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Abstract
Model splitting and offloading part of the DNN model from the
mobile device to the cloud server, known as collaborative inference,
improves end-to-end latency and server throughput in CNN-based
models. However, current collaborative approaches do not apply to
popular Transformer-based models, as these models generate large
intermediate outputs with significant transmission latency and
have a uniform block structure that makes it challenging to serve
tail models efficiently on the server. We propose CollabTrans, a
collaborative inference framework designed for Transformer-based
models to enhance server scalability when handling requests from
numerous end devices, taming the large output with truncated SVD
and serving heterogeneous tail models by sharing a complete model.
We demonstrate our framework with a real-time image classifica-
tion mobile application together with background inference request
traffic, showing the high inference throughput of our framework.
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1 Introduction
Deep neural networks (DNNs) are widely used in mobile applica-
tions. Common cloud-based inference raises concerns about privacy
and long data transmission latency, while on-device deployment
struggles to meet the latency demands of complex DNNs. Collab-
orative inference [1, 3] addresses this by splitting the model into
two parts, head model and tail model, deployed separately on the
device and the server. Such splitting takes advantage of low latency
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Figure 1: Model Splitting in Transformer Models
of transferring intermediate output and exploits the resource on
the devices.

On CNN-based models like AlexNet and Incepction, model split-
ting algorithms leverage the computation graph to split at a model
layer to optimize latency or throughput. However, it is challenging
to apply to the popular Transformer-based models. In this demo, we
focus on discriminative models, e.g. Vision Transformers [2], rather
than auto-regressive models like generative language models. We
identify two challenges (Figure 1): (1) Intermediate outputs be-
tween Transformer blocks are large. Unlike CNN models with
several layers of small intermediate output, the output between
Transformer blocks is relatively large compared to raw data input
and splitting at any layer results in 1-3× transmission latency, thus
infeasible to apply graph-based splitting methods. (2) Transformer
blocks have identical structure. Depending on the devices’ com-
putation resource, splitting can occur after any block within the
Transformer model due to its uniform structure. This results in
multiple potential tail models, which complicates model serving
and management on the server with limited resource. We present
our framework CollabTrans to address the challenges and boost
server throughput to scale to numerous users.

2 CollabTrans Designs
Figure 2 depicts CollabTrans’s workflow, including the following
steps. ❶ Before inference, the clients on mobile devices select a split-
ting configuration (split point and intermediate data compression
ratio) using truncated singular value decomposition (SVD), a
lossy model splitting algorithm. This configuration should satisfy
the user accuracy loss constraint and meet the latency deadline. The
selection is based on the model latency profile and current network
bandwidth. ❷ Upon receiving requests (intermediate data), the
server buffers requests for different tail models in separate queues.
The scheduler determines the batch sizes for each request queue
using our scheduling strategy. ❸ Each GPU worker has a shared
model and batches the requests during the runtime of the iteration.
After inference, the responses are returned to clients.
Model Splitting via Truncated SVD. Transformer models have
large output after each Transformer block, and current splitting
methods are either infeasible or entail extra costly overheads. We
employ truncated SVD [5] to decompose a linear layer in Trans-
former block into low-rank matrices at the expense of accuracy,

1

https://doi.org/10.1145/3711875.3734371
https://doi.org/10.1145/3711875.3734371


MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA Jingcan Chen, Huatao Xu, Mo Li

1 2 k

Model Splitter

Device Profiles
Network BW

Split Config.

Clients

Request 
Scheduler

11

2

kkk

Runtime 
batching

2 samples

2+1
2+1+3

A Shared Model
for All Users

GPU Workers

Scheduled Requests

Server

Head Model

Execution 
Engine

1

k

2

1

2 2

Request 
Queues

Response

In
fe

re
n

ce
 Fro

n
te

n
d

Requests

Inference Results

Data Flow q Requests of Tail Model split at layer q

Model

Time

Latency DDL
Acc. constraint

Figure 2: CollabTrans Overview.
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Figure 3: Server throughput under different
latency deadlines using various collabora-
tion algorithms.

creating a possible splitting point, where the output size is depen-
dent on the rank of the matrix. This method provides a flexible
trade-off between data transfer latency and inference accuracy by
choosing the rank. Based on device capabilities and network band-
width and given latency and accuracy constraints, the model splitter
chooses the optimal splitting point that keeps as many layers on
devices as possible to alleviate the server computation.
Model Sharing with Runtime Batching in GPU Workers. The
heterogeneous tail models are partially shared in the rear blocks
(e.g. the 6th block in Figure 1). We thus use a shared model to serve
requests of all tail models. This shared model batches the requests
from queues of different tail models by checking the queues before
the calculation of each block, which avoids unnecessary memory
consumption and model-switching overheads.
Scheduling Algorithm to Optimize Throughput. To efficiently
allocate GPU resources to different queues based on current queue
lengths, we dynamically determine batch sizes for request queues.
A budget batch size is set for a specific GPU worker. A prioritized
queue can have a major large batch size, while other queues share
the remaining budget based on queue lengths. The priority is fairly
round-robin among queues. With this algorithm for the shared
model, our serving system sustains high inference throughput with
low serving latency among all queues.

3 Evaluation and Demonstration
We implement CollabTrans and conduct extensive experiments us-
ing 5 Jetsons devices with different power configurations on ViT
models, and compare the maximal throughput with baselines [4, 6].
Results (Figure 3) show that, CollabTrans achieves up to 1.32×
higher server throughput than Graft, the SOTA serving system
for model splitting [6] and 2.11× higher than server-only infer-
ence, under the deadline of 90% of on-device inference latency. The
throughput gain results from the exploitation of devices as they
conduct part of the model inference. In the experiments above, at
least 90% of the requests are served within the deadline. Figure 4
shows the accuracy loss when applying truncated SVD on different
blocks of the model. For the first half of the blocks (1-7), applying a
truncation ratio of 0.7 (compress 70% of the intermediate data) only
incurs less than 5% accuracy degradation.

For demonstration, we use a mobile phone with a real-time
image classification application for user interaction and Jetsons
running the same task (Figure 5). A laptop is used as a server.
We also simulate the inference requests from numerous devices
by emitting background request flows on the laptop. The laptop
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Figure 4: Accuracy loss with various truncation ratios (0.1-
0.9) on different model blocks of vit-base-patch16-224.
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Figure 5: Device setting used for demonstration.
visualizes the real-time throughput and request latency, and shows
the pre-measured throughput trace of server-only inference. Users
can see the model split point, classification result and inference
latency on the mobile phone. Users can adjust accuracy and latency
constraints, network bandwidth to see the throughput change.
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