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Abstract
Due to the ubiquitous deployment of WiFi infrastructure, numer-
ous studies have employed WiFi RSSI fingerprinting for indoor
localization. However, fingerprinting methods necessitate labour-
intensive site surveys for fingerprint collection and location anno-
tation. To address these limitations, we propose WiMU, a real-time
indoor localization system that integrates WiFi and inertial mea-
surement unit (IMU) data to enhance the real-time performance
and accuracy of localization. WiMU operates on commodity WiFi
infrastructure without the need for additional hardware, leveraging
crowd-sourced user trajectories to learn spatial representations of
access points (APs). These representations can be fine-tuned with
minimal labeled data to support effective localization. Extensive
evaluations demonstrate that WiMU reduces the cost of building
an indoor localization system while ensuring high positioning ac-
curacy, paving the way for the large-scale deployment of real-time
indoor localization systems.
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1 Introduction
Indoor localization has gained significant attention in recent years.
With the wide deployment of WiFi technology, many works lever-
age existing WiFi infrastructure for indoor localization. Among
existing approaches, WiFi Received Signal Strength Indicator (RSSI)
fingerprinting stands out as the only method that relies on no addi-
tional infrastructure. However, conventional fingerprinting requires
extensive site surveys to gather labeled fingerprints.

Unlike prior studies, we introduceWiMU, a real-time localization
system that fuses WiFi and IMU data with a more practical site sur-
vey setting. We assume that large amounts of unlabeled trajectories
are easily accessible when users move freely through the buildings.
Each trajectory contains several waypoints withWiFi RSSI readings,
noted as reference points (RP). Though the waypoints’ locations are
unknown, the IMU data from the mobile devices can provide rich
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Figure 1: Comparison between traditional and WiMU site
survey settings

proximity information. Crucially, distances between RPs and ac-
cess points (APs) can be derived from RSSI measurements, whereas
inter-RP distances can be estimated via inertial sensor data. WiMU
utilizes such relative location information to build an AP proximity
graph and trains a graph neural network (GNN) to generate latent
representations for each AP. These AP representations are then
aggregated based on RSSI weighting to synthesize RP representa-
tions. Finally, a lightweight regression model is trained to map the
RP representations to physical coordinates only using a small set
of labeled RPs. However, the commodity mobile phones limit the
sampling frequencies of WiFi. Thus, a Pedestrian Dead Reckoning
(PDR) algorithm is applied to compensate for the intermediate lo-
cation predictions. Lastly, the results from the WiFi module and
the PDR algorithm are fused together by a particle filter for more
accurate location estimation.

We implement WiMU and evaluate it on a large-scale Microsoft
indoor location and navigation dataset [1]. Extensive experiments
show that WiMU achieves the lowest localization errors in large
commercial buildings compared with SOTA baselines.

2 System Design
Figure 2 illustratesWiMU. It begins by constructing an AP-RP graph
from trajectory data, then refining the graph into an AP proximity
graph. Using a GNN model, AP representations are derived and
aggregated to form RP representations. These labeled RPs and their
locations train a regression model. These models remain frozen
for online inference. Besides, the PDR algorithm leverages IMU
data to predict the location from the previous location. Lastly, two
predictions are fused to obtain a more accurate estimation.
Graph Intialization. The AP-RP graph is constructed from trajec-
tory data, where nodes represent APs and RPs, and edges denote
the distance between them. For AP-RP edges, distances are esti-
mated using Wi-Fi RSSI via the Log-distance Path Loss (LDPL)
model. RP-RP distances are estimated using IMU data with the PDR
algorithm.
Graph Refinement. Subsequently, we utilize the AP-RP graph
to obtain distances between APs and refine it to an AP graph,
where each node refers to an AP and each edge represents the
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Figure 2: WiMU overview.
Figure 3: Localization error with different
amount of labeled RPs.

Figure 4: User interface of
WiMU App.

distance between two APs. The distance between APs is computed
by averaging the path lengths of all possible paths between them
in the AP-RP graph.
Model training. With the refined AP graph, a variational graph
auto-encoder (VGAE) and a multi-layer perceptron (MLP) work to-
gether to learn AP representations and predict locations. The VGAE
creates node representations and reconstructs the graph through
self-supervised training. Subsequently, these representations av-
erage to generate the RPs’ representation. These representations,
along with location labels, are used to train an MLP. During the
pre-training stage, the models are trained using unlabeled data and
the AP graph, with the objectives of reconstructing the AP graph
and predicting the displacements of unlabeled RPs. Subsequently,
in the fine-tuning stage, the models are adjusted to predict locations
using labeled RPs.
Particle filter. In addition to WiFi prediction, the PDR algorithm
uses previous location data and IMU readings to estimate locations.
These results are then combined with WiFi predictions using a par-
ticle filter to enhance accuracy. In addition, magnetic field strengths,
mobile phone postures, and AP RSSI are measured to adjust the
parameters of the filter dynamically.

3 Evaluation and Demonstration
We implement WiMU and conduct extensive experiments on 30
buildings (each >10,000 m2) selected from the Microsoft Indoor
Navigation dataset [1], comparing it with three baselines [2–4].
Figure 3 shows that WiMU improves by at least 29% compared to
GraFin, another GNN-based localization system. It also significantly
outperforms MYRCJ, the best RSSI fingerprinting-based method
in the competition. Additionally, WiMU demonstrates robustness
against a reduction in the number of RPs, with its localization
error increasing by only 2.1 m, surpassing the performance of other
baselines.

For demonstration, we implement an Android app for data sam-
pling and online inference, with the user interface shown in Figure
4. The app and records WiFi RSSI and IMU readings as users move
indoors. It also enables the data collector to label RPs by pinpointing
their locations on the map. After data collection, the data is sent
to a GPU server for model training. During online inference, the
app transmits real-time WiFi RSSI data to the server for location
prediction. As illustrated in Figure 5, WiMUwas evaluated in both a

(a) Test area on a university campus.

(b) Test area in a logistic warehouse.

Figure 5: Two real-world deployment scenarios.

university campus and a warehouse setting. In the shaded region of
Figure 5a, we gathered 15 unlabeled trajectories and 35 labeled RPs
within a 2-hour period, achieving an average localization error of
4.6 m. In the warehouse, we collected 29 trajectories and 45 labeled
RPs in the storage area, and 62 trajectories with 60 labeled RPs in
the bulk area, resulting in average localization errors of 4.61 m and
5.22 m respectively.
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