.  (a) A hidden line representation of an OP; (b) The 
order number of its XYZ-sorted EV model. 

 
Fig. 4.  The possible relationships of two OP 

_______________________________________________ 
Algorithm 1 Partial Map Generating 
Input: the active set Sp 
Output: the resulting map Mf 
 1: construct an empty min-heap H, to contain the mergers; 
 2: for each OP pair OPi and OPj (i ≠ j) in Sp do 
 3:  if checkMergeable(OPi , OPj )  
 4:   H. add(createMerger(OPi , OPj )); 
 5: while not H. empty() do 
 6:  merger m<OP1, OP2> = H. extract(); 
 7:  create OP = merge(OP1 ,OP2); 
 8:  for any merger m containing OP1 or OP2 do 
 9:   H. delete(m); 
10:  Sp. delete(OP1); 
11:  Sp. delete(OP2); 
12:  for each OPk in Sp do 
13:   if checkMergeable(OP , OPk )  
14:    H. add(createMerger(OP , OPk )); 
15:  Sp. add(OP); 
16: for each overlapping region R=OPi∩OPj in Sp do 
17:  OPi= OPi − R or OPj= OPj − R; 
18: return Mf = Sp; 

_______________________________________________ 
 
Since a cube cluster is composed of multiple cubic cells, 

the geometric shape of clusters can be well modeled by an OP 
which is described by the geometric shape of the covered area 
and a data distribution function in this area. The partial gra-
dient data map stored in each sensor node is represented as a 
list of OPs depicted by the ABC-sorted EV model. The 
in-network construction of the gradient data map starts from 
each node sensing its environment and generating the OP 
model for its own cell. Each node receives the partial maps 
from all its child neighbors at the time slot of data aggregation. 
The OPs from different partial maps form an active set Sp. 
Through investigating the relationship among OPs within Sp, 
the sensor node estimates the similarity of OPs and merges 
the mergeable OPs. Figure 4 illustrates the possible rela-

tionships of two OPs. Finally, the partial maps are aggregated 
into a single map Mf which includes disjointed OPs. The 
lower level sensor node transfers Mf to its parent neighbors. 
Algorithm 1 presents detail steps of partial map generation 
for each sensor node.  

3.4 Aggregation Criteria 
To aggregate different partial maps, we need effective 

criteria to measure the similarity of OPs so that the resulting 
partial data map well approximates the actual data map. 

The OP model used in our system represents a cluster of 
cubic cells with similar environmental data. We can use a 
specific data value to represent the data in the whole OP 
region, e.g., the average value of all the sensor readings in the 
OP. In such case, to check the similarity of two OPs, we only 
need check the representing values of them. However, a 
single data value can hardly reflect full-scale environmental 
conditions in the OP. Moreover, only investigating the rep-
resentative value of an OP will miss the important spatial 
information. For example, with the same value, an OP oc-
cupying a larger space is still different from an OP holding a 
smaller space. Thus, we can merge a tiny OP (OP with small 
space) into a much larger OP (OP with large space) even 
though their representative data values differ a lot, because 
the merging simplifies the data map representation without 
losing much accuracy. However for the case in which two 
OPs both occupy large spaces, merging them may greatly 
reduce the accuracy of the resulting gradient data map.  

In our design, each OP is associated with a data distribu-
tion model which describes the environmental data within 
this OP. A function v = f(x, y, z) is employed to approximate 
the data value in each spot in the OP, where x, y and z cor-
respond to the spot coordinate in the 3D space. Polynomial 
models can be utilized to formulate this approximation 
function. To reduce the computational overhead for resource 
constraint sensor nodes, we adopt the linear model f(x, y, z) = 
c0 + c1x + c2y + c3z, where the data distribution is approxi-
mated by a hyperplane in the 4 dimensional space built on <x, 
y, z, v>. In the sampling period, each node first computes its 
initial model for its cubic cell from its sensing reading. 
During the aggregation, a linear model is built by conducting 
linear regression (LR) over the whole OP area. For an OP 
containing n cubes, n values are extracted for all cubes. Thus, 
we can get n 4-tuples <x1, y1, z1, v1>, <x2, y2, z2, v2>, … , <xn, 
yn, zn, vn> from which we compute the coefficients of the 
linear model by solving the equation: Aw = b 
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_______________________________________________ 
Algorithm 2 Merging Manipulations 
Function checkMergeable(OPi , OPj) 
 1: if OPi and OPj are overlapping or adjacent  
 2:  compute εij; 
 3:  if εij ≤ ε 
 4:   return TRUE; 
Function createMerger(OPi , OPj ) 
 1: φij = volume(OPi) + volume(OPj) – volume(OPi ∪ OPj); 
 2: if φij > 0 
 3:  return merger<OP1 ,OP2> with key εij/φij; 
Function merge(OP1 ,OP2) 
 1: compute OP = OPi ∪ OPj; 
 2: A = Ai + Aj; 
 3: b = bi + bj; 
 4: compute w by Aw = b; 
 5: return OP with A, b and w; 

_______________________________________________ 
 
The parameters A, w and b of LR model are integrated and 

transmitted with the OP in the aggregation process, which 
take O(1) cost to represent the data distribution over the OP. 
When merging two OPs, OPi and OPj, we can compute the 
LR model of the resulting OPij from the LR models of OPi 
and OPj. By summing Ai and Aj, we get Aij, so does bij with 
respect to bi and bj. The coefficients wij can be derived from 
the generated Aij and bij. Therefore, we do not need sample 
the <x, y, z, v> tuples to construct our LR model which is less 
accurate and induces more overhead. The similarity of two 
OPs is estimated based on the linear models of OPs. An 
estimated error bound εij is computed when aggregating two 
different OPs by the following formula: 

(1 ) (1 )
                                  (2)i i j j

ij
i jR R

ε ε
ε

+ ∆ + + ∆
=

+
 

where ∆i represents the difference between the cumulates of fij 
and fi on OPi, and ∆j represents the difference between the 
cumulates of fij and fj on OPj: 
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 εi and εj are the error bounds for fi on OPi and fj on OPj. 
Thus, (1+εi)∆i + (1+εj)∆j gives the maximum difference when 
we substitute the former LR models on OPi and OPj with the 
aggregated one. Ri and Rj represent the cumulates of fi on OPi 
and fj on OPj, respectively. 
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i j
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This formula computes the error bound εij after the ag-
gregation, and it is then evaluated by a user defined error 
bound ε. Only when εij is not greater than ε, two OPs are 
mergeable. Note that, in the above formula, the error bound is 
computed in a weighted manner, where the OP volume is the 
weight factor.  

Based on the estimation of the LR model, we consider the 

data value as well as the volume of the OP when merging two 
different OP regions. Algorithm 2 describes the function 
checkMergeable and createMerger which estimate the simi-
larity of two OPs and calculate the key value of the merger. 
The function merge merges two OPs and computes the new 
LR model for the resulting OP. The traffic overhead could be 
further reduced by incrementally updating the data map when 
sensor readings change. 

4. EVENT DETECTION 
When the sink receives the aggregated data map, we can 

perform the event detection based on the exhibited data pat-
tern from the data map. Moreover, the spatio-temporal pat-
tern revealed from the series of data maps provides us the 
dynamic progress of the event, which helps capture the event 
developments. In this section, we describe the event feature 
patterns and propose a formal method of utilizing the prede-
fined feature patterns to detect a specific event.  

In previous discussions the term “data map” refers to the 
constructed gradient data map in some sampling period. For 
the purpose of event detection, the spatio-temporal data 
pattern is often investigated over a time series of data maps. 
For the convenience of description, without specification, we 
will later use “data map” referring to the spatio-temporal data 
map consisting of a time series of received data maps. Each 
data map in this series is referred as a data map “snapshot”. 

4.1 Event Feature Patterns 
The event feature pattern F is defined as a time series of 

snapshots L on the data map of some environmental attribute 
and a set of relationship R among them. L = {S0, S1, …, Sn}, 
where Si is a snapshot (ti, Mi) on the data map composed of 
the time label ti and current data map Mi. Here ∆t = ti+1 – ti is 
the sampling interval between two consecutive snapshots and 
the data map Mi consists of different OPs (Pi1, Pi2, …, Pim). 
Different OPs are associated with different data values vij. 
The relationship R specifies the event feature pattern on 
series L. R describes the spatial relationship RS by regulating 
the relationships R(Pik, Pil) between different OPs on the data 
map snapshot Mi and the temporal relationship RT by regu-
lating the relationships R(Mi, Mj) between different data map 
snapshots. We illustrate the feature pattern in detail by de-
scribing two example events and their feature patterns.  
Spreading Event 

For the event of gas leakage, as the gas spreads from the 
source spot, the distribution of the gas density follows the 
single source spreading model in the data map of gas density. 
Spatially, in the data map snapshots, the leakage source bears 
the highest gas density value and the value falls along all 
directions from the source spot. Temporally, as time passes, 
the abnormal region expands and the gas density rises within 
the whole region. According to above observed features, we 
specify the spreading event feature pattern as follows. 

The spreading event feature pattern Fs is determined by the 
user specified snapshot series Ls and the relationship Rs on 
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them, which are customized by the users: (1) T is a user 
specified event duration, which constrains that in the snap-
shot series Ls, the time interval between the first snapshot S0 
and last snapshot Sn, tn – t0 = T. (2) The spatial relationship 
RS

s
 regulates a series of nesting OPs {Pi1, Pi2, …, PiNi} for 

each Mi. Ni (0 ≤ i ≤ n) is the user specified spreading level, 
which specifies the number of the nesting OPs. Pik occupies 
the hole region in Pik+1. The difference of data values asso-
ciated with the two OPs vik − vik+1 is bounded by the user 
specified degrading bound [DL, DH] and the ratio of their 
volumes δk/δk+1 is bounded by the user specified scaling 
bound [fL, fH], (0 < fL < fH < 1). (3) For the temporal rela-
tionship RT

s, the variation of data values between two con-
secutive data maps Mi and Mi+1 is regulated by the user 
specified variation factor vf, such that the data value variation 
for any spot p in the event region between Mi and Mi+1, vpi − 
vpi+1 ≥ vf. Another user specified spreading factor sf (0 < sf < 
1) constrains the ratio of the volumes of event regions 
(composed of the nesting OPs) in consecutive data maps Mi 
and Mi+1, such that Ei/Ei+1 ≤ sf. This factor indicates the 
spreading speed of the source. Figure 5 (a) illustrates the 
spreading event. 
Fault Event 

The fault event corresponds to those breaking out changes 
in terms of some attribute value. For instance, the under-
ground water seepage on the tunnel floor induces a large 
flooded region where the sensory readings largely differ from 
those in the normal region. The feature pattern of fault event 
is specified as follows. 

The fault event feature pattern Ff is determined by the user 
specified snapshot series Lf and the relationship Rf on them, 
which are customized by the users: (1) T is a user specified 
event duration, which constrains that in the snapshot series Lf, 
the time interval between the first snapshot S0 and last 
snapshot Sn, tn – t0 = T. (2) The spatial relationship RS

f 
regulates two adjacent OPs, Pi1 and Pi2 in each Mi. Pi1 is 
associated with value vi1 in the range [b1, b1+k] and Pi2 with 
value vi2 in the range [b2, b2+k]. b2 − b1 ≥ ∆, where ∆ is a user 
specified threshold. The volumes of the two OPs E1, E2 ≥ E, 
where E > 0 is a user specified region size bound. Another 
user specified parameter Sc sets the lower bound of the co-
incident plane area shared by the two OPs. (3) The temporal 
relationship RT

f regulates the event regions in consecutive 
data maps overlap at least at a percentage of α, where 0 < α < 
1 is a user specified confidence factor. Figure 5 (b) illustrates 
the fault event. 

 

  

Fig. 5.  Illustration of example event feature patterns. (a) 
Spreading event pattern, and (b) Fault event pattern 

4.2 Pattern Based Event Detection 
Once the event feature patterns have been specified, the 

sink continuously processes the received data maps and 
compares them with those predefined event feature patterns. 
Once finding a match between the pattern and the data map, 
the corresponding event is captured. More over, by tracking 
the spatio-temporal feature of the data map series, the de-
velopment of current event could also be revealed. 

We define an instant snapshot At of the data map A matches 
Si if and only if the OPs in At match the OPs in Mi and share 
the same spatial relationships R(Pik, Pil). We define the data 
map A matches pattern F if and only if from time t, there exist 
a series of map snapshots {At, At+∆t1, …, At+n∆t} from A, such 
that any snapshot At+i∆t matches the corresponding feature 
snapshot Si and all map snapshots obey the temporal rela-
tionships R(At+i∆t, At+j∆t). 

5. PERFORMANCE EVALUATION 
We conducted a field study by investigating the various 

environmental conditions in the D. L. Coal mine. It is one of 
the most automated coal mines worldwide. We collected 
different sets of real data in the field and from historic records 
under normal and exceptional situations. In this section, we 
investigate the efficacy and efficiency of our proposed event 
detection mechanism by a trace driven simulation using 
synthetic workload generated from the collected raw data. 

5.1 Simulation Setup 
We simulated the event scenarios in a sensor network with 

a 3D sensor deployment. The widely used Mica2 motes [7] 
are presumed as the underlying hardware standard. All 
numbers are 2-byte integers (including sensor readings and 
all coefficients). The size limit for the simulated packets is set 
to 60 bytes. An N × N × N cubical grid topology is initiated 
with a sensor node placed at the center of each cubical grid. 
The parameter N indicates the diameter of this cubical grid 
network, ranging from 5 to 20 (default value is 10) in our 
experiments to explore the system scalability under different 
network sizes. Each sensor node has direct communication 
links with 6 surrounding neighbor nodes. The link quality is 
measured with the link loss rate q, which is the probability 
that a packet transmitted along the link gets lost. In our ex-
periment, this parameter varies from 0% to 40% (default 
value is 10%) to explore the system reliability under different 
network conditions.  

Three types of real-world historic sensory data for the 
underground environment have been collected in the coal 
mine as our data trace including gas density, oxygen density, 
and watery regions. However, due to the constraint on re-
source and environment, the original data are collected with 
rough granularity on time scale and incomplete samples on 
the space scale. Based on the raw data on hand, we generate 
more detailed synthetic datasets for use in our experiment. 
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Fig. 6. Event detection recall of three approaches with different parameters varying. (a) link quality; (b) network diameter. 
(c) event frequency 
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Fig. 7. Network traffic overhead of three approaches with different parameters varying. (a) link quality. (b) network 
diameter. (c) event frequency 
 

The events are queried over the dataset with a predeter-
mined event frequency f, which depicts the monitoring 
workload. f is calculated as the duration of events over the 
total monitoring duration. In our experiment, we vary f from 
0% to 40% (default value is 10%) to obtain a full view of the 
system efficiency under different workload. 

We focus on two metrics for performance evaluation. The 
event detection accuracy measures the efficacy of the ap-
proach and the network traffic overhead tells the efficiency 
on energy consumption. The event detection accuracy is 
measured by two sub-metrics, precision and recall, which 
have been widely used in IR domain [3]. The precision de-
scribes the detection precision, which is defined as the per-
centage of accurately detected real events over all reported 
events; recall describes the detection completeness, which is 
defined as the percentage of successfully detected events over 
all occurred events. The network traffic overhead is meas-
ured by the total amount of messages (bytes) transmitted in 
the network in the monitoring duration. 

To evaluate the performance gain of our approach, we did 
a comparative study investigating three possible approaches: 
(1) AGG: our proposed in-network data map aggregation 
approach described in section 3. (2) SAT: the server side 
aggregation under TAG [12] framework, in which the net-
work is organized into tree structure and all data are for-
warded to the sink. Data map is constructed in the server side. 
(3) SAM: the server side aggregation under multi-path rout-
ing strategy [14], in which the network is organized into 

multi-path routing style and the data map is constructed in the 
server side. 

5.2 Simulation Results 
We evaluate the performance of event detection accuracy 

by two metrics: precision and recall. However, since in all 
runs of experiments, 100% detection precision is consistently 
achieved in different approaches under all parameter settings, 
we omit this metric and only present the performance on 
recall in the experiment result part.  

We do the comparative study among the three approaches 
under various parameter settings. Figure 6 plots the event 
detection recall of three approaches. In all cases, our AGG 
approach achieves best performance. As shown in Fig. 6(a), 
with the increase of the link loss rate, the recall of SAT rap-
idly drops below 40% and tends to 0. While the SAM ap-
proach also bears a bad detection recall, our AGG approach 
demonstrates good tolerability to the network quality. The 
detection recall is kept above 60% even in a lossy network 
with up to 40% link loss rate. In Fig. 6(b), the network di-
ameter is enlarged to investigate the scalability of three ap-
proaches. Again, the SAT approach leads to unacceptable 
detection recall rate. Our AGG approach keeps high recall 
rate all along while the recall of SAM approach drops linearly 
as the network diameter increases. Figure 6(c) plots the de-
tection recall of three approaches in cases with different event 
frequencies. We observe that the parameter of event fre-
quency hardly influences the recall rate of the three ap-
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proaches. All three approaches provide stable recall rates 
when event frequency is varied and our AGG approach 
outperforms the other two. 

Figure 7 plots the network traffic overhead in three ap-
proaches. In Fig. 7(a), with the increase of the link loss rate, 
the traffic overhead of all three approaches decreases because 
of the loss of packets. The SAM approach experiences a 
faster decrease on the traffic overhead, but the total amount is 
much larger than the SAT and our AGG approaches. The 
traffic overhead of the SAT approach has a skip decrease 
when the link loss rate changes from 0% to 10%, however 
from Fig. 6(a) we know this is because most of the useful 
information gets lost due to the packet loss. Figure 7(b) shows 
how network traffic overhead grows as the network size 
increases. We note that while the SAT and AGG approaches 
maintain comparative low traffic overhead against the in-
crease of network diameter, the SAM approach has a dra-
matic increase of the traffic overhead which greatly con-
strains its scalability. Figure 7(c) shows how the parameter of 
event frequency affects the three approaches. While the event 
frequency has little influence on SAM and SAT approaches, 
the traffic overhead of our AGG approach is reduced as the 
event frequency decreases benefiting from the data map 
updating technique. According to our autoptical investigation 
in the coal mine, generally the event frequency in the 
real-world remains low, benefiting the application of our 
AGG approach.  

To summarize, among the three possible approaches, the 
SAT approaches introduces the least traffic overhead, but 
provides the worst, totally unacceptable event detection 
accuracy; the SAM approaches provides somewhat tolerable 
event detection accuracy, but with the most traffic overhead 
and the worst scalability; our AGG approach provides the 
best event detection performance with relatively small traffic 
overhead. We also achieve the best scalability to the network 
size and tolerability to the network quality in the AGG ap-
proach. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose a non-threshold based approach 

for complex event detection in 3D environment monitoring 
applications. Other than threshold based approaches, we 
propose event feature patterns to specify complex events and 
develop a pattern based event detection method on the ob-
tained 3D gradient data map. We employ multi-path routing 
architectures to provide robust data delivery and perform 
in-network aggregation on it to efficiently construct the data 
map. Space OP model is proposed to describe the environ-
ment data distributions. Partial data maps are aggregated by 
merging OP regions with similar environmental data. Our 
experimental results show the performance gain of our en-
ergy-efficient techniques. Moreover, the comparative study 
with two alternative approaches exhibits that our approach 
achieves great event detection accuracy with small network 

traffic overhead. 
The future work includes implementing a working system 

in real-world environment. To carry on pattern recognition on 
the obtained gradient data maps with machine learning 
techniques on historic data samples may provide more effi-
cient detection methods, which will also be included in our 
future work. 
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