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Abstract

Modern AI services must continually adapt to newly joined
domains, yet delivering high-quality customized models is
hampered by label sparsity, domain shifts, and tight budgets.
We formulate this challenge as the learning system expansion
problem and introduce HaT, an efficient heterogeneity-aware
knowledge-transfer framework. HaT first selects a small set
of high-quality source models with minimal overhead, and
then fuses their imperfect predictions through a sample-wise
attention mixer. Later, it adaptively distills the fused knowl-
edge into target models via a knowledge dictionary. Extensive
experiments on different tasks and modalities show that HaT
outperforms state-of-the-art baselines by up to 16.5% accu-
racy, and saves 31.1% training time and up to 93.0% traffic.

Code — https://github.com/MaginaDai/HaT-Public

Introduction
Deployment of customized learning models presents a crit-
ical dilemma. While building specialized models for each
user, device, or environment (domain) on the edge can yield
fine-grained performance and preserve privacy (Lu et al.
2024; Kong et al. 2023), producing these per-domain mod-
els is expensive. Each customized model demands substan-
tial labeling and training efforts, yet in practice, many do-
mains have only scarce labeled data due to prohibitive label-
ing costs (Gao et al. 2024; Dai et al. 2024). For example, a
healthcare system might require customized models for dif-
ferent hospitals or even individuals (Ouyang et al. 2023),
yet obtaining sufficient labeled data from each hospital/de-
vice remains costly and time-consuming. Moreover, mod-
ern learning systems typically serve numerous domains, in
which cases the labeling and retraining overhead becomes
unsustainable as the system grows.

While one might consider transferring existing models to
new domains (Phan et al. 2024; Lu and Sun 2024), signif-
icant challenges arise from data and device heterogeneity.
Models trained on a particular data distribution may fail to
generalize to another, suffering from performance drops or
inapplicability to unseen categories. Additionally, resource
constraints of different devices, such as memory or computa-
tional power, further complicate direct model reuse (Li et al.
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Figure 1: Expanding learning systems is challenging due to
label scarcity and large heterogeneity.

2024b). For instance, a smartphone and a smartwatch may
both need to run the human activity recognition but have
distinct available resources, making it difficult to transfer
models directly between them. Thus, a more efficient and
systematic strategy is needed to expand learning systems to
more domains without incurring massive cost.

We define this challenge as learning system expansion,
illustrated in Figure 1. In this context, source domains, such
as different users, devices, or datasets, maintain heteroge-
neous models to process local data. Target domains, on the
other hand, have limited labeled data and abundant unla-
beled data due to the high costs associated with labeling.
The data in these target domains are non-IID with potential
shifts in label space. For example, in in-home patient mon-
itoring systems, customized models are deployed to accom-
modate the unique health conditions and sensor characteris-
tics of each individual. As more users adopt such systems
for proactive healthcare, the learning system must adapt to
these new users without relying on extensive labeled data
or imposing constraints on hardware. This leads to a criti-
cal question: How can we effectively and efficiently expand
learning systems to accommodate new target domains?

Existing approaches struggle to handle this question. To
handle data heterogeneity, domain adaptation is widely stud-
ied to enhance model robustness by aligning feature distri-
butions across domains (Wilson, Doppa, and Cook 2021; He
et al. 2023; Qu et al. 2024). Nevertheless, those works over-
look device heterogeneity, making it difficult to adopt exist-
ing models across diverse hardware environments. Knowl-



edge distillation addresses device-side constraints by trans-
ferring knowledge from teacher models to student models
(Hinton, Vinyals, and Dean 2015; Gou et al. 2021; Borup,
Phoo, and Hariharan 2023; Peng et al. 2024). Yet exist-
ing methods assume that the teacher models are fully reli-
able and do not account for the impact of data heterogene-
ity. The non-IID data across domains makes source models
less accurate on target domains. While personalized feder-
ated learning customizes models for each domain, its high
training and communication overheads are unsuitable for the
ever-growing learning system. Therefore, there is a signifi-
cant gap in addressing the expansion problem.

To bridge this gap, we propose the Heterogeneity-aware
Knowledge Transfer (HaT) framework with three key de-
signs: 1) High-Quality Source Model Selection: HaT filters
out low-quality source models using simple statistical fea-
tures. The remaining models are further evaluated based on
their performance on target domain data. This ensures that
only reliable models contribute to the knowledge transfer.
2) Adaptive Knowledge Fusion and Injection: An attention-
based mixer is trained to assign sample-wise weights to the
predictions of each source model based on their represen-
tations similarity. A knowledge dictionary selectively stores
the fused predictions, which are later injected into the target
model. The transfer speed is dynamically adjusted based on
the knowledge quality, ensuring that only useful knowledge
is passed to the target model. 3) Efficient Communication
and Joint Training. HaT encapsulates the model selection
process within a communication protocol that only transmits
models with high potential to the target domain, minimizing
communication overhead. In addition, a low-cost joint train-
ing scheme is implemented to simultaneously update the tar-
get model and the mixer, ensuring minimal computational
overhead while maintaining system performance.

Extensive experiments are conducted across multiple
modalities and tasks to show the generalizability of HaT.
HaT achieves up to 16.5% higher accuracy, which also re-
duces communication traffic by up to 93.0% and train time
per epoch by 31.1%. The key contributions are as follows:
1. We address a practical learning system expansion prob-

lem characterized by label scarcity and both data and de-
vice heterogeneities.

2. We propose a general framework, HaT, for learning sys-
tem expansion, which selects, fuses, and injects exist-
ing knowledge to deliver high-quality customized models
with practical system overhead.

3. We evaluate the framework across various tasks, modal-
ities, and architectures, demonstrating superior perfor-
mance compared with baselines.

Related Works
Transfer Learning. Transfer learning explores methods to
apply source models for new targets, addressing data or task
heterogeneities (Pan and Yang 2009; Tan et al. 2018). In
particular, domain adaptation has been extensively studied
to align feature distributions between domains (Zhu et al.
2020; Wilson, Doppa, and Cook 2021; He et al. 2023; Qu
et al. 2024). However, these approaches typically require

access to both source and target domain data, which may
not be feasible. In contrast, test-time adaptation techniques
adapt models using only test data, enabling continual learn-
ing (Gong et al. 2024; Karmanov et al. 2024). Addition-
ally, multi-source transfer learning methods aim to select
source models with better generalizability (Tong et al. 2021;
Agostinelli et al. 2022). Despite these advancements, most
transfer learning approaches do not address device hetero-
geneity, which is a critical factor in learning system expan-
sion. This limitation hinders the direct application of source
models to target domains, where device-specific constraints
must also be considered.

Knowledge Distillation. In knowledge distillation, a stu-
dent model is trained using the knowledge from one or
more teacher models, such as their predicted pseudo la-
bels or intermediate features (Hinton, Vinyals, and Dean
2015; Liu, Zhang, and Wang 2020; Vemulapalli et al. 2024;
Peng et al. 2024). Specifically, multi-teacher distillation ap-
proaches (Borup, Phoo, and Hariharan 2023; Liu, Zhang,
and Wang 2020; Zhang, Chen, and Wang 2022) aggregate
the knowledge of multiple teachers by assigning weights,
aiming to provide the student model with more accurate
and comprehensive knowledge. Most knowledge distilla-
tion studies assume high-quality teacher models are readily
available (Hinton, Vinyals, and Dean 2015; Liu, Zhang, and
Wang 2020; Zhang, Chen, and Wang 2022; Borup, Phoo,
and Hariharan 2023). However, in the learning system ex-
pansion problem, the knowledge from source domain mod-
els may not directly transfer to the target domain due to data
heterogeneity, leading to suboptimal performance.

Federated Learning. Federated learning (FL) focuses on
collaboratively training a shared global model across decen-
tralized clients (Zhang et al. 2021; Li et al. 2020; Yao et al.
2022; Criado et al. 2022). While personalized FL techniques
(Tan et al. 2022; Collins et al. 2021) address learning under
heterogeneity, they assume that all domains participate ac-
tively in training and focus on closed-world settings. In con-
trast, learning system expansion targets an open-world sce-
nario, where new domains continually join. It focuses on the
customized model construction for the new domains, rather
than retraining among all domains.

Model Customization. Model customization has been
extensively studied to meet specific computational and per-
formance requirements (Wen et al. 2023; Li et al. 2024b).
Some works explore pre-deployment or post-deployment
model generation techniques (Cai et al. 2020; Wen et al.
2023) to search optimal architecture in terms of latency and
accuracy. In contrast, HaT emphasizes the knowledge trans-
fer process from the selected source models to any target
models that satisfy the customized needs of target domains.

Learning Systems Expansion
Problem Formulation
We define the Multi-Round System Expansion (MRSE)
problem to address the ever-growing nature of learning sys-
tems. At round j, there are NS(j) existing source domains,

denoted as DS(j) = {DS
i (j)}

NS(j)
i=1 , and NT (j) target do-



mains, DT (j) = {DT
i (j)}

NT (j)
i=1 . Each target domain in

DT (j) requires high-quality, customized models to meet its
unique requirements. Once the models for target domains
DT (j) are curated, these domains become source domains
in the subsequent round: DS(j+1) = DS(j)∪DT (j). The
knowledge in DS(j + 1) is then leveraged to curate mod-
els for target domains in DT (j +1). The primary objectives
are: 1) maximize performance of the curated models on tar-
get domains; 2) minimize curation overhead, which includes
communication and computation costs.

To better understand the process, the MRSE problem
can be decomposed into individual One-Time System Ex-
pansion (OTSE) problems. For a specific target domain
DT

i (j) = {XT
i , Y

T
i , ζTi }, the goal is to curate a model

based on the knowledge from source domains DS(j) =
{XS

i , Y
S
i , NNS

i , ζ
S
i }. However, source and target domains

exhibit distributional differences between XS
i and XT

i ,
which hinder the direct applicability of the source model
NNS

i = {fS
i , g

S
i }. The fS

i and gSi are the encoder and the
classifier. The label sets of source domains Y S

i and target
domain Y T

i may not fully overlap, introducing additional
complexity during expansion. Moreover, target domains im-
pose constraints ζTi , including memory usage and inference
speed requirements, which must be considered during model
curation. Besides, due to the high cost of labeling, only few
(γ%) data in DT

i (j) is labeled, which is a general assump-
tion to handle potential label space difference.

Connection with Real-life Scenarios.
The learning system expansion problem is critical in real-
world applications where the demand for customized mod-
els increases over time. For instance, to provide sleep mon-
itoring or activity recognition service (Ouyang et al. 2023;
Xu et al. 2021), models must adapt to individual health or
motion conditions and sensor characteristics. As more users
adopt these systems for proactive healthcare or interactions,
the learning system must efficiently accommodate new users
without relying on extensive labeled data or imposing signif-
icant hardware constraints.

A similar challenge arises in large-scale urban surveil-
lance (Yuan et al. 2024), where new cameras are continu-
ously deployed across diverse environments. Devices from
different manufacturers may capture images with varying
lighting conditions, viewing angles, and backgrounds, creat-
ing a need for model customization. This diversity in sensor
characteristics and environmental conditions makes adapt-
ing models to new cameras both necessary and challenging.

HaT: Efficient Heterogeneity-aware
Knowledge Transfer

Framework Overview
To address the learning system expansion problem, HaT, as
presented in Figure 2, first select high-quality source mod-
els at a low cost. Later, the Sample-wise Knowledge Fu-
sion is performed to aggregate the conflicting knowledge.
Subsequently, the target model is trained with the Adaptive
Knowledge Injection based on a low-cost training scheme.
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Figure 2: Framework overview of HaT.

We further introduce the details of providing a customized
model for one target Dt (instead of DT

t for clarity), the pro-
cesses of which are scalable for any number of targets.

Efficient Model Selection Protocol
Model selection is crucial for preventing negative transfer
(Zhang et al. 2022), yet in an expanding learning system it
quickly becomes prohibitively expensive as shown in Figure
3. The result is emulated with the statistics in (Warden 2018)
(see Appendix A). Existing methods (Borup, Phoo, and Har-
iharan 2023; Li et al. 2019, 2024a) must transmit every
source model to the target and benchmark it locally, incur-
ring heavy communication and inference costs. The efficient
model selection protocol in HaT sidesteps this bottleneck by
performing a lightweight, feature-based pre-screening that
filters out weak candidates before any model is transmitted,
drastically reducing both traffic and computation.
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Figure 3: The traffic of the
model selection for each
target domain quickly be-
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learning system scales.
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Figure 4: Quality verifi-
cation stores only high-
quality fused predictions in
the KD, providing a stable
training signal.

Feature-based Coarse Selection. A vector of lightweight
statistical features l, e.g., [mean(X), var(X), skewness(X)],
are first computed directly from raw data in each source
and the target domain. These hand-crafted features capture
coarse domain characteristics without requiring any learned
model. The target device ranks all sources by feature-space
similarity and requests model weights only from the top η%
of candidates, thereby transmitting and evaluating a small,
high-quality subset instead of the entire pool.

Centroids-Accuracy Joint Selection. To further select
the high-quality models within the received model pool,



source domain models are ranked by the product of each
model’s labeled set accuracy Acci and the distribution simi-
larity on the unlabeled set. The top Np models are then kept.

We approximate each domain’s data distribution with
class centroids, computed as the mean encoder output of all
samples belonging to each class:

ct,m =
1

K

K∑
k=1

hi(k), k ∈ {k|max(gSi (hi(k))) = m} (1)

where hi(k) = fS
i (x(k)) represents the features extracted

by the encoder fS
i of the i-th domain from the k-th data

sample. To estimate pseudo-labels, we apply the classi-
fier gSi (hi(k)) followed by a max(·) operation. Then,
the centroids of Dt and DS

i are compared to estimate
the data distribution similarity sfine(t, i): sfine(t, i) =∑M

m=1 sim(ct,m, cSi,m)/M, where M is the number of over-
lapping classes between Dt and DS

i . A higher value of
sfine(t, i) indicates a greater similarity in data distribution,
implying the source model will likely perform better when
applied to the target domain. To further enhance centroid
accuracy, we introduce an entropy-based filtering step that
excludes low-certainty samples. Specifically, the entropy
e(k) of the logits output gSi (hi(k)) is calculated, and the
ω = 75% of features with the lowest entropy (i.e., the high-
est confidence) are selected for centroid extraction.

Sample-wise Knowledge Fusion from Multiple
Imperfect Source Models
During learning system expansion, even the top-ranked
source models can still mispredict on the target domain, un-
like the near-oracle teachers assumed in standard knowledge
distillation problem (Vemulapalli et al. 2024; Borup, Phoo,
and Hariharan 2023). Adding to the difficulty, these source
models differ in architecture, size, and output dimensional-
ity, making standard fusion schemes inapplicable. We there-
fore merge their outputs using an attention-based mixer that
is compatible with heterogeneous architectures.

Attention-based Mixer. The mixer first project the fea-
ture ht(k) from the target encoder through a linear layer
Lquery to the query vector q(k). Similarly, the features hi(k),
extracted by the selected models, are projected through
the respective linear layers Lkey

i to obtain the key vectors
keyi(k): q(k) = Lquery(ht(k)), keyi(k) = Lkey

i (hi(k)).

The mixer utilizes multiple linear layers Lkey
i of tailored

input dimension to accommodate the heterogeneous source
architectures that extracts features of varying dimension.
The output size of Lkey

i is standardized to a common dimen-
sion. The similarities between the query and the keys are
then calculated to obtain the attention score wi(k) for the i-
th model on the data sample x(k): wi(k) = SoftMax(q(k) ·
keyi(k)), i = 1, 2, . . . , Np.

The attention score wi(k) measures the feature similarity
between the target and the selected models, which is used to
aggregate the predictions from the selected classifiers gi(k):

pmix(k) =
∑
i

wi(k) ·Map[gSi (hi(k))], (2)
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Figure 5: Details of the Sample-wise Knowledge Fusion and
the Adaptive Knowledge Injection process.

where Map[·] projects the label spaces of different domains
to a unified label space that includes all categories. If the
features extracted by the target model and the i-th model are
highly similar, a higher weight wi(k) is assigned to the pre-
diction of the i-th model. This is because the i-th classifier
is likely to be more accurate on data from a distribution that
closely resembles the data it is trained with. Intuitively, the
score reflects how well a source model processes a target
sample. In cases of negative transfer, the mixer naturally as-
signs lower weights to such models to reduce their influence.

Algorithm 1: Low-cost Joint Training of HaT

1: Input: Target labeled and unlabeled data X{l,u}, labels
Y l, selected models {fS

i }
Np

i=1, {gSi }
Np

i=1,
2: Output: Target encoder and classifier ft, gt
3: Initialize gt, ft,Mixer,KD
4: # Encode target data with source encoders for later reuse
5: {h{l,u}

i } = ENCODING(X{l,u}, {fS
i }

Np

i=1)
6: for epoch in Epochs do
7: # Obtain target features (sampled Xu to reduce cost)
8: hl

t, h
u
t = ft(X

l), ft(Sampling(Xu))
9: # Update Mixer (Eq. 2) to learn attention weights

10: Mixer = MIXER UPDATE({hl
i}, hl

t,Mixer, Y l, {gSi })
11: ft, gt = MODEL UPDATE(ft, gt, h

{l,u}
t , Y l,KD)

12: if Quality Verification(Mixer) then
13: # Update KD only if Mixer quality improves
14: KD=DICT UPDATE(KD,Mixer, {hu

i }, hu
t )

15: end if
16: end for

Cost-effective Adaptation To further improve the accu-
racy of the fused predictions, we might adapt all Np selected
source models, which, however, would be computationally



expensive. Instead, the classifiers are trained jointly with the
mixer, while their encoders remain frozen. This approach re-
duces the computational burden, as classifiers are typically
lightweight (He et al. 2016). Additionally, freezing the en-
coders accelerates the knowledge aggregation process. By
pre-computing and storing features for all target domain data
using the frozen encoders, the mixer just fetch need features
from memory and eliminates the need to repeatedly execute
the forward pass of the selected encoders, which greatly re-
ducing the overall computation time.

Adaptive Knowledge Injection with Verified
Knowledge Dictionary
The target model selected given the training/inference-time
constraints of the target domain can be trained with:

Lada = Llabel + αLdistill(gt ◦ ft(x(k)), pmix(k)), (3)

where Llabel is the cross-entropy loss on the limited la-
beled data and Ldistill is the distillation loss learning from
the fused prediction. However, Figure 4shows that the ac-
curacy of the mixer’s fused predictions on the unlabeled set
(blue curve) oscillates across epochs. Even the accuracy re-
mains high in some cases, the aggregated results pmix(k) can
change markedly during training, sometimes flipping a sam-
ple’s pseudo-label from class A to class C. These fluctua-
tions send conflicting gradient signals to the model, making
supervision from pmix(k) unstable and slowing convergence.

Knowledge Dictionary with Quality Verification. To
stabilize training, we introduce a knowledge dictionary (KD)
guarded by a lightweight quality verification step. Specif-
ically, we randomly select 20% of the labeled data from
each target domain as a probing set. After each update of the
mixer, the KD is refreshed with the latest fused predictions
only if the mixer achieves improved accuracy on the prob-
ing set. As shown in Figure 4 using the HARBox dataset,
the quality verification, which utilizes even a minimal prob-
ing set (as small as ten samples), reduces prediction fluctua-
tions and maintains consistently high-quality pseudo-labels
throughout the training process. In KD, each entry stores a
soft label, allowing the target model to capture the confi-
dence levels of the mixer. During subsequent epochs the tar-
get model is supervised on the unlabeled data by the KD.
Accordingly, Equation 3 is replaced by:

Lada = Llabel + αLdistill(gt ◦ ft(x(k)),KD(k)), (4)

Adaptive Learner. Given the varying quality of the fused
predictions in the knowledge dictionary, an adaptive learner
is employed to adjust the weight α of the distillation loss:
α = m(Acctrain − b), where Acctrain represents the accuracy
of the attention-based mixer on the training data. The m and
b are predetermined hyperparameters. The m controls the
scaling factor of the weight α, while b serves as a thresh-
old to prevent the target model from learning from fused
predictions of low quality. The weight α increases when
the fused prediction accuracy is high, allowing the model
to learn more effectively from reliable predictions.

Low-cost Joint Training To enable a cost-effective train-
ing process, a joint training scheme is developed as shown in

Algorithm 1. The labeled and unlabeled data, X{l,u}, are en-
coded by the frozen source encoders {fS

i }
Np

i=1 to high-level
features, which are kept for later training. In each epoch, the
ft encodes X{l,u}, generating representations hl

t and hu
t . To

manage the computational overhead of processing a large
volume of unlabeled data Xu, only a subset of Xu is ran-
domly sampled in each epoch, with the sample size kept
proportional to the size of the labeled data. This strategy en-
sures that the entire set of unlabeled data is progressively
utilized over multiple iterations, thereby reducing training
time and memory usage of each epoch without compromis-
ing model performance. The KD is updated only when the
mixer’s quality improves, minimizing the cost of generating
pseudo-labels for all unlabeled data.

The cross-entropy loss is computed using pmix and la-
bels Y l and minimized by one optimizer to train the mixer
and the unfrozen classifiers (illustrated in gray in Figure 5).
Equation (4) is minimized by a separate optimizer to train
the target model (illustrated in green in Figure 5). After the
model training, only gt and ft are stored for the inference.

Evaluations
Experiment Setting
Datasets. HaT is evaluated on five datasets, HARBox
(Ouyang et al. 2021), ImageNet-R (Hendrycks et al. 2021),
NinaPro (Pizzolato et al. 2017), Alzheimer’s Disease (AD)
(Ouyang et al. 2023), and Speech Command (Warden 2018),
that span six modalities, four tasks, and different scales. For
each dataset, different model architectures, e.g., convolu-
tional neural networks and autoregressive models, are in-
cluded as model libraries. (See Appendix A.)

Baselines. The five most relevant baselines from knowl-
edge distillation, model aggregation, and domain adaptation
are implemented for comparison, including DistillWeighted
(Borup, Phoo, and Hariharan 2023), DistillNearest (Borup,
Phoo, and Hariharan 2023), LEAD (Qu et al. 2024), and
MEHLSoup (Li et al. 2024a). We also propose a baseline
called AccDistill, which distills the knowledge from ensem-
ble models selected from source domains. (See Appendix
A.) Federated learning approaches are excluded from the
comparison because they tackle a different problem set-
ting than the learning-system expansion scenario (see Prob-
lem Formulation). All the baselines and HaT use the same
amount of labeled data and information during training.

Real-world Testbed. We deploy our prototype on a two-
tier setup: (i) a backend server that stores all source domain
models and data, and (ii) an edge node, an NVIDIA Jetson
Xavier, that hosts the target-domain data and executes train-
ing. The model training overhead, including storage, time
and memory usage, is measured on the edge devices, which
are closely correlated with energy consumption. Communi-
cation cost is recorded by capturing the cumulative network
traffic exchanged between the server and the edge node.

Implementation Details. To demonstrate HaT’s versa-
tility, HaT is trained with full-parameter updates on all
datasets except Speech Command, where we apply LoRA
fine-tuning. On the Speech Command dataset, training runs
for 20 epochs, whereas on the other datasets training lasts



Table 1: Accuracy comparison in the MRSE setting.

Methods HARBox ImageNet-R NinaPro AD Speech Command
LEAD 51.46 48.17 44.94 36.46 72.03
MEHLSoup 62.98 47.57 43.32 31.04 72.25
AccDistill 73.40 57.56 35.65 52.71 26.49
DistillNearest 74.95 57.64 40.75 58.12 20.30
DistillWeighted 75.42 57.66 41.02 56.46 22.18

HaT 79.27 59.30 45.12 63.96 74.29

Table 2: Accuracy under two expansion settings.

Method Multi-Rounds One-Round
DistillWeighted 75.42 67.51
HaT 79.27 70.96

200 epochs. The learning rates of target models and mixer
are searched among {5e-4, 1e-3, 5e-3, 1e-2} for different
datasets. The scaling ratio m and the bias b are determined
using a grid search within the ranges [1.0, 4.0] and [0, 0.5],
with step sizes of 0.5 and 0.1, respectively. The Np is set to
three. A sensitivity analysis is provided in Appendix B.

Performance in Multi-Round System Expansion
To assess HaT under MRSE, we partition each dataset’s
domains into successive groups of varying sizes, emulat-
ing different expansion speeds, and report average results
for robustness. This staged release simulates an incremental
learning-system expansion, where new domains arrive round
by round (see Appendix A.)

HaT outperforms across every expansion scale and
speed. Table 1 presents the performance across different
rounds of expansion, with more detailed results provided
in Appendix C. Compared to baselines that either lever-
age limited knowledge from source domains (LEAD and
MEHLSoup) or transfer knowledge in a static manner (Ac-
cDistill, DistillNearest, and DistillWeighted), HaT delivers
more effective customized models with higher accuracy for
target domains under different system expansion speed. The
reason is that HaT incrementally folds better models from
each round into its source pool with better knowledge se-
lection, fusion, and injection, it propagates higher-quality
knowledge forward, yielding steady accuracy gains without
error accumulation in subsequent rounds.

Continuous knowledge sharing boosts accuracy. We
contrast MRSE with a One-Round variant on the HARBox
dataset, where all new users are served in a single batch.
Table 2 shows that accuracy is consistently higher under
MRSE: earlier-round models act as additional knowledge
source for later domains, boosting performance whenever
successive domains share similar distributions.

HaT expands learning systems with superior effi-
ciency. In Table 3, HaT cuts communication traffic despite
the inevitable growth that comes with more source domains
across all datasets. Note that the communication traffic of

Table 3: System overhead comparison on ImageNet-R. For
fairness, we standardized the batch size to 128 and used the
same target model (ResNet-34).

Method Traffic (MB) Storage (MB) Time (s)
LEAD 508 158.0 8.46
MEHLSoup 508 451.7 10.91

AccDistill 1 786 474.0 31.30
DistillNearest 1 786 474.0 30.91
DistillWeighted 1 786 474.0 31.15
HaT 1 279 162.2 5.83

LEAP and MEHLSoup is not directly comparable to HaT
because they can handle one or a few architecture-matched
sources, a restriction that also limits their accuracy. Relative
to the strongest multi-source baselines (AccDistill, DistillN-
earest, and DistillWeighted), HaT cuts selection-phase traf-
fic by 28.4% on ImageNet-R, 41.1% on NinaPro, 31.6% on
AD, 37.6% on HARBox, and 93.0% on Speech Command,
with larger traffic savings observed on datasets that contain
more source domains. For storage, LEAD is small because
it only leverage a single model, yet HaT remains compara-
ble even while leveraging multiple source models by storing
only lightweight feature embeddings plus a classifier head
per source. In addition, HaT records the shortest per-epoch
runtime and converges at least 1.4× faster than the strongest
distillation baselines. It converges in 79.4 epochs on average,
versus 107.1, 115.8, 130.6 epochs for DistillNearest, Distill-
Weighted, and AccDistill. Collectively, these results confirm
that HaT expands learning systems efficiently.

Robustness of HaT
We further evaluate HaT in the OTSE setting, focusing on its
robustness to (i) different target-model architectures and (ii)
severe label sparsity. We report average results across mul-
tiple randomly partitioned domains. Pre-processing details
and comprehensive results across other datasets are provided
in Appendix A and Appendix D.

HaT is robust across tasks, modalities, architectures,
and label scarcity. Figure 6(a) shows that whereas domain
adaptation and model merging methods can only leverage
source models that share the same architecture, HaT fuses
knowledge from heterogeneous sources and delivers the
highest accuracy for most architectures on different tasks.

Figure 6(b) varies the portion of the labeled data γ. HaT
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Figure 6: Performance comparisons with (a) varied architectures and (b) varied γ. In (a), C-(S, M, L), T-(S, M, L), M-(S, L), GN,
R-(18, 34, 50) represents CPC-(s, M, L), TPN-(S, M, L), MobileNet-(S, L), GoogleNet, and ResNet-(18, 34, 50), respectively.

Table 4: Ablation study in OTSE. SwKF, AKI, QV refer to
Sample-wise Knowledge Fusion, Adaptive Knowledge In-
jection, and Quality Verification.

Design HARBox ImageNet-R AD

HaT 80.57 57.87 67.33
w/o FbCS 73.86 56.86 63.83
w/o CAJS 79.92 56.45 67.17

w/o SwKF 69.05 56.14 60.17
w/o AKI 66.73 53.29 48.50
w/o QV 76.66 56.52 54.33

either matches or exceeds the best baseline. In the few cases
where a baseline edges ahead, we attribute the gap to the
use of a fixed threshold b in the adaptive learner, which may
yield a sub-optimal weight α when γ changes. Incorporating
a dynamic threshold is left for future work.

Ablation Study
Design Effectiveness. As shown in Table 4, the Feature-
based Coarse Selection and Centroids-Accuracy Joint Se-
lection enhance performance by leveraging the statistical
and high-level features that accurately reflect the domain
similarity and the source models effectiveness. The com-
bination of both selections demonstrates stronger general-
izability across datasets. When labels are unavailable, HaT
can leverages centroids to select, which slightly reduces the
accuracy (by 1.3% on HARBox). Sample-wise Knowledge
Fusion achieves an 11.5% accuracy improvement on HAR-
Box, since the sample-wise weights learned by the mixer
could more effectively combine predictions from source
models. Adaptive Knowledge Injection boosts accuracy by
dynamically scaling the distillation loss and selectively stor-
ing fused predictions. Specifically, quality verification con-
tributes to an increase in accuracy of 6. 1% on average, filter-
ing noisy pseudo-labels and stabilizing the training signal.

Optimizing the Training Overhead. Figure 7(a)
presents the training overhead on the ImageNet-R dataset.
The Cost-effective Adaptation, which partially tune the se-
lected models during training, lead to a 2.0× reduction in
memory usage and a 2.3× reduction in training time due
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Figure 7: (a) The impact of the Cost-effective Adaptation
(CeA) and Low-cost Joint Training (LcJT). The batch size is
set to 16. (b) The impact of the number of selected models.

to fewer parameters being optimized. Similarly, incorporat-
ing Low-cost Joint Training reduces the per-epoch training
time from 64.1s to 37.8s. Overall, HaT achieves significant
reductions in both training time (4.6×) and memory usage
(2.7×), indicating a more energy-efficient training process.

More sources aren’t always better. Figure 7(b) shows
that as Np increases, the accuracy first increases, which jus-
tifies the usage of multiple source models in HaT. When Np

continues to increase, the accuracy drops. It might be due
to noisy or low-quality knowledge from additional sources
or the limited capacity of the lightweight mixer when too
many sources are combined. Across the full range of Np,
HaT remains superior to the baselines, confirming the value
of its fusion strategy. Future work will explore hierarchical
or sparsity-aware mixers to exploit larger pools.

Conclusions
Expanding existing learning systems to provide high-quality
customized models for more domains is challenged by the
limited labeled data and the data and device heterogeneities.
To solve this problem, HaT first selects a small set of promis-
ing source models with small communication and infer-
ence overhead, and then fuses their knowledge by assign-
ing sample-wise weights to their predictions. Later, HaT
adaptively inject those fused knowledge into the customized
models based on the knowledge quality. Experiments span-
ning multiple tasks, modalities, and models show that HaT
consistently surpasses state-of-the-art baselines in accuracy
while reducing system overhead, validating its practicality
for real-world, large-scale learning-system expansion.
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Appendix A: Details of Experiment Settings
Datasets.
HaT is evaluated on the five datasets in Table 5, which are
further introduced as follows:

HARBox (Ouyang et al. 2021). This dataset consists of
9-axis Inertial Measurement Unit (IMU) data collected via
crowdsourcing from 120 users for Human Activity Recogni-
tion (HAR). It includes data for five activities, such as walk-
ing and hopping.

ImageNet-R (Hendrycks et al. 2021). This dataset con-
tains over 30k images from 200 classes in 16 different styles.
Each style can be considered a small dataset. We filtered out
styles with limited data or unclear labels, resulting in 8 styles
for experiments.

NinaPro (Pizzolato et al. 2017). This dataset contains
the electromyogram (EMG) data collected from 10 subjects.
Two commercial EMG sensors, the Myo Armbands, are de-
ployed around the elbows of the subjects for 6-class gesture
recognition.

Alzheimer’s Disease (AD) (Ouyang et al. 2023). This
dataset consists of Alzheimer’s Disease-related activity data
collected from 16 home environments using multiple modal-
ities. It includes 11 activity classes, such as writing and
sleeping.

Speech Command (Warden 2018). This audio corpus
comprises recordings from more than 2.6k users across 35
spoken-command classes. For reliable per-domain statistics,
we discard users with fewer than 32 utterances, yielding a
final set of 553 user-specific domains.

While HaT is evaluated on these four diverse applications,
it has the potential to extend to other learning systems, such
as traffic management or smart agriculture (Jiang et al. 2023;
Zhu et al. 2018), which we plan to explore in future work.

The data heterogeneities in the five datasets are quanti-
fied in Figure 8 using Maximum Mean Discrepancy (MMD),
which reveals substantial variation in domain shift across
different modalities and datasets.

Model Libraries.
We include six different models for each dataset. For IMU
data, the TPN-(S, M, L) (Saeed, Ozcelebi, and Lukkien
2019) and CPC-(S, M, L) (Haresamudram, Essa, and Plötz
2021) models are used, with feature channels of 12, 16, 32
for TPN and 8, 12, 16 for CPC, respectively. For image pro-
cessing, the model library consists of GoogleNet (Szegedy
et al. 2015), MobileNet-v3 (S, L) (Howard et al. 2019), and
ResNet-(18, 34, 50) (He et al. 2016). For EMG data, the
ConvNet-(S, M, L) (Côté-Allard et al. 2019) models and a
RNN-(S, M, L) are utilized, with feature channels of 4, 8, 12
for ConvNet and 32, 48, 56 for RNN, respectively. For the
Wave2Vec2-(S, M, L) model (Baevski et al. 2020) for the
Speech Command dataset, the ranks of the lora module are
set to 4, 8, 16, respectively. To handle the multi-modal data
in AD, we adapt the model in (Ouyang et al. 2023) by vary-
ing the number of layers and feature dimensions, creating
5-layer ADNet-(S, M, L) and 3-layer TinyADNet-(S, M, L)
models with 64, 128, 256 for ADNet and 32, 64, 96 feature
channels for TinyADNet.

Baselines
HaT is compared with five most relevant baselines covering
the area of knowledge distillation, domain adapation, and
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Table 5: Datasets for evaluating the effectiveness and generalizability of HaT.

Dataset Domains (#) Task Modality Model Library

HARBox 120 HAR IMU TPN-(S, M, L), CPC-(S, M, L)
ImageNet-R 8 Image Classification Image GoogleNet, MobileNet(S, L), ResNet-(18, 34, 50)

NinaPro 10 Gesture Recognition EMG ConvNet-(S, M, L), RNN-(S, M, L)
Speech Cmd 553 Speech Recognition Audio Wav2Vec2-LoRA-(S, M, L)

AD 16 HAR Depth Camera, ADNet-(S, M, L), TinyADNet-(S, M, L)Audio, Radar

Table 6: Group information for the four datasets.

HARBox ImageNet-R NinaPro AD Speech Command

Groups [40, 20, 20, 20, 20] [4, 1, 1, 1, 1] [6, 1, 1, 1, 1] [8, 2, 2, 2, 2] [153, 100, 100, 100, 100]

model aggregation:
DistillWeighted (Borup, Phoo, and Hariharan 2023).

DistillWeighted uses existing vision models to build models
for new tasks. Based on the PARC metric (Bolya, Mittapalli,
and Hoffman 2021), it assigns fixed weights to combine the
predictions of all source models for knowledge distillation.
As executing all source models is too expensive, we pre-
select Np models using the PARC metric and then apply
DistillWeighted.

DistillNearest (Borup, Phoo, and Hariharan 2023).
DistillNearest selects a single model from the most similar
source domain based on the PARC metric. The target model
then learns from the pseudo labels generated by the selected
model and the labeled data.

LEAD (Qu et al. 2024). LEAD is a domain adaptation
method that adapts the source model to builds instance-level
decision boundary for target data using decomposed source
features.

MEHLSoup (Li et al. 2024a). MEHLSoup merges multi-
ple source domain models with a learned mixing coefficient,
which is optimized by a block coordinate gradient descent
algorithm on the target domain data.

AccDistill. We select and ensemble source domain mod-
els with top-k accuracy and then transfer the knowledge
from the ensembled model to the target models, leverag-
ing the distilltion methods in (Borup, Phoo, and Hariharan
2023).

Other knowledge distillation, domain adaptation, or
model merging methods are not included, as they have
already been outperformed by the considered baselines
(Borup, Phoo, and Hariharan 2023; Qu et al. 2024; Li et al.
2024a). Since LEAD and MEHLSoup, as well as other adap-
tation and merging methods, are unable to handle model
heterogeneity, they are not directly comparable to HaT. To
make both methods executable, we select source domains
with architectures that match the target models as candi-
dates. Federated learning methods are not included for com-
parison due to the difference in the considered scenario
(See Problem Formulation). Self-supervised learning meth-
ods (Xu et al. 2021; Ouyang et al. 2022) are not included
as baselines as they are orthogonal to HaT and can be com-
bined to further enhance performance.

Data Splits and Training Details in MRSE
The domains in each dataset are randomly divided into five
groups, denoted as {G(i), i = 0, · · · , 4}. Detailed informa-
tion about the groups is provided in Table 6. In round j, the
domains in {G(i), i = 0, · · · , j − 1} serve as the source
domains DS(j), while the domains in G(j) are the target
domains DT (j). Once the models in G(j) are ready for
use, they are incorporated as source domains in the subse-
quent round j+1, sharing their knowledge with new targets
for further expansion. For instance, during round 2 expan-
sion on the HARBox dataset, the source domains include
60 users from G(0) and G(1), whose knowledge is used to
build models for 20 users in G(2). After round 2 expan-
sion, the system scales from 60 to 80 users, and the mod-
els in G(2) are subsequently leveraged to construct models
for G(3) along with G(0) and G(1). Notice that the num-
ber of domains per round is a controllable hyper-parameter.
By varying it in Table 6 we test expansion speeds of dif-
ferent magnitudes and show that HaT remains robust across
deployment scenarios.

The model skeletons for all domains are randomly se-
lected from TPN-(S, M, L), ResNet-(18, 34, 50), ConvNet-
(S, M, L), ADNet-(S, M, L), and Wave2Vec2-LoRA-(S, M,
L) for the five datasets, respectively.

The source domain models are trained using supervised
learning on the labeled data of each domain. For the target
domains, 60% of the data is randomly selected as the train-
ing set, 20% as the validation set, and the remaining 20% as
the test set. The parameter γ is set to 10%.

Data Splits and Training Details in OTSE
We also compare the results of HaT against the baselines in
the OTSE setting, where one domain is randomly selected
as the target domain, and the remaining domains serve as
source domains. The source domain architectures are ran-
domly selected from TPN-(S, M, L), ResNet-(18, 34, 50),
ConvNet-(S, M, L), and ADNet-(S, M, L). The other set-
tings are kept aligned with those in Section . For ImageNet-
R, each of the eight styles is tested separately. For the other
three datasets, ten different splits are randomly generated,
and the average accuracy and communication overhead are
reported.



Table 7: Detailed performance comparison on the HARBox dataset in the MRSE setting.

Methods Round 1 Round 2 Round 3 Round 4 Average Total
Acc. Traffic Acc. Traffic Acc. Traffic Acc. Traffic Acc. Traffic

LEAD 31.42 208 43.60 388 43.35 532 40.30 355 39.67 1483
MEHLSoup 57.63 208 65.84 388 63.51 532 64.95 355 62.98 1483

AccDistill 68.71 490 76.36 830 75.34 1188 73.20 1526 73.40 4034
DistillNearest 73.57 490 77.87 830 76.36 1188 72.04 1526 74.95 4034
DistillWeighted 72.91 490 77.67 830 76.54 1188 74.54 1526 75.42 4034

HaT 77.74 296 81.05 534 79.42 741 78.85 946 79.27 2517
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Figure 9: Sensitivity Analysis. (a) The impact of the selec-
tion ratio η. (b) The impact of the threshold b.

Appendix B: Sensitivity Analysis
We further conduct a sensitivity analysis on two key param-
eters in HaT, the selection ratio η and the threshold b.

Varied Selection Ratio. The impact of the Feature-based
Coarse Selection (FbCS) on communication overhead is il-
lustrated in Figure 9(a) by varying its selection ratio, η. Fig-
ure 9(a) shows that as η decreases from 1.0 (without FbCS)
to 0.03 (without Centroids-Accuracy Joint Selection), the
communication traffic consistently decreases because fewer
models are selected for transmission. The model execution
cost also decreases as fewer source models are chosen for
encoding data in the target domain. Additionally, Figure 9(a)
shows that the accuracy achieved by the target model in-
creases and then slightly decreases as η decreases. This pat-
tern occurs because, when η is large, the FbCS filters out
less useful models. However, when η becomes too small,
the coarse selection inadvertently discard some high-quality
models.

Varied Threshold. Figure 9(b) illustrates that as the
threshold b increases, the average accuracy of the target
models initially improves but eventually declines. A small
threshold results in frequent model updates early in train-
ing, during which the aggregated predictions from the mixer
are of low quality, leading to suboptimal performance. Con-
versely, an excessively large threshold causes the adaptive
knowledge injection process to degrade into direct train-
ing with limited labeled data, thereby failing to leverage the
knowledge from source models. Since the quality of selected
models varies across domains and tasks, we recommend set-
ting the threshold slightly higher than the highest accuracy
of the selected models on the labeled target data. This rec-
ommendation is based on the insight that knowledge from
different models can complement one another to improve

overall performance.
In summary, the sensitivity study shows that varying the

key hyperparameters changes HaT’s absolute accuracy by
only a few points. To eliminate the manual effort for hy-
perparameter tuning, an attractive next step is to plug in
lightweight automated hyperparameter tuning (Passos and
Mishra 2022) that can run once per new domain during
learning system expansion.

Appendix C: Detailed Results Comparison in
the MRSE setting

Table 7 presents detailed results on each rounds of expansion
on HARBox in the MRSE setting. Similar results are ob-
served on the other datasets. HaT outperforms the best base-
lines by 4.2%, 3.2%, 3.1%, and 4.3% in accuracy from round
1 to 4, respectively. Besides, the traffic during expansion is
significant less compared with the methods that does not
have constraints in the source model architectures (LEAD
and MEHLSoup only leverage source models that share the
same architectures with the target models, thus their traffic
are not directly comparable with HaT).

Appendix D: Additional Results in the OTSE
setting

Addtional results on NinaPro and AD are presented in Fig-
ure 10(a) and Figure 10(b) when the target architectures and
the portion of labeled data γ are varied.

As shown in Figure 10(a) and Figure 10(b), HaT achieves
superior or comparable performance in most cases. Al-
though HaT performs slightly worse than MEHLSoup on
NinaPro, it significantly outperforms MEHLSoup on the
other datasets, likely due to the lower data heterogeneity in
NinaPro, which aligns better with MEHLSoup’s approach.

Appendix E: Design Alternatives
Alternatives in Model Selection. Several alternative model
selection methods are compared with the selection approach
of HaT in Table 8. The knowledge transfer process in
HaT is applied to all selection methods. Accuracy and the
PARC criteria achieve better performance compared with
random selection. However, both methods rely on the la-
beled data, making them less effective when presented with
label scarcity. In contrast, the Efficient Model Selection Pro-
tocol in HaT leverages both labeled and unlabeled data for



RNN-S
RNN-M

RNN-L

Con
vN

et-
S

Con
vN

et-
M

Con
vN

et-
L

25
30
35
40
45
50
55

Ac
cu

ra
cy

 (%
)

NinaPro tin
yA

DNet-
S

tin
yA

DNet-
M

tin
yA

DNet-
L

ADNet-
S

ADNet-
M

ADNet-
L

25
35
45
55
65
75

Ac
cu

ra
cy

 (%
)

AD

LEAD
MEHLSoup

AccDistill
DistillNearest

DistillWeighted
HaT

(a) Varied target models.

0.05 0.10 0.15 0.20
Portion 

40

45

50

55

Ac
cu

ra
cy

 (%
)

NinaPro

0.05 0.10 0.15 0.20
Portion 

25
35
45
55
65
75

Ac
cu

ra
cy

 (%
)

AD

LEAD
MEHLSoup

AccDistill
DistillNearest

DistillWeighted
HaT

(b) Varied portion γ.

Figure 10: Results Comparsion on NinaPro and AD in the OTSE setting. (a) The target model skeleton are varied. (b) The
portion of labeled data in the target domain are varied.

Table 8: Performance comparison of different model selec-
tion methods on the HARBox dataset.

Random Accuracy PARC HaT

Acc (%) 56.21 58.99 64.59 65.70
Traffic (MB) 13.0 858 858 526

Table 9: Performance comparison of different knowledge fu-
sion methods on the HARBox dataset.

Metrics Nearest Equal Weighted HaT

P-Acc∗ (%) 49.22 46.08 50.93 75.01
Acc (%) 43.48 46.81 45.63 65.70

* The accuracy of the pseudo labels.

selection and avoids full model transmission, resulting in a
1.1% accuracy improvement while using only 61.3% traffic
of the communication expense.

Alternatives in Knowledge Fusion. Different knowledge
fusion methods are compared in Table 9. Nearest represents
only one model is selected and used. Weighted indicates the
use of the fusion method from DistillWeighted. Equal refers
to assigning equal weights to all selected models. The accu-
racy of the pseudo labels generated by HaT is 11.6% higher
than the best alternative method. Consequently, by learning
from the higher-quality fused knowledge, the target models
achieve a 16.5% improvement in accuracy.

Appendix F: Model Size Constraints.
To evaluate HaT under realistic memory budgets, we re-
peat the HARBox experiment while restricting the candidate
source pool to models whose peak footprint does not exceed
that of the target device. Table 10 summarizes the results.

Limiting the pool to memory-compatible models reduces
accuracy for all methods, yet HaT still outperforms Distill-
Nearest by 17.9% thanks to its sample-wise weighting and
selective knowledge injection. Future work will investigate
tensor-parallel and quantised variants of large sources, fur-
ther broadening HaT’s applicability under tight hardware

Table 10: Accuracy (%) on HARBox with and without a
model-size constraint. Only source models no larger than the
target budget are permitted in the constrained setting.

Method Constrained Unconstrained
DistillNearest 45.3 75.5
HaT 63.2 80.6

constraints.

Appendix G: Limitations
Applicability to Resource-Constrained Devices. The di-
versity of device types in various learning systems presents
challenges for customized model training. To minimize sys-
tem overhead during expansion, HaT optimizes communi-
cation traffic through an efficient model selection protocol
and reduces training memory and time with a low-cost joint
training scheme, making the expansion process more fea-
sible for edge servers. However, the complete model train-
ing process may still exceed the capabilities of battery-
powered devices and wearables. In such cases, offloading
model training to nearby trusted edge servers or leverag-
ing edge-cloud collaboration can serve as effective solutions
(Samikwa, Di Maio, and Braun 2023; Wang et al. 2024).

Privacy Concerns during System Expansion. Most do-
main adaptation methods require simultaneous access to
both source and target domain data, which limits their ap-
plicability in privacy-sensitive scenarios (He et al. 2023; Qu
et al. 2024). In contrast, HaT better preserves data privacy
by exchanging only high-level features and models between
domains. While sharing features may still carry some risk
of sensitive information leakage, it is generally necessary to
identify relevant domains (Bolya, Mittapalli, and Hoffman
2021). In future work, we aim to enhance privacy further by
selectively sharing non-sensitive features through methods
that identify and exclude sensitive content (Qu et al. 2024).


